Способ получения стандартной жидкости сжр-1 для испытания резин и резинотехнических изделий

Настоящее изобретение относится к способу получения стандартной жидкости СЖР-1 для испытания резин и резинотехнических изделий с использованием глубокоочищенного остаточного дистиллята, выделенного из парафинового нефтяного сырья, который отличается тем, что указанный остаточный дистиллят в смеси с растворителем подвергают адсорбционной очистке в стационарном слое широкопористого алюмосиликатного адсорбента с удельным объемом пор не менее 0,75-0,85 см3/г при массовом соотношении адсорбент : остаточный дистиллят - 1,3-1,5:1, объемном соотношении растворитель : остаточный дистиллят - 4-6:1. Техническим результатом настоящего изобретения является обеспечение стабильной технологии получения отечественной экологически чистой стандартной жидкости СЖР-1 с получением требуемых показателей качества. 1 з.п. ф-лы, 6 пр.,1 табл.

 

Изобретение относится к нефтепереработке, в частности к способам получения стандартной жидкости (масла) СЖР-1, применяемой в качестве рабочей среды для испытания резин и резинотехнических изделий, и может быть использовано для оценки качества резин, работающих в условиях контакта с нефтепродуктами, в том числе в морском флоте, железнодорожном транспорте, в резиновой, авиационной, машиностроительной, космической и других отраслях промышленности.

В процессе эксплуатации оборудования под воздействием рабочих жидкостей резины и резинотехнические изделия постепенно теряют свое качество, что может привести к снижению производительности оборудования, его остановке, а в некоторых случаях, как, например, в авиационном, железнодорожном и морском транспорте, военной и космической промышленности, к роковым последствиям. Для предупреждения аварийных ситуаций и обеспечения нормальной работы оборудования, в котором применяют резинотехнические изделия, последние должны обладать способностью противостоять влиянию топлива, масла и других рабочих жидкостей. Для этого разрабатываются методы их испытаний на прочность, коррозию, разрыв, деформацию и другие параметры в среде стандартного масла. Эти методы испытаний в среде стандартного масла создают возможность моделирования условий эксплуатации посредством ускоренного тестирования и представляют важнейшую информацию о возможности применения резины при контакте с определенной жидкостью.

Поэтому разработка стандартных жидкостей (масел) для испытания резин имеет большое значение для обеспечения качества резин и резинотехнических изделий.

Известен способ получения стандартной жидкости ASTM Oil №1 путем смешения нейтрального масла с глубокоочищенным остаточным минеральным продуктом, выделенным из парафинистого нефтяного сырья.

(ASTM D 471-10. Standard Test Method for Rubber Property - Effect of Liquids. Table 1. Стандарт ASTM D 471-10. Определение стойкости резин и резинотехнических изделий к воздействию жидкостей).

(ГОСТ Р ИСО 1817-2009 «Резина. Определение стойкости к воздействию жидкостей»).

Недостатком указанного способа получения стандартной жидкости ASTM Oil №1 является необходимость тщательного контролирования качества не только готового продукта, но и каждого продукта смеси, которая объясняется тем, что основные показатели качества жидкости - анилиновая точка и вязкость кинематическая при 100°C в соответствии с нормами ASTM D 471-10 - контролируются в очень узком интервале значений. Например, требуемые значения анилиновой точки готового продукта должны составлять - 124±1, а кинематической вязкости при 99°C - 20±1 мм2/с. Поэтому трудно достичь воспроизводимости требуемых параметров качества готовой жидкости.

Другим недостатком данной жидкости являются обнаруженные у нее в процессе эксплуатации канцерогенные свойства (положительный тест Эймса на угрозу онкологических заболеваний), что явилось по решению Американского агентства по безопасности и гигиене труда причиной отмены коммерческого применения жидкости ASTM Oil №1 в системах испытания резин.

Известен способ получения стандартной жидкости СЖР-1 из глубокоочищенного остаточного минерального продукта, выделенного из парафинового нефтяного сырья. По показателям качества жидкость СЖР-1 отвечала основным требованиям стандартных масел ASTM Oil №1 (по ASTM D 471-10).

(Справочник «Топлива, смазочные материалы и технические жидкости». Под ред. В.М. Школьникова. М., Издательский центр «Техинформ», стр. 517, 1999 г.).

По данным авторов, глубокоочищенный минеральный продукт подвергали адсорбционной доочистке через слой тонкопористого алюмосиликатного адсорбента.

Недостатком этого способа является плохая воспроизводимость необходимых параметров качества готового продукта, требующая повторной переработки продукта и осложненная применением для адсорбционной очистки тонкопористого алюмосиликатного адсорбента, имеющего низкую избирательность по удаляемым ароматическим углеводородам. Последнее обстоятельство связано со значительным увеличением расхода адсорбента и тем самым удорожанием процесса очистки.

Задачей изобретения является разработка технологически стабильного способа получения стандартной жидкости СЖР-1 для испытания резин и резинотехнических изделий, отвечающего необходимым параметрам качества и экологической безопасности.

Для решения поставленной задачи предлагается способ получения стандартной жидкости СЖР-1 для испытания резин и резинотехнических изделий с использованием глубокоочищенного остаточного дистиллята, выделенного из парафинового нефтяного сырья, который отличается тем, что указанный дистиллят в смеси с растворителем подвергают адсорбционной очистке в стационарном слое широкопористого алюмосиликатного адсорбента с удельным объемом пор не менее 0,75-0,85 см3/г при массовом соотношении адсорбент : остаточный дистиллят - 1,3-1,5:1, объемном соотношении растворитель : остаточный дистиллят - 4-6:1.

В качестве растворителя используют растворитель с пределами выкипания 80-120°C.

В качестве глубокоочищенного остаточного дистиллята, выделенного из парафинового нефтяного сырья, используют высокоочищенный остаточный дистиллятный базовый продукт по ГОСТ 21743-76 с плотностью 0,87 г/см3 (масло МС-20).

В качестве адсорбента используют алюмосиликатный адсорбент по ТУ 38.401-58-409-2013 марки АС-230Ш, который имеет следующие физико-химические характеристики: насыпная плотность - 0,48-0,54 г/см3, удельный объем пор - не ниже 0,75-0,85 см3/г, удельная поверхность - не ниже 400 м2/г, гранулометрический состав 0,2-1,6 мм или 0,2-0,8 мм, или адсорбенты марки Б и В.

В качестве растворителя используют петролейный эфир 40/70 по ТУ 6-09-1244-83 или бензин-растворитель нефрас С-2 80/120.

Ниже приведены примеры конкретной реализации способа:

Пример 1. (Сравнительный)

Процесс адсорбционной очистки остаточного дистиллята (масла МС-20) осуществляют в стационарном слое широкопористого алюмосиликатного адсорбента следующего химического состава:

SiO2 - 89,65-91,15% масс., Al2O3 - 5,0-3,5% масс., Na2O - 0,15-0,15% масс., Fe2O3 - 0,2-0,2% масс., потери при прокаливании (ППП) - 5,0% масс.

Структурные показатели адсорбента, такие как насыпная плотность, удельный объем пор, удельная поверхность, гранулометрический состав, удовлетворяют требованиям ТУ 38.401-58-409-2013 на алюмосиликатный адсорбент марки В.

Массовое соотношение адсорбент : остаточный дистиллят составляет 1,25:1. Предварительно остаточный дистиллят разбавляют растворителем (петролейным эфиром) в объемном соотношении растворитель : остаточный дистиллят - 4:1, полученный раствор пропускают через слой адсорбента со скоростью - 0,3 см/мин.

Для получения готового продукта СЖР-1 из очищенного на адсорбенте раствора отгоняют растворитель, который возвращают на повторное использование. Полученный продукт анализируют на соответствие показателей качества нормам ТУ 38.10195-2012 и определяют следующие параметры: анилиновую точку, вязкость кинематическую при 99°C, температуру вспышки в открытом тигле, содержание полициклических углеводородов и стабильность масел при температуре 125°C в течение 72 часов по изменению массы образца стандартной резины при воздействии масла.

Пример 2

Процесс адсорбционной очистки остаточного дистиллята (масла МС-20) осуществляют в стационарном слое алюмосиликатного адсорбента, имеющего тот же химический состав и структурные показатели, что в примере 1.

Массовое соотношение адсорбент : остаточный дистиллят составляет 1,3:1. Предварительно остаточный дистиллят разбавляют растворителем (бензином-растворителем нефрас) в объемном соотношении растворитель : остаточный дистиллят - 4:1, полученный раствор пропускают через слой адсорбента со скоростью - 0,3 см/мин.

Для получения готового продукта СЖР-1 из очищенного на адсорбенте раствора отгоняют растворитель, который возвращают на повторное использование. Полученный продукт анализируют на соответствие показателей качества нормам ТУ 38.10195-2012 и определяют следующие параметры: анилиновую точку, вязкость кинематическую при 99°C, температуру вспышки в открытом тигле, содержание полициклических углеводородов и стабильность масел при температуре 125°C в течение 72 часов по изменению массы образца стандартной резины при воздействии масла.

Пример 3

Процесс адсорбционной очистки остаточного дистиллята (масла МС-20) осуществляют в стационарном слое алюмосиликатного адсорбента, имеющего тот же химический состав и структурные показатели, что в примере 1.

Массовое соотношение адсорбент : остаточный дистиллят составляет 1,4:1. Предварительно остаточный дистиллят разбавляют растворителем (петролейным эфиром) в объемном соотношении растворитель : остаточный дистиллят - 4:1, полученный раствор пропускают через слой адсорбента со скоростью - 0,3 см/мин.

Для получения готового продукта СЖР-1 из очищенного на адсорбенте раствора отгоняют растворитель, который возвращают на повторное использование. Полученный продукт анализируют на соответствие показателей качества нормам ТУ 38.10195-2012 и определяют следующие параметры: анилиновую точку, вязкость кинематическую при 99°C, температуру вспышки в открытом тигле, содержание полициклических углеводородов и стабильность масел при температуре 125°C в течение 72 часов по изменению массы образца стандартной резины при воздействии масла.

Пример 4

Процесс адсорбционной очистки остаточного дистиллята (масла МС-20) осуществляют в стационарном слое алюмосиликатного адсорбента, имеющего тот же химический состав и структурные показатели, что в примере 1.

Массовое соотношение адсорбент : остаточный дистиллят составляет 1,5:1. Предварительно остаточный дистиллят разбавляют растворителем (петролейным эфиром) в объемном соотношении растворитель : остаточный дистиллят - 4:1, полученный раствор пропускают через слой адсорбента со скоростью - 0,3 см/мин.

Для получения готового продукта СЖР-1 из очищенного на адсорбенте раствора отгоняют растворитель, который возвращают на повторное использование. Полученный продукт анализируют на соответствие показателей качества нормам ТУ 38.10195-2012 и определяют следующие параметры: анилиновую точку, вязкость кинематическую при 99°C, температуру вспышки в открытом тигле, содержание полициклических углеводородов и стабильность масел при температуре 125°C в течение 72 часов по изменению массы образца стандартной резины при воздействии масла.

Пример 5

Процесс адсорбционной очистки остаточного дистиллята (масла МС-20) осуществляют в стационарном слое алюмосиликатного адсорбента, имеющего тот же химический состав и структурные показатели, что в примере 1.

Массовое соотношение адсорбент : остаточный дистиллят составляет 1,5:1. Предварительно остаточный дистиллят разбавляют растворителем (бензином-растворителем нефрас) в объемном соотношении растворитель : остаточный дистиллят - 6:1, полученный раствор пропускают через слой адсорбента со скоростью - 0,3 см/мин.

Для получения готового продукта СЖР-1 из очищенного на адсорбенте раствора отгоняют растворитель, который возвращают на повторное использование. Полученный продукт анализируют на соответствие показателей качества нормам ТУ 38.10195-2012 и определяют следующие параметры: анилиновую точку, вязкость кинематическую при 99°C, температуру вспышки в открытом тигле, содержание полициклических углеводородов и стабильность масел при температуре 125°C в течение 72 часов по изменению массы образца стандартной резины при воздействии масла.

Пример 6. (Сравнительный).

Процесс адсорбционной очистки остаточного дистиллята (масла МС-20) осуществляют в стационарном слое алюмосиликатного адсорбента, имеющего тот же химический состав и структурные показатели, что в примере 1.

Массовое соотношение адсорбент : остаточный дистиллят составляет 1,6:1. Предварительно остаточный дистиллят разбавляют растворителем (петролейным эфиром) в объемном соотношении растворитель : остаточный дистиллят - 4:1, и полученный раствор пропускают через слой адсорбента со скоростью - 0,3 см/мин.

Для получения готового продукта СЖР-1 из очищенного на адсорбенте раствора отгоняют растворитель, который возвращают на повторное использование. Готовый продукт анализируют на соответствие показателей качества нормам ТУ 38.10195-2012 и определяют следующие параметры: анилиновую точку, вязкость кинематическую при 99°C, температуру вспышки в открытом тигле, содержание полициклических углеводородов и стабильность масел при температуре 125°C в течение 72 часов по изменению массы образца стандартной резины при воздействии масла.

В таблице представлены технические характеристики продуктов, полученных с использованием вышеприведенного способа, а также характеристики, требуемые стандартом ASTM D 471-10 и отечественными ТУ 38.101195-2012.

Из данных таблицы следует, что использование заявленных соотношений адсорбента к остаточному дистилляту 1,3 - 1,5:1 и растворителя к остаточному дистилляту 4-6:1 (примеры 2-5) позволяет получить качественные характеристики стандартной жидкости СЖР-1 в рамках значений, требуемых ASTM D 471-10 и отечественными ТУ 38.101195-2012. Основные показатели качества, такие как анилиновая точка, вязкость кинематическая при 99°C, показатель преломления при 20°C нормируются в жестких и ограниченных пределах значений, поэтому выбранные условия адсорбционной очистки позволяют четко уложиться в требуемые интервалы качественных характеристик.

Данные, представленные в таблице, также показывают, что при массовом соотношении адсорбент : остаточный дистиллят 1,25:1 (пример 1) и при массовом соотношении адсорбент : остаточный дистиллят 1,6:1 (пример 6) ухудшаются показатели качества стандартной жидкости СЖР-1, а именно анилиновая точка (примеры 1 и 6) и кинематическая вязкость при 99°C (пример 6).

Основным показателем экологической и токсической безопасности продукта (содержание канцерогенных соединений) является содержание полициклических углеводородов, которое в соответствии с методом их определения (IP-346) не должно превышать 3%. Полученные для всех результатов значения содержания полициклических углеводородов по IP-346 соответствуют требуемому значению для базовых масел и удовлетворяют требованиям ACGIH (Американская конференция государственных специалистов по промышленной гигиене), IARC (Международное агентство по исследованию рака) и GHS/CLP (Регламент о классификации, маркировке и упаковке химических веществ и их смесей), для которых метод IP-346 является основным при определении токсических характеристик нефтяных базовых масел. (Метод IP-346 «Определение полициклических ароматических в базовых смазочных маслах и нефтяных фракциях, не содержащих асфальтены. Метод определения показателя преломления экстрактов при экстракции диметилсульфоксидом).

Таким образом, предлагаемый способ при заявленных соотношениях компонентов обеспечивает по сравнению с известными способами стабильную технологию получения отечественной экологически чистой стандартной жидкости СЖР-1 с получением требуемых показателей качества как по ТУ 38.101195-2012, так и ASTM D 471-10.

1. Способ получения стандартной жидкости СЖР-1 для испытания резин и резинотехнических изделий с использованием глубокоочищенного остаточного дистиллята, выделенного из парафинового нефтяного сырья, отличающийся тем, что остаточный дистиллят в смеси с растворителем подвергают адсорбционной очистке в стационарном слое широкопористого алюмосиликатного адсорбента с удельным объемом пор не менее 0,75-0,85 см3/г, при массовом соотношении адсорбент : остаточный дистиллят - 1,3-1,5:1, объемном соотношении растворитель : остаточный дистиллят - 4-6:1.

2. Способ по п. 1, отличающийся тем, что в качестве растворителя используют растворитель с пределами выкипания 80-120°С.



 

Похожие патенты:
Изобретение относится к нефтеперерабатывающей промышленности. Изобретение касается способа удаления сераорганических соединений из жидкого углеводородного топлива пропусканием через неподвижный адсорбент, в качестве которого используют γ-оксид алюминия, модифицированный оксидом цинка в количестве от 0,1 до 10,0 мас.%, или его комбинацию с другими адсорбционными материалами: γ-оксидом алюминия и/или алюмо-кобальт-молибденовым или алюмо-никель-молибденовым катализатором гидроочистки, и/или синтетическим цеолитом типа NaX или ZSM, и/или медно-цинковым адсорбентом.

Изобретение относится к технологии переработки нефтешламов и вязкой нефти, которые образуются при длительном хранении в амбарах, озерах испарителях, на предприятиях нефтепродуктообеспечения.

Изобретение относится к способу удаления примесей из потока углеводородов, содержащего по меньшей мере одно винилароматическое соединение. Один из вариантов способа включает: приведение в контакт углеводородного потока по меньшей мере с одним сорбентом, который адсорбирует по меньшей мере часть примесей из углеводородного потока с получением очищенного углеводородного потока; затем отделение очищенного углеводородного потока по меньшей мере от одного сорбента; далее предварительную обработку по меньшей мере одного сорбента до стадии контактирования, где стадия предварительной обработки представляет собой изготовление по меньшей мере одного сорбента, способного адсорбировать примеси; где стадия предварительной подготовки включает: a) промывку по меньшей мере одного сорбента растворителем, b) регулирование рН по меньшей мере одного сорбента, находящегося в растворителе до рН выше чем 10, c) деаэрирование по меньшей мере одного сорбента, находящегося в растворителе, d) удаление растворителя по меньшей мере из одного сорбента и e) сушку по меньшей мере одного сорбента, причем по меньшей мере один сорбент представляет собой глину.

Изобретение относится к способу скоростной деструкции остаточных нефтяных продуктов. Способ включает адсорбцию остаточных нефтяных продуктов в порах углеродного сорбента и обработку сверхвысокочастотным излучением при индуцированной температуре до 600°C в потоке аргона или диоксида углерода.
Изобретение относится к способу очистки отработанного синтетического моторного масла путем его смешивания с водным раствором щелочи, при этом в смесь добавляют 10 % по массе экстракта продуктов из опилок хвойных деревьев в изопропиловом спирте и 5 % по массе древесных опилок хвойных деревьев, полученную смесь нагревают до выпаривания изопропилового спирта и воды, отстаивают и центрифугируют.

Изобретение относится к установке для получения пара-ксилола, которая предполагает ряд возможных путей энергосбережения за счет осуществления обмена теплотой в пределах установки.
Изобретение относится к нефтеперерабатывающей промышленности. Изобретение касается способа деасфальтизации мазута путем контактирования пропитанного мазутом широкопористого адсорбента с катализатором крекинга.

Изобретение относится к способу производства отдельного изомера ксилола из исходных сырьевых потоков, содержащих ароматические соединения С8, ароматические соединения С9 и более тяжелые ароматические соединения.

Изобретение относится к нефтехимии, в частности к процессу глубокой десульфуризации дизельных углеводородных топлив. .
Изобретение относится к области экологии, в частности к сорбционным препаратам. .

Настоящее изобретение относится к способу получения стандартной жидкости СЖР-2 для испытания резин и резинотехнических изделий путем адсорбционной очистки дистиллятного продукта, выделенного из нефти нафтенового основания, отличающийся тем, что в качестве дистиллятного продукта используют дистиллят с пределами выкипания 450-520°С, который в смеси с растворителем с пределами выкипания 80-120°С подвергают адсорбционной очистке в стационарном слое алюмосиликатного адсорбента с удельным объемом пор - не ниже 0,75-0,85 см3/г при массовом соотношении адсорбент : дистиллят 1,7-3,2:1, объемном соотношении растворитель : дистиллят 4-10:1. Техническим результатом настоящего изобретения является обеспечение стабильной технологии получения экологически чистой стандартной жидкости СЖР-2 с получением требуемых показателей качества. 1 з.п. ф-лы, 6 пр., 1 табл.

Настоящее изобретение относится к способу получения стандартной жидкости СЖР-3 для испытания резин и резинотехнических изделий путем адсорбционной очистки дистиллятного продукта, выделенного из нефти нафтенового основания, отличающемуся тем, что в качестве дистиллятного продукта используют дистиллят с температурными пределами выкипания 360-440°С, который в смеси с растворителем с пределами выкипания 80-120°С подвергают адсорбционной очистке в стационарном слое широкопористого алюмосиликатного адсорбента с удельным объемом пор - не ниже 0,75-0,85 см3/г при массовом соотношении адсорбент:дистиллят 1,0:1,5-2,3, объемном соотношении растворитель:дистиллят 1,0-8,0:1,0. Техническим результатом настоящего изобретения является обеспечение стабильной технологии получения отечественной экологически чистой стандартной жидкости СЖР-3 с получением требуемых показателей качества. 1 з.п. ф-лы, 6 пр.,1 табл.

Изобретение относится к способу получения сжиженных углеводородных газов, включающий адсорбционную очистку широкой фракции легких углеводородов от сернистых соединений и метанола. Способ характеризуется тем, что адсорбционную очистку сжиженной широкой фракции углеводородов реализуют в системе многослойных адсорберов, в которых каждый слой адсорбента последовательно селективен по отношению к конкретному виду извлекаемой примеси, температурную регенерацию и последующее охлаждение адсорбентов выполняют метановой фракцией, очищенной от присутствия примесей, аналогичных извлекаемым, и подаваемой со стороны, на завершающем этапе охлаждения адсорбентов адсорберы продувают сухим азотом высокого давления перед подачей широкой фракции легких углеводородов в адсорбер с регенерированными адсорбентами, а очищенную широкую фракцию легких углеводородов подвергают ректификации для получения сжиженных узких фракций легких углеводородов в системе, по крайней мере, из двух полных ректификационных колонн. Использование настоящего способа обеспечивает упрощение и универсализацию технологической схемы получения сжиженных углеводородных газов на стадии очистки сжиженных газов независимо от комбинации извлекаемых примесей, снижение энергоемкости процесса и гибкую вариативность процесса при формировании ассортимента выпускаемой конечной продукции в зависимости от требований маркетинга. 13 з.п. ф-лы, 1 табл., 3 ил.

Изобретение относится к способу удаления асфальтенов и металлов из тяжелого нефтяного сырья. Способ высокотемпературной деасфальтизации и деметаллизации тяжелого нефтяного сырья осуществляют следующим образом. Тяжелую нефть или мазут пропускают через неподвижный слой адсорбента при температуре 300-600°С при скорости подачи сырья через адсорбент 0,5-2 г-сырья/г-адсорбента/ч в присутствии водорода, подаваемого под давлением 4-7 МПа, способ отличается тем, что используют адсорбент, состоящий из гамма-оксида алюминия, полученный с помощью темплатного синтеза, содержащего макропоры, образующие регулярную пространственную структуру, причем доля макропор с размером в диапазоне от 50 нм до 500 нм составляет не менее 30% в общем удельном объеме пор. Технический результат - способ получения жидких нефтепродуктов с низким содержанием металлов и асфальтенов является экономичным. 1 з.п. ф-лы, 3 ил., 4 пр.

Изобретение относится к способу очистки углеводородного сырья, содержащего примеси, в котором одновременно осуществляют следующие этапы: a) обработку в жидкой фазе углеводородного сырья в первой адсорбционной установке, содержащей первую и вторую адсорбционные колонны (1, 2), заполненные соответственно первым и вторым твердым адсорбентом, причем первая и вторая адсорбционные колонны (1, 2) работают параллельно и попеременно в режиме адсорбции и в режиме регенерации, причем упомянутое углеводородное сырье вводят в первую адсорбционную колонну (1) и приводят в контакт с первым твердым адсорбентом, и на выходе первой адсорбционной колонны (1) отбирают поток углеводородов, обедненный примесями; b) обработку вторичного жидкого углеводородного сырья, которое состоит или из фракции углеводородного сырья, или из фракции потока углеводородов, обедненного примесями, в установке обработки (3, 4, 22, 24), и отбор обработанного вторичного жидкого углеводородного сырья из указанной установки обработки; c) нагревание обработанного вторичного жидкого углеводородного сырья, поступающего с этапа b); d) регенерацию второго твердого адсорбента из второй адсорбционной колонны (2) вторичным углеводородным сырьем, нагретым на этапе с), путем приведения в контакт упомянутого сырья со вторым твердым адсорбентом, чтобы десорбировать примеси из второго твердого адсорбента и получить поток, содержащий примеси, причем этап d) осуществляют путем подачи упомянутого нагретого вторичного углеводородного сырья во вторую адсорбционную колонну в противотоке относительно направления подачи углеводородного сырья в первую адсорбционную колонну (1), причем установка обработки на этапе b) содержит третью и четвертую адсорбционные колонны (3, 4), содержащие соответственно третий и четвертый твердый адсорбент, причем в третьей адсорбционной колонне (3) приводят в контакт вторичное жидкое углеводородное сырье с третьим твердым адсорбентом, чтобы получить обработанное вторичное жидкое углеводородное сырье, и причем поток, содержащий примеси, поступающий из второй адсорбционной колонны (2), направляют в четвертую адсорбционную колонну (4), чтобы регенерировать четвертый твердый адсорбент и отвести поток, наполненный примесями. Способ позволяет избавиться от необходимости подачи регенерирующего агента извне и является более экономичным благодаря улучшенной тепловой интеграции. 6 з.п. ф-лы, 5 ил., 9 табл., 5 пр.

Изобретение относится к тепловой и атомной энергетике, нефтегазодобывающей промышленности, более конкретно, к регенерации жидкостей на основе сложных эфиров фосфорной кислоты, а именно к регенерации отработанных синтетических масел. Описан способ регенерации жидкостей на основе сложных эфиров фосфорной кислоты, в том числе, масло огнестойкое синтетическое турбинное, путем обработки жидкостей адсорбирующим материалом, в качестве адсорбирующего материала используют иониты, затем осуществляют термовакуумную сушку и механическую фильтрацию, в качестве ионитов используют отработанные ионообменные смолы водоподготовки, а именно, сильноосновный анионит типа АВ-17-8 или сильнокислотный катионит типа КУ-2-8. Технический результат заключается в улучшении качества отработанного масла и высокого выхода очищенного масла. 3 з.п. ф-лы, 2 табл.
Наверх