Способ подготовки углеводородного газа к транспорту

Изобретение относится к газонефтяной промышленности, в частности к обработке углеводородного газа с использованием низкотемпературного процесса, и может быть использовано в процессах промысловой подготовки к транспорту продукции газоконденсатных месторождений. Целью данного изобретения является сокращение расхода ингибитора гидратообразования - метанола за счет сокращения его потерь с нестабильным конденсатом. Способ подготовки углеводородного газа к транспорту, в котором газовый поток от кустов скважин подают на первичную сепарацию, десорбируют газовым потоком метанол из водометанольного раствора, вводят в газовый поток метанол, охлаждают газовый поток воздухом, углеводородным конденсатом, газом в две ступени, проводят вторичную сепарацию газового потока, вводят в газовый поток метанол, охлаждают газовый поток газом и за счет понижения давления проводят окончательную сепарацию газового потока, нагревают в три ступени отсепарированный газ газовым потоком и выводят газ из установки, смешивают жидкую фазу после первичной сепарации газового потока и водный раствор после десорбции метанола, направляют для отделения от углеводородного конденсата газа и водного раствора, вводят газ в газовый поток перед окончательной сепарацией, разделяют водный раствор на две части, выводят одну часть водного раствора из установки, углеводородный конденсат направляют на дегазацию, направляют жидкую фазу после окончательной сепарации для разделения на углеводородный конденсат, газ и водометанольный раствор, возвращают газ на повторную окончательную сепарацию совместно с газовым потоком, подают водометанольный раствор в газовый поток для десорбции метанола, выводят водный раствор из газового потока, углеводородный конденсат нагревают газовым потоком, вводят в углеводородный конденсат вторую часть водного раствора, абсорбируют водным раствором метанол из углеводородного конденсата, направляют жидкую фазу для разделения на углеводородный конденсат, газ низкого давления и водометанольный раствор, углеводородный конденсат смешивают с углеводородным конденсатом, поступающим на дегазацию, водометанольный раствор вводят в водометанольный раствор, поступающий на десорбцию метанола, газ низкого давления направляют на эжектирование в газовый поток, дегазируют углеводородный конденсат, выводят углеводородный конденсат из установки, вводят в газ низкого давления газ дегазации. 1 ил., 1 табл.

 

Изобретение относится к газонефтяной промышленности, в частности, к обработке углеводородного газа с использованием низкотемпературного процесса и может быть использовано в процессах промысловой подготовки продукции газоконденсатных месторождений.

Известен способ подготовки углеводородного газа к транспорту методом низкотемпературной сепарации (НТС) газа в три ступени (см. «Сбор и промысловая подготовка газа на северных месторождениях России», А.И. Гриценко, В.А. Истомин и др. М.: ОАО Издательство «Недра», 1999, стр. 378-379), включающий в себя первичную сепарацию газового потока, охлаждение газового потока и его вторичную сепарацию, охлаждение газового потока, понижение его давления с дополнительным охлаждением, окончательную сепарацию газового потока и его нагрев в две ступени, вывод отсепарированного и нагретого газа из установки, понижение давления отделенной при первичной сепарации жидкости и разделение ее на газовую, углеводородную и водную фазы, подачу 25% углеводородной фазы в газовый поток, поступающий на окончательную сепарацию.

Недостатком этого способа является то, что при наличии легкоплавких парафинов в углеводородной фазе, полученной при первичной сепарации, происходит их кристаллизация и образование парафиноотложений при окончательной сепарации. Кроме этого данный способ не позволяет утилизировать тепловую энергию (холод) нестабильного конденсата, а также характеризуется повышенным расходом метанола для ингибирования гидратообразования из-за растворения ингибитора в водном растворе и нестабильном конденсате.

Наиболее близким аналогом, по сути, к предлагаемому техническому решению является способ подготовки газоконденсатной смеси к транспорту трехступенчатой сепарацией (Опыт эксплуатации основного технологического оборудования по подготовке к транспорту газа ачимовских горизонтов на УКПГ-22 ООО «Газпром добыча Уренгой». О.А. Николаев, А.В. Букин. Приоритетные направления развития Уренгойского комплекса. / Сборник научных трудов, посвященный 35-летию ООО «Газпром добыча Уренгой». - М.: ИД Недра, 2013. С. 83-90), в котором газовый поток от кустов скважин подают на первичную сепарацию, десорбируют газовым потоком метанол из водометанольного раствора, охлаждают газовый поток воздухом, углеводородным конденсатом, газом в две ступени, проводят вторичную сепарацию газового потока, охлаждают его газом и за счет понижения давления, проводят окончательную сепарацию газового потока, нагревают в три ступени отсепарированный газ газовым потоком и выводят газ из установки, смешивают жидкую фазу после первичной сепарации газового потока и водный раствор после десорбции метанола, вводят в нее жидкую фазу после вторичной сепарации газового потока, направляют для отделения от углеводородного конденсата газа и водного раствора, вводят газ в газовый поток перед окончательной сепарацией, выводят водный раствор из установки, направляют жидкую фазу после окончательной сепарации для разделения на углеводородный конденсат, газ и водометанольный раствор, возвращают газ на повторную окончательную сепарацию совместно с газовым потоком, вводят водометанольный раствор в газовый поток, выводят водный раствор из газового потока, углеводородный конденсат нагревают газовым потоком и смешивают с углеводородным конденсатом после первичной и вторичной сепарации, направляют углеводородный конденсат для отделения от него газа низкого давления и водометанольного раствора, эжектируют газ низкого давления в газовый поток, выводят из установки углеводородный конденсат и водометанольный раствор.

В этом способе за счет теплообмена углеводородного конденсата с газовым потоком после охлаждения его воздухом обеспечивается температура, при которой не происходит кристаллизации парафинов при подготовке газа и конденсата. Кроме этого благодаря подаче водометанольного раствора, выделенного из жидкой фазы при окончательной сепарации газа в газовый поток после первичной сепарации для десорбции метанола, понижается концентрация метанола в водном растворе, выводимом с установки, до уровня, когда регенерация метанола не требуется.

Недостатком этого способа являются существенные потери метанола с углеводородным конденсатом.

Целью изобретения является сокращение расхода ингибитора гидратообразования - метанола в процессе подготовки газа к транспорту.

Поставленная цель достигается способом подготовки газоконденсатной смеси к транспорту трехступенчатой сепарацией, в котором газовый поток от кустов скважин подают на первичную сепарацию, десорбируют газовым потоком метанол из водометанольного раствора, вводят в газовый поток метанол, охлаждают газовый поток воздухом, углеводородным конденсатом, газом в две ступени, проводят вторичную сепарацию газового потока, вводят в газовый поток метанол, охлаждают газовый поток газом и за счет понижения давления проводят окончательную сепарацию газового потока, нагревают в три ступени отсепарированный газ газовым потоком и выводят газ из установки, смешивают жидкую фазу после первичной сепарации газового потока и водный раствор после десорбции метанола, вводят в нее жидкую фазу после вторичной сепарации газового потока, направляют для отделения от углеводородного конденсата газа и водного раствора, вводят газ в газовый поток перед окончательной сепарацией, выводят водный раствор из установки, направляют жидкую фазу после окончательной сепарации для разделения на углеводородный конденсат, газ и водометанольный раствор, возвращают газ на повторную окончательную сепарацию совместно с газовым потоком, вводят водометанольный раствор в газовый поток, выводят водный раствор из газового потока, углеводородный конденсат нагревают газовым потоком и смешивают с углеводородным конденсатом после первичной и вторичной сепарации, направляют углеводородный конденсат для отделения от него газа низкого давления и водометанольного раствора, эжектируют газ низкого давления в газовый поток, выводят из установки углеводородный конденсат и водометанольный раствор, в отличие от прототипа водный раствор, выводимый из установки, делят на две части, первую часть водного раствора выводят из установки, вторую часть водного раствора вводят в углеводородный конденсат, нагретый газовым потоком, абсорбируют водным раствором метанол из углеводородного конденсата, отделяют от углеводородного конденсата водометанольный раствор и газ низкого давления, эжектируют газ низкого давления в газовый поток, водометанольный раствор, выводимый из установки, направляют в водометанольный раствор, вводимый в газовый поток, смешивают углеводородный конденсат после абсорбции метанола с углеводородным конденсатом после первичной и вторичной сепарации, отделяют от углеводородного конденсата газ низкого давления, выводят углеводородный конденсат из установки, вводят газ низкого давления в эжектируемый поток газа низкого давления.

Предлагаемое изобретение поясняется чертежом.

На иллюстрации обозначены следующие элементы:

1 - трубопровод;

2 - сепаратор первой ступени;

3 - трубопровод;

4 - трубопровод;

5 - колонна-десорбер;

6 - трубопровод;

7 - трубопровод;

8 - трубопровод;

9 - трубопровод;

10 - воздушный охладитель;

11 - трубопровод;

12 - теплообменник «газ-конденсат»;

13 - трубопровод;

14 - теплообменник «газ-газ»;

15 - трубопровод;

16 - теплообменник «газ-газ»;

17 - трубопровод;

18 - сепаратор второй ступени;

19 - трубопровод;

20 - трубопровод;

21 - трубопровод;

22 - теплообменник «газ-газ»;

23 - трубопровод;

24 - редуцирующее устройство (эжектор);

25 - трубопровод;

26 - сепаратор третьей ступени;

27 - трубопровод;

28 - трубопровод;

29 - трубопровод;

30 - трубопровод;

31 - трубопровод;

32 - трехфазный разделитель;

33 - трубопровод;

34 - трубопровод;

35 - трубопровод;

36 - трехфазный разделитель;

37 - трубопровод;

38 - трубопровод;

39 - трубопровод;

40 - трубопровод;

41 - трехфазный разделитель;

42 - трубопровод;

43 - трубопровод;

44 - трубопровод;

45 - емкость для дегазации;

46 - трубопровод;

47 - трубопровод.

Продукцию газоконденсатных скважин по трубопроводу 1 подают в сепаратор первой ступени 2, где из него отделяют механические примеси, воду и жидкую углеводородную фазу. Жидкую фазу с низа сепаратора первой ступени 2 по трубопроводу 3 отводят для разделения на газовую, углеводородную и водную фазы в трехфазный разделитель 32.

Отсепарированный газовый поток по трубопроводу 4 отводят с верха сепаратора 2 и подают в колонну-десорбер 5 для насыщения газового потока метанолом. Водный раствор с низа колонны-десорбера 5 по трубопроводу 7 вводят в жидкую фазу, транспортируемую по трубопроводу 3.

Вводят в газовый поток трубопровода 8 метанол по трубопроводу 9. Подают газовый поток для охлаждения по трубопроводу 8 в воздушный охладитель 10 и по трубопроводу 11 в теплообменник «газ-конденсат» 12. Далее газовый поток подают для дополнительного охлаждения в две ступени по трубопроводу 13 в теплообменник «газ-газ» 14 и по трубопроводу 15 в теплообменник «газ-газ» 16.

Охлажденный газовый поток подают по трубопроводу 17 для разделения газа и жидкости в сепаратор второй ступени 18. Вводят в газовую фазу трубопровода 19 метанол по трубопроводу 21. Газовую фазу с верха сепаратора 18 по трубопроводу 19 для дальнейшего охлаждения подают в теплообменник «газ-газ» 22. Далее этот газ подают по трубопроводу 23 для охлаждения за счет понижения давления в редуцирующее устройство (эжектор) 24. Охлажденную газожидкостную смесь по трубопроводу 25 подают в сепаратор третьей ступени 26.

Отсепарированный газ с верха сепаратора 26 подают для нагревания в три ступени по трубопроводу 27 в теплообменник «газ-газ» 22, по трубопроводу 29 в теплообменник «газ-газ» 16 и по трубопроводу 30 в теплообменник «газ-газ» 14. Нагретый отсепарированный газ по трубопроводу 31 выводят из установки.

Газовую фазу из разделителя 32 вводят через трубопровод 33 в газовый поток трубопровода 25. Водную фазу из разделителя 32 делят на две части. Выводят по трубопроводу 35 первую часть водной фазы из установки.

Жидкую фазу с низа сепаратора 26 по трубопроводу 28 направляют в трехфазный разделитель 36 для разделения на газовую, углеводородную и водную фазы. Газ из разделителя 36 поступает по трубопроводу 37 в сепаратор третьей ступени 26. Углеводородный конденсат направляют для нагревания по трубопроводу 38 в теплообменник «газ-конденсат» 12.

Углеводородный конденсат из теплообменника 12 подают по трубопроводу 39 в трехфазный разделитель 41 для разделения на газ низкого давления, углеводородный конденсат и водометанольный раствор. По трубопроводу 40 вводят вторую часть водной фазы в углеводородный конденсат трубопровода 39.

Водометанольный раствор из разделителя 36 по трубопроводу 6 направляют в колонну-десорбер 5. Водометанольный раствор из разделителя 41 по трубопроводу 44 вводят в поток водометанольного раствора трубопровода 6.

Направляют углеводородный конденсат из разделителя 32 по трубопроводу 34 в емкость для дегазации 45. Вводят углеводородный конденсат из разделителя 41 по трубопроводу 43 в углеводородный конденсат трубопровода 34. Углеводородный конденсат из емкости для дегазации 45 по трубопроводу 47 выводят из установки. Газ низкого давления из разделителя 41 по трубопроводу 42 подают на эжектор 24. Вводят в поток газа низкого давления по трубопроводу 46 газ дегазации из емкости для дегазации 45.

Для оценки эффективности предложенного способа по сравнению с аналогом-прототипом были проведены исследования с помощью технологической модели УКПГ-22 Уренгойского месторождения. На технологическую линию установки низкотемпературной сепарации подавали пластовую продукцию газоконденсатного месторождения в количестве 5 млн м3/сут.

Результаты проведенных исследований по обработке газоконденсатной смеси по прототипу и по предлагаемому техническому решению приведены в таблице 1. В исследованных режимах давление и температура сырья на входе в сепаратор первой ступени составили соответственно 11,0 МПа и 40°С, давление в сепараторе второй ступени составило 10,8 МПа. Температура газа после воздушного холодильника принята равной 30°С. Температура газа после теплообменника «газ-конденсат» определялась исходя из температуры конденсата после теплообменника 25°С.

Температура в сепараторе второй ступени подбиралась с учетом поверхности теплообменников «газ-газ» 1290 м2 и их коэффициента теплопередачи 200 Вт/°С×К. Давление и температура газа в сепараторах третьей (низкотемпературной) ступени составляли соответственно 5,5 МПа и минус 30°С.

Расход метанола по изобретению ниже на 351,6 г/1000 м3 пластового газа (на 33%) по сравнению с прототипом. Снижение расхода метанола происходит за счет увеличения количества водометанольного раствора, подаваемого в колонну-десорбер, в 12 раз. При этом количество метанола, поступающего на десорбцию у изобретения, возрастает в 3 раза.

Количество метанола в водном растворе после установки увеличивается с 0,9 до 20 г/1000 м3 пластового газа. Количество метанола, уносимого с газом сепарации, практически не изменяется. Снижается количество метанола, уносимого с нестабильным конденсатом, на 342,4 г/1000 м3 пластового газа.

Таким образом, по предлагаемой технологии на УКПГ ачимовских залежей Уренгойского месторождения возможно сократить расход метанола при подготовке газа и конденсата за счет деления водного раствора, выводимого из установки, на две части, подачи части водного раствора в углеводородный конденсат, полученный при окончательной сепарации, абсорбции водным раствором метанола, растворенного в конденсате, и последующей десорбции метанола в колонне-десорбере.

Способ подготовки углеводородного газа к транспорту, в котором газовый поток от кустов скважин подают на первичную сепарацию, десорбируют газовым потоком метанол из водометанольного раствора, вводят в газовый поток метанол, охлаждают газовый поток воздухом, углеводородным конденсатом, газом в две ступени, проводят вторичную сепарацию газового потока, вводят в газовый поток метанол, охлаждают газовый поток газом и за счет понижения давления проводят окончательную сепарацию газового потока, нагревают в три ступени отсепарированный газ газовым потоком и выводят газ из установки, смешивают жидкую фазу после первичной сепарации газового потока и водный раствор после десорбции метанола, вводят в нее жидкую фазу после вторичной сепарации газового потока, направляют для отделения от углеводородного конденсата газа и водного раствора, вводят газ в газовый поток перед окончательной сепарацией, выводят водный раствор из установки, направляют жидкую фазу после окончательной сепарации для разделения на углеводородный конденсат, газ и водометанольный раствор, возвращают газ на повторную окончательную сепарацию совместно с газовым потоком, вводят водометанольный раствор в газовый поток, выводят водный раствор из газового потока, углеводородный конденсат нагревают газовым потоком и смешивают с углеводородным конденсатом после первичной и вторичной сепарации, направляют углеводородный конденсат для отделения от него газа низкого давления и водометанольного раствора, эжектируют газ низкого давления в газовый поток, выводят из установки углеводородный конденсат и водометанольный раствор, отличающийся тем, что водный раствор, выводимый из установки, делят на две части, первую часть водного раствора выводят из установки, вторую часть водного раствора вводят в углеводородный конденсат, нагретый газовым потоком, абсорбируют водным раствором метанола из углеводородного конденсата, отделяют от углеводородного конденсата водометанольный раствор и газ низкого давления, эжек-тируют газ низкого давления в газовый поток, водометанольный раствор, выводимый из установки, направляют в водометанольный раствор, вводимый в газовый поток, смешивают углеводородный конденсат после абсорбции метанола с углеводородным конденсатом после первичной и вторичной сепарации, отделяют от углеводородного конденсата газ низкого давления, выводят углеводородный конденсат из установки, вводят газ низкого давления в эжектируемый поток газа низкого давления.



 

Похожие патенты:

Изобретение относится к нефтедобывающей промышленности и может быть использовано для разделения нефти и газа при сборе продукции скважин. Газожидкостный сепаратор содержит вертикальный цилиндрический корпус, трубопроводы подвода газожидкостной смеси и отвода газа и жидкости.

Изобретение относится к области термодинамики многофазных систем и может быть использовано для получения микродисперсных систем. Растворенные в воде газы в соответствии с законом Генри выделяются из нее при прохождении через отверстия в перегородке в виде пузырьков размером от 5 мкм и более.

Группа изобретений относится к сепарационному устройству и способу сепарирования потока текучей среды в сепарационном устройстве. Устройство для сепарирования потока текучей среды, состоящего по меньшей мере из двух текучих сред, различающихся по плотности, содержит первый трубчатый элемент, снабженный компонентом, создающим вращение в потоке текучей среды за входом в первый трубчатый элемент, и второй трубчатый элемент, по меньшей мере, частично расположенный внутри первого трубчатого элемента за компонентом, создающим вращение, и формирующий выход для текучих сред с меньшей плотностью.

Изобретение относится к способам подготовки сероводородсодержащей нефти к транспорту. В способе подготовки сероводородсодержащей нефти, включающем многоступенчатую сепарацию, обезвоживание, обессоливание нефти пресной водой, сепарацию при температуре 30-65°С и пониженном давлении в концевом сепараторе, нейтрализацию остаточного сероводорода реагентом, сепарацию нефти в концевом сепараторе проводят при давлении 0,03-0,10 МПа, которое создают за счет откачки из него газа водокольцевым насосом.

Изобретение относится к нефтяной и нефтегазоперерабатывающей промышленности и может быть использовано для предварительного разделения смеси на газ и жидкость в системах сбора и подготовки продукции нефтяных и газовых скважин.

Изобретение относится к способу и устройству снижения давления. Устройство и способ снижения давления текучей среды, содержащей жидкую фазу, газовую фазу и твердую фазу, включающий пропускание текучей среды, давление которой нужно снизить, последовательно через множество стадий, соединенных друг с другом последовательно посредством первых нижних соединительных вставок, при этом на каждой стадии имеется пара вертикальных каналов, соединенных друг с другом в верхней части посредством вторых верхних соединительных вставок, при этом текучая среда движется снизу вверх в первом канале каждой стадии и сверху вниз во втором канале каждой стадии, причем в первом канале каждой стадии часть энергии давления текучей среды преобразуют в гравитационный потенциал, причем во втором канале часть гравитационного потенциала преобразуют в тепловую энергию, причем при объемном соотношении между газовой фазой и жидкой фазой выше чем 0,01 газовую фазу отводят из потока.

Изобретение относится к оборудованию для подготовки попутно добываемой пластовой воды в системе сбора нефти, газа и воды. Установка включает трубопровод 3 подачи добываемой газо-жидкостной смеси (ГЖС) в блок сепарации ГЖС 1, трубопровод отвода ГЖС 10 из блока сепарации ГЖС 1, блок подготовки воды 2, оснащенный фильтром 6 для очистки от механических примесей, трубопровод отвода воды 5.

Изобретение относится к системам очистки воды и может быть использовано для очистки нефтесодержащих и сточных вод. Установка для очистки нефтесодержащих и сточных вод содержит по меньшей мере две ступени очистки, соединенные последовательно вдоль потока очищаемой воды и разделенные между собой посредством перегородок 7.

Изобретение относится к способам и устройствам для обработки загрязненной газообразными соединениями и твердыми веществами технологической воды и может быть использовано для очистки технологической воды из установок мокрой очистки технологического газа, в частности из установок для восстановительной плавки или из плавильного газогенератора.

Изобретение может быть использовано в нефтедобывающей промышленности при подготовке сероводородсодержащей нефти. Способ включает многоступенчатую сепарацию и последующую отдувку углеводородным газом, не содержащим сероводорода.

Изобретение относится к нефтедобывающей промышленности, в частности к подготовке товарной нефти. Установка подготовки продукции скважин включает подводящий трубопровод, устройство подогрева, узел разрушения бронирующих оболочек, соединенный с концевым делителем фаз, трехфазный сепаратор с линией отвода воды, нефтяную и водяную буферные емкости, линию выхода воды, соединенную посредством кустовой насосной станции с входом узла разрушения бронирующих оболочек, при этом концевой делитель фаз снабжен двумя дозвуковыми соплами с возбудителями акустических колебаний в виде упругих пластин, закрепленных на соплах поперек потока воды, первый из которых с постоянной настройкой, а второй - с возможностью изменения длины активной части, при этом сопла соединены с кустовой насосной станцией патрубком. Технический результат: повышение воздействия на бронирующие оболочки эмульсии за счет суммарной амплитуды двух возбудителей колебаний; расширение частотного диапазона колебаний за счет применения биений и изменения их частоты путем регулирования рабочей длины одного из двух возбудителей колебаний; упрощение узла разрушения бронирующих оболочек в связи с применением дозвукового сопла, которое конструктивно и технологически просто для реализации. 3 ил.

Изобретение относится к сепараторам для разделения жидких сред, имеющих различный удельный вес, и для выделения накопившейся в жидкости газообразной среды. Сепаратор содержит корпус, вертикальную разделительную перегородку, трубопровод ввода газожидкостной смеси, патрубки вывода газообразной среды, более тяжелой и более легкой фракций жидкой среды, пакет фазоразделительных насадок, переливную перегородку и сливной лоток, который соединен своим верхним краем с верхней кромкой вертикальной разделительной перегородки и своим нижним краем - с пакетом фазоразделительных насадок со стороны входа в него, закрепленных к поперечной перегородке, пропускающей более тяжелые фракции жидкой среды снизу, а газ сверху. Патрубок отвода более тяжелой фракции жидкой среды сообщен с нижней частью корпуса между вертикальной разделительной перегородкой и переливной перегородкой, а патрубок отвода более легкой фракции жидкой среды снабжен регулируемой задвижкой и введен в корпус ниже уровня жидкой среды. Трубопровод ввода газожидкостной смеси введен в вертикальный гидроциклон, герметично введенный в корпус и оснащенный концентрично установленной каплеотбойной камерой, внутреннее пространство которого выше уровня жидкости сообщено с патрубком вывода газообразной среды, который дополнительно сообщенного трубкой с пространством под сливным лотком выше уровня жидкости. Во входной секции корпуса концентрично между гидроциклоном и каплеотбойной камерой установлены сепарационные элементы, выполненные в виде двух коротких труб и расположенной между ними одной длинной трубы. Нижние кромки коротких труб расположены выше уровня жидкости в корпусе, а нижняя кромка длинной трубы размещена ниже уровня жидкости в корпусе. Сверху между коротким трубами выполнен газоотводный канал, сообщающийся с патрубком вывода газообразной среды. Каплеотбойная камера внутри оснащена инерционным каплеуловителем в виде наклоненных вниз усеченных конусов. На входе патрубка вывода газообразной среды выполнен экран, состоящий из взаимообращенных навстречу друг другу снизу сужающегося снизу вверх конуса, а сверху усеченного конуса, расширяющегося снизу вверх. Выше газоотводного канала патрубок вывода газообразной среды оснащен вертикальной металлической сеткой. В выходной секции корпуса выполнена вторая вертикальная разделительная перегородка, а между поперечной перегородкой и второй вертикальной разделительной перегородкой установлен пакет фазоразделительных насадок. Под пакетом фазоразделительных насадок выше переливной перегородки концентрично корпусу установлена труба со сквозными отверстиями, при этом один конец трубы заглушен поперечной перегородкой, а с другого конца внутреннее пространство трубы сообщается с карманом жестко закрепленным к второй разделительной перегородке. Карман за второй вертикальной разделительной перегородкой в выходной секции гидравлически сообщается с патрубком отвода более легкой фракции жидкой среды. Трубка, соединенная с патрубком вывода газообразной среды внутри корпуса, оснащена патрубком ввода газа из корпуса сепаратора. Технический результат: повышение эффективности выделения газа из газожидкостной смеси, исключение попадания тяжелой фракции жидкой среды в патрубок вывода более легкой фракции жидкой среды. 1 ил.

Изобретение относится к системе и способу деаэрации жидкого продукта питания. Способ и система деаэрации жидкости, включающая насос для увеличения давления жидкости на расположенном выше по потоку конце нуклеационного клапана, вакуумный насос для уменьшения давления на дальнем по ходу потока конце нуклеационного клапана и регулировочное устройство для регулирования насосов, при этом регулировочное устройство выполнено для регулирования температуры и давления на дальней по ходу потока стороне клапана таким образом, что статическое давление оказывается выше давления насыщения, в то время как минимальное давление при прохождении жидкости через клапан ниже давления насыщения, или равно ему. Технический результат – повышение эффективности процесса деаэрации и упрощение конструкции системы. 2 н. и 15 з.п. ф-лы, 3 ил.

Изобретение относится к способу промывки газа из гидропереработанного выходящего потока из зоны гидропереработки. Согласно предлагаемому способу добавляют первую часть потока промывочной воды в гидропереработанный выходящий поток с образованием объединенного потока и конденсируют объединенный поток. Затем направляют объединенный поток в сепаратор, который содержит по существу цилиндрический корпус, соединенный в свою очередь с отстойником и башней. При этом вторую часть потока промывочной воды подают в башню для промывки аммиака и сероводорода, поднимающихся в башне. Способ позволяет достичь более высокого уровня удаления аммиака из рециркулирующего газа и избежать коррозии расположенного ниже по потоку оборудования. Изобретение относится также к сепаратору, который используется в предлагаемом способе. 2 н. и 6 з.п. ф-лы, 1 ил.

Изобретение относится к оборудованию для разделения гетерогенных сред, а именно к области сепарации нефтегазовой смеси. Вертикальный сепаратор содержит цилиндрический корпус со следующими сверху вниз технологическими зоной скопления и отведения окончательно отсепарированного газа, закрытой кольцевой зоной предварительного разделения смеси, зоной окончательного разделения продуктов, полученных при предварительном разделении, на нефть и газ и зоной скопления и отведения отсепарированной нефти. В верхней части корпуса расположен патрубок вывода окончательно отсепарированного газа, ниже расположен на цилиндрической части корпуса сепаратора патрубок вывода предварительно отсепарированного газа из зоны предварительного разделения нефтегазовой смеси. Сепаратор содержит тангенциальный патрубок ввода обрабатываемой смеси в кольцевую зону предварительного разделения смеси. В днище корпуса расположен патрубок вывода из корпуса отсепарированной нефти. Сепаратор снабжен газопроводом с газораспределителем, подводящим предварительно отделенный от смеси газ из кольцевой зоны корпуса сепаратора в его зону окончательного разделения предварительно отсепарированных продуктов, и противоточной массообменной насадкой, установленной в зоне окончательного разделения предварительно отсепарированных продуктов. Закрытая кольцевая зона предварительного разделения смеси в корпусе сепаратора сформирована обечайкой, сопряженной с внутренней поверхностью корпуса сепаратора с образованием симметричной его оси кольцевой с ситообразным днищем камеры с двумя сопряженными зонами из предварительно отсепарированных продуктов: зоной скопления и отведения предварительно отсепарированной смеси и зоной скопления и отведения предварительно отсепарированного газа. Технический результат: повышение эффективности сепарационного процесса и его интенсификации. 4 з.п. ф-лы, 3 ил.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для разделения нефти и газа при сборе продукции скважин. Газожидкостный сепаратор содержит вертикальный цилиндрический корпус, трубопроводы подвода газожидкостной смеси, отвода газа и жидкости, при этом корпус разделен конической перегородкой на входную и каплеотбойную камеры и снабжен газоуравнительным трубопроводом, соединяющим корпус сепаратора с трубопроводом отвода газа. Входная камера снабжена сливными трубами и концентрично установленной каплеотбойной камерой с завихрителем в виде винтовой полки, зафиксированной на внутренней стенке каплеотбойной камеры в пределах трубопровода отвода газа, конусной нижней частью и сливными трубами, нижние концы которых расположены ниже концов сливных труб входной камеры и установлены в гидрозатворный стакан в нижней части корпуса, конусный экран, установленный ниже трубопровода отвода газа, и кольцевые сетчатые перегородки. Во входной камере от периферии к центру концентрично друг под другом размещены кольцевые полки, причем верхняя кольцевая полка размещена напротив трубопровода подвода газожидкостной смеси и имеет высоту кольцевой полки, большую проходного диаметра трубопровода подвода газожидкостной смеси. Высота кольцевых полок уменьшается сверху вниз, во входной камере выше трубопровода подвода газожидкостной смеси установлен лабиринтный сепарационный элемент, выполненный в виде трех кольцевых сетчатых перегородок, размещенных параллельно, при этом две из них закреплены снаружи к каплеотбойной камере, а одна кольцевая сетчатая перегородка размещена между ними и закреплена к вертикальному цилиндрическому корпусу. В кольцевых сетчатых перегородках перпендикулярно им и концентрично вертикальному цилиндрическому корпусу закреплены взаимообращенные друг к другу чередующиеся длинные и короткие кольцевые пластины. Между нижней кольцевой полкой и конической перегородкой установлены дополнительные кольцевые сетчатые перегородки с размерами ячеек сетки, уменьшающимися сверху вниз. В трубопроводе отвода газа за газоуровнительным трубопроводом установлен брызгоунос, выполненный в виде наклонных кольцевых лопаток со скошенным снизу сегментом. Техническим результатом является повышение эффективности разделения газожидкостной смеси, повышение качества отсепарированного газа, поступающего в трубопровод отвода газа, а также повышение надежности работы устройства. 1 ил.

Изобретение относится к сепараторам для разделения жидких сред, имеющих различный удельный вес, и для выделения накопившейся в жидкости газообразной среды. Жидкостно-газовый сепаратор содержит корпус, вертикальную разделительную перегородку, установленную в корпусе с разделением последнего на входную и выходную секции, сообщенные между собой в верхней части корпуса, трубопровод ввода газожидкостной смеси, сообщенный с входной секцией, а также патрубки вывода газообразной среды, более тяжелой и более легкой фракций жидкой среды, пакет фазоразделительных насадок в виде системы параллельно установленных перфорированных пластин, переливную перегородку, установленную в выходной секции, и сливной лоток, который расположен своим верхним краем с верхней кромкой вертикальной разделительной перегородки и своим нижним краем - с пакетом фазоразделительных насадок со стороны входа в него, закрепленных к поперечной перегородке, пропускающей более тяжелые фракции жидкой среды снизу, а газ – сверху. Патрубок отвода более тяжелой фракции жидкой среды сообщен с нижней частью корпуса между вертикальной разделительной перегородкой и переливной перегородкой, а патрубок отвода более легкой фракции жидкой среды снабжен регулируемой задвижкой и введен в корпус ниже уровня жидкой среды, который контролируется датчиком, управляющим регулируемой задвижкой. Трубопровод ввода газожидкостной смеси введен в вертикальный гидроциклон, герметично введенный в корпус и оснащенный концентрично установленной каплеотбойной камерой, внутреннее пространство которого выше уровня жидкости сообщено с патрубком вывода газообразной среды, который дополнительно сообщен трубкой с пространством под сливным лотком выше уровня жидкости, нижние кромки гидроциклона и каплеотбойной камеры расположены в непосредственной близости от нижней части корпуса. Во входной секции корпуса между гидроциклоном и каплеотбойной камерой концентрично установлены цилиндрические секторы, а в верхней и нижней частях цилиндрических секторов перпендикулярно выполнены входной и выходной коллекторы. При этом между гидроциклоном, цилиндрическими секторами и каплеотбойной камерой размещены ряды труб из пористого материала с гидрофобным покрытием на внутренней поверхности с возможностью последовательного перемещения газожидкостной смеси по всем рядам труб от входного коллектора к выходному коллектору, причем цилиндрические секторы между рядами труб из пористого материала с гидрофобным покрытием на внутренней поверхности выполнены из металлической сетки и газоотводным каналом сообщены с патрубком вывода газообразной среды, причем каплеотбойная камера внутри оснащена инерционным каплеуловителем в виде наклоненных вниз усеченных конусов, уменьшающих проходное сечение каплеотбойной камеры сверху вниз, при этом на входе патрубка вывода газообразной среды выполнен экран, состоящий из взаимообращенных навстречу друг другу снизу сужающегося снизу вверх конуса, а сверху усеченного конуса, расширяющегося снизу вверх. Причем выше газоотводного канала патрубок вывода газообразной среды оснащен вертикальной металлической сеткой, при этом в выходной секции корпуса выполнена вторая вертикальная разделительная перегородка, а между поперечной перегородкой и второй вертикальной разделительной перегородкой установлен пакет фазоразделительных насадок. Причем под пакетом фазоразделительных насадок выше переливной перегородки концентрично корпусу установлена труба со сквозными отверстиями, при этом один конец трубы заглушен поперечной перегородкой, а с другого конца внутреннее пространство трубы сообщается с карманом, жестко закрепленным к второй разделительной перегородке. Верхняя кромка кармана расположена выше трубы, а в кармане на уровне его верхней кромки размещен поплавок, тонущий в более тяжелой фракции жидкой среды и всплывающий в более легкой фракции жидкой среды, соединенный с датчиком регулируемой задвижки. При этом карман за второй вертикальной разделительной перегородкой в выходной секции гидравлически сообщается с патрубком отвода более легкой фракции жидкой среды, при этом трубка, соединенная с патрубком вывода газообразной среды, внутри корпуса оснащена патрубком ввода газа из корпуса сепаратора. Техническим результатом является повышение эффективности выделения газа из газожидкостной смеси и очистка газа от примесей жидкости, а также повышение качества гравитационного разделения и исключение попадания тяжелой фракции жидкой среды в патрубок вывода более легкой фракции жидкой среды. 2 ил.

Изобретение относится к области газовой промышленности и может быть использовано для процессов централизованной деэтанизации (частичной стабилизации) поставляемого с промыслов газоконденсатных месторождений нестабильного парафинистого конденсата в ректификационных колоннах, работающих без использования верхнего конденсационного орошения. Способ деэтанизации нестабильного парафинистого конденсата, при котором нестабильный парафинистый конденсат нагревают для питания колонны деэтанизации и деэтанизируют с использованием для орошения колонны деэтанизации ненагретого нестабильного конденсата с низким содержанием парафинов, заключается в том, что колонну деэтанизации оснащают клапанными тарелками, обеспечивающими постоянную загрузку по массе сырья в диапазоне нагрузок по потокам паровой и жидкой фаз от 100 до 50% от максимальной и неизменное качество продуктов деэтанизации - остаточное содержание углеводородов C1-C2 в деэтанизированном конденсате не более 0,8 мас.%, остаточное содержание жидких углеводородов C5+ в газе деэтанизации не более 3 мас.%; при этом дополнительно производят регулируемую добавку в поток питания колонны деэтанизации части потока используемого для орошения колонны деэтанизации нестабильного конденсата с низким содержанием парафинов, обеспечивающую поддержание нагрузок по потокам паровой и жидкой фаз в рабочем диапазоне от 100 до 50% от максимальной при содержании парообразующих компонентов C1-C4 в нестабильном парафинистом конденсате менее 15 мас.%, и поддержание нормируемого содержания парафинов в деэтанизированном конденсате на уровне не выше 4 мас.%. Технический результат заключается в обеспечении производительности процесса деэтанизации нестабильного парафинистого конденсата в ректификационных колоннах без верхнего конденсационного орошения не менее 1,3 млн тонн/год, а также в обеспечении гибкости технологического процесса - сохранении перечисленных показателей на неизменном уровне при деэтанизации сырья различного состава - нестабильного парафинистого конденсата, нестабильного конденсата с низким содержанием парафинов и их смесей в различных соотношениях. 1 ил., 1 пр.

Изобретение относится к реактору полимеризации для осуществления реакции полимеризации. Реактор полимеризации для выполнения реакции полимеризации включает корпус сосуда и рубашку, охватывающую наружную поверхность корпуса сосуда и образующую канал для прохождения охлаждающей/нагревающей среды между этой рубашкой и внешней поверхностью корпуса сосуда, реактор включает устройство для подачи инертного газа в канал, при этом корпус сосуда изготовлен из плакированной металлической пластины, включающей слой металла основы, который имеет внутреннюю поверхность на внутренней стороне корпуса сосуда и наружную поверхность на внешней стороне корпуса сосуда, и внутренний поверхностный слой коррозионно-стойкого металла, связанный с внутренней поверхностью слоя металла основы, который имеет меньшую толщину, чем толщина слоя металла основы. Заявлен также способ получения водопоглощающей смолы. Технический результат – сокращение времени теплопередачи и времени полимеризации, возможно достижение повышения производительности получения смолы. 2 н. и 9 з.п. ф-лы, 3 ил., 1 табл., 2 пр.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для разделения нефти и газа при сборе продукции скважин. Газожидкостный сепаратор содержит вертикальный цилиндрический корпус, трубопроводы подвода газожидкостной смеси, отвода газа и жидкости, при этом корпус сепаратора разделен конической перегородкой на входную и каплеотбойную камеры и снабжен газоуравнительным трубопроводом, соединяющим корпус с трубопроводом отвода газа. Каплеотбойная камера расположена концентрично во входной камере и имеет завихритель в виде винтовой полки, зафиксированной на внутренней стенке камеры. Входная камера имеет конусный экран, установленный ниже трубопровода отвода газа, и сетчатый стакан. Сливные трубы входной и каплеотбойной камер установлены в гидрозатворный стакан в нижней части корпуса, при этом нижние концы труб каплеотбойной камеры расположены ниже концов труб входной камеры. Сепаратор также имеет сепарирующий шнек, установленный на наружной поверхности каплеотбойной камеры с радиальным зазором по отношению к сетчатому стакану, выполненному коническим сужающимся сверху вниз. Площадь проточной части шнека уменьшается в осевом направлении от входа к выходу, а угол наклона лопастей шнека на выходе меньше девяноста градусов. Внутри сетчатого стакана ниже шнека к сетчатому стакану закреплен кольцевой диск с площадью проточной части, меньшей площади проточной части на выходе шнека. Выше трубопровода подвода газожидкостной смеси установлен лабиринтный сепарационный элемент, выполненный в виде трех размещенных параллельно кольцевых сетчатых перегородок с уменьшающимися снизу-вверх размерами ячеек сетки, причем две кольцевые сетчатые перегородки закреплены снаружи к каплеотбойной камере, а между двумя кольцевыми сетчатыми перегородками к вертикальному цилиндрическому корпусу закреплена одна кольцевая сетчатая перегородка, при этом в кольцевых сетчатых перегородках перпендикулярно им и концентрично вертикальному цилиндрическому корпусу закреплены взаимообращенные друг к другу чередующиеся короткие и длинные кольцевые пластины. В трубопроводе отвода газа за газоуровнительным трубопроводом установлен брызгоунос, выполненный в виде наклонных кольцевых лопаток со скошенным снизу сегментом. Изобретение обеспечивает эффективное разделение газожидкостной смеси, повышение качества отсепарированного газа, а также надежную работу устройства. 1 ил.
Наверх