Способ адаптивного управления самолетом по крену



Способ адаптивного управления самолетом по крену
Способ адаптивного управления самолетом по крену

Владельцы патента RU 2600025:

Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации (RU)

Изобретение относится к способу адаптивного управления самолетом по крену. Для адаптивного управления самолетом по крену оценивают текущие аэродинамические параметры поперечного движения самолета, формируют сигналы управления, отслеживают изменения количества и расположения внешних подвесок, сравнивают их с исходным расположением, вычисляют осевые и центробежные моменты инерции самолета, корректируют команды управления самолетом. Обеспечивается устойчивость и управляемость поперечного движения самолета. 1 ил.

 

Изобретение относится к области управления полетом самолета с неизвестными аэродинамическими характеристиками и неконтролируемыми возмущениями при различных комбинациях внешних подвесок на пилонах. Результат способа заключается в обеспечении заданных характеристик устойчивости и управляемости самолета при вращении по крену, в том числе и при несимметричном размещении внешних подвесок, снижении объема требуемой для синтеза системы управления априорной информации.

Наиболее близким по технической сущности изобретению является способ адаптивного управления самолетом по крену, основанный на текущем оценивании неизвестных параметров объекта управления, т.е. на текущей идентификации математической модели объекта по измерениям его входов и выходов, и на последующем синтезе закона управления, являющегося функцией полученных оценок (Круглов С.П., Сегедин Р.Α., Соколов О.Α., Шушарин М.В. Сравнение двух алгоритмов адаптивного управления: прямого и идентификационного, построенного на упрощенных условиях адаптируемости // Труды VII Международной конференции «Идентификация систем и задачи управления» SICPRO, 2008, стр. 2095).

Недостатками известного способа адаптивного управления являются низкие характеристики устойчивости и управляемости самолета по крену влево и вправо при энергичном маневрировании, обусловленные возникновением дополнительного кренящего момента за счет изменения конфигурации самолета (наличия несимметричных внешних подвесок).

Техническим результатом данного изобретения является повышение характеристик устойчивости и управляемости поперечного движения самолета за счет отслеживания изменения текущей конфигурации самолета, сравнения ее с модельной конфигурацией, вычисления осевых и центробежных моментов инерции самолета и корректировки команд управления самолетом.

Технический результат достигается тем, что в предлагаемом способе адаптивного управления самолетом по крену, основанном на текущем оценивании аэродинамических параметров поперечного движения самолета и формировании сигналов управления, отслеживают изменения текущей конфигурации самолета, сравнивают ее с модельной конфигурацией, вычисляют осевые и центробежные моменты инерции самолета и корректируют команды управления самолетом.

Сущность изобретения заключается в следующем.

Известно (например, Левицкий С.В., Свиридов Н.А. Динамика полета. Издание ВВИА им. проф. Н.Е. Жуковского., 2008, стр. 428), что при изменении конфигурации самолета изменяются моменты инерции, которые оказывают существенное влияние на его динамику в общем и, в частности, в поперечном движении. Предвзлетная конфигурация самолета (размещение конкретных внешних подвесок на заданных пилонах) становится модельной для данного полета, изменение модельной конфигурации отслеживается в полете. Далее сравниваются модельная и текущая конфигурации самолета, при изменении модельной конфигурации пересчитываются моменты инерции и определяется дополнительный кренящий момент Мкр от несимметрично расположенных внешних подвесок и инерционной взаимосвязи продольного и бокового движений.

После определения Мкр вносятся поправки (путем исключения составляющей изменения скорости крена, вызванной Мкр из входного сигнала алгоритма идентификации) в алгоритм идентификации с целью увеличить сходимость вычисляемых оценок параметров. На основании полученных оценок вычисленного Мкр корректируется сигнал управления поперечным движением самолета.

Согласно изобретению регистрируется изменение конфигурации самолета (сброс внешних подвесок с пилонов). Далее осуществляется сравнение модельной и текущей конфигурации. На основании результатов сравнения вычисляются осевые и центробежные моменты инерции, значения которых далее используются при определении Мкр и корректирующих команд управления самолетом.

Способ может быть реализован, например, с помощью устройства, схема которого приведена на чертеже, где обозначено: 1 - объект управления (самолет), 2 - идентификатор, 3 - регулятор, 4 - блок отслеживания конфигурации, 5 - блок сравнения конфигураций, 6 - блок оценки моментов инерции, 7 - блок определения корректирующего сигнала, uрус - входной сигнал с ручки управления самолетом, uкор - корректирующий сигнал, u - сигнал, подаваемый на рулевые приводы, x - параметры состояния объекта управления, - оценки аэродинамических характеристик поперечного движения самолета, Птек - текущая конфигурация самолета, Пмод - модельная конфигурация самолета, П - сигнал изменения модельной конфигурации, Мх - сигнал вычисленных осевых и центробежных моментов инерции.

Блок отслеживания конфигурации 4 предназначен для формирования сигнала о наличии-отсутствии подвески. Он может быть выполнен, например, в виде контактного устройства (Сажин И.В. Системы электрифицированного оборудования летательных аппаратов: Учеб. пособие. - Иркутск: ИВВАИУ, 2008, стр. 26).

Блок сравнения конфигураций 5 предназначен для сравнения текущей и модельной конфигураций самолета и формирования сигнала изменения конфигурации. Он может быть выполнен, например, в виде схемы сравнения абсолютных значений двух электрических величин (Чернобровов Н.В., Семенов В.А. Релейная защита энергетических систем: Учеб. пособие для техникумов. - М.: Энергоатомиздат, 1998, стр. 385).

Блок оценки моментов инерции 6 предназначен для вычисления осевых и центробежных моментов инерции самолета.

Блок определения корректирующего сигнала 7 предназначен для вычисления корректирующего сигнала.

Блок оценки моментов инерции 6 и блок определения корректирующего сигнала 7 могут быть выполнены, например, в виде программируемой логической интегральной схемы (Стешенко В.Б. ПЛИС фирмы ALTERA: проектирование устройств обработки сигналов. - М.: ДОДЭКА, 2000, 128 с.).

Устройство работает следующим образом.

Сигнал параметров состояния объекта управления 1 подается на вход идентификатора 2, на вход регулятора 3, на вход блока определения корректирующего сигнала 7 и на вход блока идентификации подвески 4, в котором отслеживается изменение модельной конфигурации самолета в полете, из выхода которого сигнал поступает на вход блока сравнения конфигураций 5, где сравниваются модельная и текущая конфигурации самолета. На вход блока оценки моментов инерции 6, в котором происходит расчет осевых и центробежных моментов инерции, поступает сигнал с выхода блока сравнения конфигураций. Выход блока оценки конфигураций связан с входом блока определения корректирующего сигнала 7 и с входом идентификатора, в котором производится определение аэродинамических характеристик поперечного движения в режиме реального времени, например рекуррентным методом наименьших квадратов (например, Александров А.Г. Оптимальные и адаптивные системы. - М.: Высш. школа, 1989, стр. 203). Через выход идентификатора выдается информация об оценках в блок определения корректирующего сигнала. В этом блоке осуществляется вычисление дополнительного отклонения рулевых поверхностей с целью обеспечить модельную скорость крена, обеспечивающую наилучшие маневренные характеристики, значение которой задается заранее в зависимости от режима полета и угла отклонения элеронов. На входы регулятора 3 поступают сигнал с ручки управления самолетом и с блока определения корректирующего сигнала. В регуляторе вырабатывается управляющее воздействие в соответствии с законом регулирования с учетом корректирующего сигнала uкор и его выход связан с входом объекта управления и входом идентификатора.

Способ адаптивного управления самолетом по крену, основанный на текущем оценивании аэродинамических параметров поперечного движения самолета и формировании сигналов управления, отличающийся тем, что отслеживают изменения количества и расположения внешних подвесок, сравнивают их с исходных расположением, вычисляют осевые и центробежные моменты инерции самолета и корректируют команды управления самолетом.



 

Похожие патенты:

Изобретение относится к области приборостроения. Сущность изобретения заключается в том, что осуществляют измерение номинальных угловых скоростей по каждой измерительной оси посредством датчиков угловых скоростей и выдачу полученных параметров в виде аналоговых сигналов, при этом измерение номинальных угловых скоростей осуществляют посредством датчиков угловых скоростей, обеспечивающих формирование выходной информации в оцифрованном виде, затем осуществляют обработку полученной информации с использованием заданных коэффициентов для каждой измерительной оси, которые определяются как отношение заданного номинального выходного напряжения к заданной номинальной угловой скорости, а затем преобразуют полученные данные в аналоговые сигналы, представляющие собой одинаковые величины номинального напряжения для всех измерительных осей.

Интеллектуальная система поддержки экипажа содержит датчики состояния двигателей, топливной системы, гидросистемы, системы электроснабжения, системы выпуска шасси и торможения, противообледенительной системы, противопожарной системы, системы воздушных сигналов, спутниковую навигационную систему, инерциальную навигационную систему, радиовысотомер, приборную систему посадки, систему штурвального управления, систему сбора бортовой информации, систему отображения информации, блок распознавания аварийных ситуаций, систему контроля разбега, систему предупреждения об опасной близости земли, систему предупреждения о выходе на опасные значения угла атаки и перегрузки, систему контроля захода на посадку и посадки, систему предупреждения о попадании в сдвиг ветра, систему выбора режима торможения с возможностью определения прогнозируемого тормозного пути.

Изобретение относится к способу управления летательным аппаратом (ЛА) при заходе на посадку. Для управления ЛА при заходе на посадку измеряют с помощью инерциальной навигационной системы (ИНС), систем воздушных сигналов (СВС), спутниковой навигационной системы (СНС) курс, крен и тангаж ЛА, угловую, горизонтальную и вертикальную скорости ЛА, координаты и высоту ЛА, формируют курс взлетно-посадочной полосы (ВПП) на основе уточненных координат высоты ЛА и координат высоты ВПП, формируют сигналы управления угловым положением ЛА по крену и тангажу, измеряют в автоматическом или ручном режиме угловое положение ЛА в соответствии со сформированными сигналами управления, формируют траекторию посадки с заданным экипажем углом наклона, совпадающую по направлению с курсом ВПП, с помощью курсового, глиссадного и дальномерного радиомаяков (КРМ, ГРМ и ДРМ).

Изобретение относится к области автоматического управления и может быть использовано при построении высоконадежных резервированных устройств и систем, содержащих измерители с числоимпульсным выходом (датчики угловой скорости, акселерометры и т.д.), где наряду с достижением высокой надежности требуется достижение высокой точности.

Группа изобретений относится к способу и устройству для формирования траектории летательного аппарата. Для формирования траектории летательного аппарата в блок памяти передают сигналы, пропорциональные координатам, курсу и горизонтальной скорости цели, запоминают их на момент поступления, передают или вводят заданную величину промаха, сравнивают полученные сигналы, оценивают отклонения ЛА по курсу и дальности, получают поправку к текущему курсу и запоминают ее в выходном буфере, передают из буфера в систему автоматического управления курсом ЛА для отработки, обеспечивают движения ЛА по заданному радиусу вокруг цели, формируют новую траекторию при движении цели.

Группа изобретений относится к беспилотной авиационной системе, беспилотному летательному аппарату и способу предотвращения столкновений при его полете. Беспилотный летательный аппарат содержит систему создания подъемной силы и тяги, систему управления полетом, систему предупреждения столкновений.

Изобретение относится к управлению движением космического аппарата (КА) реактивными и аэродинамическими средствами. На заключительном этапе реализации способа - после снижения аэродинамической силы до величины меньшего порядка, чем гравитационная - вектором тяги двигателя управляют из условий минимизации потребных энергозатрат и обеспечения высокой точности формирования заданной орбиты.

Изобретение относится к модулю обнаружения препятствий и роботу-уборщику, включающему упомянутый модуль. Робот-уборщик содержит корпус, приводное устройство для приведения в движение корпуса, модуль обнаружения препятствий для обнаружения препятствий вокруг корпуса и устройство управления для управления приводным устройством на основании результатов, полученных модулем обнаружения препятствий.

Изобретение относится к способам и системе для планирования скоординированных маршрутов на складе. Технический результат заключается в повышении быстродействия планирования маршрутов.

Группа изобретений относится к способу формирования сигнала управления угловым движением беспилотного летательного аппарата (БПЛА) системе управления для этого способа.

Изобретение относится к военной технике, преимущественно к тактическим и оперативно-тактическим комплексам управляемого ракетного оружия (УРО) с баллистическими (аэробаллистическими) и высотными крылатыми ракетами.

Изобретение относится к способам автоматической посадки летательного аппарата (ЛА). Для автоматической посадки ЛА в сложных метеорологических условиях задают горизонтальную дальность от начальной точки траектории снижения до ее конечной точки, параметры движения ЛА в конечной точке траектории снижения, измеряют скорость и высоту полета, горизонтальную дальность до конечной точки траектории снижения, отклонение от вертикальной плоскости осевой линии взлетно-посадочной полосы, вертикальную составляющую скорости полета, производят определение углов тангажа, крена и вертикальной составляющей скорости ЛА определенным образом, в зависимости от разности расстояний, определяемых по времени распространения сигналов от расположенных определенным образом приемопередатчиков через определенный интервал времени, подают команды на органы управления ЛА в случае отклонения значения, полученного путем сравнения последующих и предыдущих расчетных данных по вертикальной составляющей скорости ЛА.

Изобретение относится к космической технике и может быть использовано при формировании управляющих сигналов включения двигательной установки космического беспилотного летательного аппарата (БПЛА) при выполнении им пространственного маневра на баллистическом участке траектории полета.

Группа изобретений относится к способу и системе автоматического управления самолетом. Для автоматического управления самолетом при посадке используют сигналы радиовысоты, вертикальной скорости, формируют управляющий сигнал на руль высоты и на привод регулятора тяги двигателей, добавляют корректирующие сигналы компенсации влияния ветра на руль высоты и на привод регулятора тяги.

Изобретение относится к способам управления летательными аппаратами. Для управления пилотируемыми или беспилотными летательными аппаратами (БЛА) при совершении маловысотного полета с облетом групп препятствий в вертикальной плоскости задают движение по траектории полета с заданными углами тангажа, корректируют траекторию при сближении с группой препятствий, каждое из которых аппроксимируется полуэллипсом, вычисляют приращение угла тангажа по определенному правилу, корректируют угол тангажа определенным образом, начиная с момента, когда расстояние от управляемого БЛА до цента аппроксимирующего полуэллипса станет меньше определенной заранее заданной величины.

Группа изобретений относится к стендам для прочностных испытаний самолетов. При способе стабилизации планера самолета в пространстве при прочностных испытаниях формируют непрерывные сигналы коррекции по крену и тангажу планера самолета и осуществляют аварийную защиту по максимальной величине углов наклона при помощи системы автоматического управления.

Изобретение относится к маневрирующим в атмосфере сверхзвуковым летательным аппаратам (ЛА). Способ управления обтеканием включает изменение направления воздушного потока со встречного на радиальное истечение относительно ЛА.

Изобретение относится к области гиперзвуковых летательных аппаратов (ГЛА). Способ управления аэродинамическими характеристиками гиперзвукового летательного аппарата включает установку плоских МГД-генераторов попарно симметрично относительно плоскости симметрии элементов оперения ГЛА, а между ними располагают магнитоэкранирующие пластины, выполненные из ферромагнитного материала с точкой Кюри, превышающей рабочую температуру элементов ГЛА, обеспечивающих устойчивость, управляемость и балансировку.

Изобретение относится к области применения беспилотных летательных аппаратов (БПЛА) и может быть использовано для систематического дистанционного контроля состояния нефте- и газопроводов, хранилищ, высоковольтных ЛЭП и других протяженных объектов.

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах автоматического управления (САУ) турбовинтовыми силовыми установками (СУ) самолетов.

Группа изобретений относится к способу и системе проведения испытаний беспилотной авиационной системы (БАС), а также испытательной системе для БАС с внешней подвеской. Система для проведения испытаний БАС содержит систему управления полетом БАС, опционально пилотируемый летательный аппарат (OPV) с собственной системой управления, интерпретатор управления полетом. Для проведения испытаний БАС прикрепляют фюзеляж БАС к OPV, соединяют систему управления полетом БАС с интерпретатором управления полетом, соединяют последний с системой управления полетом OPV, инициируют профиль полета БАС, подают управляющие параметры от системы управления полетом БАС в интерпретатор управления полетом для их интерпретации, определяют завершенность профиля, в противном случае подают команды текущего состояния от интерпретатора полета в систему управления OPV, определяют наличие вмешательства пилота, управляют OPV на основании команд текущего состояния. Испытательная система для БАС с внешней подвеской содержит систему управления полетом БАС, OPV с собственной системой управления, наземную систему слежения за OPV. OPV несет фюзеляж БАС и интерпретатор управления полетом. Обеспечивается проведение испытаний БАС в соответствии с определенным профилем полета. 3 н. и 9 з.п. ф-лы, 8 ил.
Наверх