Гибридная машина объемного действия с лабиринтным уплотнением

Изобретение относится к поршневым машинам с бесконтактными лабиринтными уплотнениями и может быть использовано при создании высокоэкономичных поршневых насос-компрессоров. Машина содержит цилиндр 1 с поршнем 3, компрессорную 4 и насосную 5 полости с всасывающими 6 и 7 и нагнетательными 8 и 9 клапанами. Клапаны 7 и 9 размещены симметрично относительно оси цилиндра. Поршень 3 содержит лабиринтные уплотнения 10 и 11, имеющие разнонаправленные винтовые поверхности с прямоугольным сечением выступов. Поршень 3 имеет возможность вращаться относительно штока 12. Юбка поршня 3 снабжена лопатками 14 с вогнутой поверхностью в сторону клапанов 7. Длина L лопаток 14 превышает ход поршня Sh. Оси клапанов 7 и 9 расположены по касательной к окружности 15, лежащей в плоскости, перпендикулярной оси цилиндра 1 и проходящей через оси симметрии поперечного сечения лопаток 14. Потоки жидкости, поступающие через клапаны 7 и 9, создают вращение жидкости в полости 5, которая давит на лопатки 14, поршень 3 вращается, препятствуя винтовыми лабиринтами 10 и 11 появлению перетечек из полости 5 в полость 4 и наоборот. Повышается чистота сжимаемого газа и КПД машины. 5 з.п. ф-лы, 2 ил.

 

Изобретение относится к энергетическим гибридным поршневым машинам с бесконтактными лабиринтными уплотнениями и может быть использовано при создании высокоэкономичных поршневых насос-компрессоров, к которым предъявляются жесткие требования по ресурсу и надежности работы.

Известна гибридная машина объемного действия, содержащая цилиндр с размещенным в нем с зазором поршнем с образованием надпоршневой компрессорной и подпоршневой насосной полости с всасывающими и нагнетательными газовыми и жидкостными обратными клапанами (см., например, патент №125635 на полезную модель «Поршневой насос-компрессор», заявка №2912140810 от 24.09.2012, опубл. 10.02.2013, бюл. №5).

Известна также гибридная машина объемного действия, содержащая цилиндр с размещенным в нем с зазором поршнем с образованием надпоршневой компрессорной и подпоршневой насосной полости с всасывающими и нагнетательными газовыми и жидкостными обратными клапанами, причем поршень имеет лабиринтное уплотнение в виде винтовой линии и установлен с возможностью вращения относительно штока, оси отверстий жидкостных клапанов лежат в плоскости, перпендикулярной оси цилиндра и не пересекают ее (см. АС СССР №731036 «Поршневой компрессор», заявка №2650112/25-06 от 19.07.1978, опубл. 30.04.1980, бюл. №16). Данное техническое устройство по своему назначению и отличительным признакам является наиболее близким к заявляемому объекту техники.

Недостатком известной конструкции является ее низкая экономичность работы компрессорной полости, связанная с большими утечками газа через винтовое уплотнение, которое имеет не оптимальное с точки зрения минимизации утечек треугольное сечение, а частота вращения поршня не может быть достаточно высокой для эффективной работы винтового уплотнения, т.к. передача энергии вращения от движущейся по окружности юбки жидкости происходит только за счет трения, что не только не дает возможности не только иметь высокую частоту вращения, но и оказывает большое гидравлическое сопротивление потоку всасываемой и нагнетаемой жидкости, что существенно снижает эффективность работы насосной полости. Все это вместе взятое снижает общий КПД машины.

Задачей изобретения является повышение общего КПД машины путем увеличения частоты вращения поршня, снижения затрат мощности на организацию этого вращения и повышения уплотняющей способности винтового бесконтактного лабиринтного уплотнения.

Указанная задача решается тем, что в гибридной машине объемного действия, содержащей цилиндр с размещенным в нем с зазором поршнем с образованием надпоршневой компрессорной и подпоршневой насосной полости с всасывающими и нагнетательными газовыми и жидкостными обратными клапанами, причем поршень имеет лабиринтное уплотнение в виде винтовой линии и установлен с возможностью вращения относительно штока, оси отверстий жидкостных клапанов лежат в плоскости, перпендикулярной оси цилиндра и не пересекают ее, согласно заявляемому изобретению юбка поршня снабжена лопатками, рабочая поверхность которых перпендикулярна осям отверстий жидкостных клапанов, и длина которых превышает ход поршня.

Лопатки могут иметь вогнутую рабочую поверхность, обращенную в сторону нагнетательного жидкостного клапана, лабиринтное уплотнение может состоять из двух частей, размещенных вдоль образующей поршня, с разнонаправленными винтовыми поверхностями, и оно может иметь прямоугольное сечение.

Насосная полость может иметь две и более пары всасывающих и нагнетательных обратных клапанов, размещенных симметрично относительно оси цилиндра, и оси отверстий которых лежат в одной плоскости, причем оси отверстий каждой пары всасывающих и нагнетательных жидкостных клапанов могут совпадать друг с другом, а также лежать в плоскости, перпендикулярной оси цилиндра, и быть направленными по касательной к окружности, проходящей через оси симметрии поперечного сечения лопаток.

Сущность изобретения поясняется чертежами.

На фиг. 1 изображена конструктивная схема цилиндропоршневой группы машины (продольное сечение вдоль оси цилиндра) при положении поршня, близком к середине хода, а на фиг. 2 - ее поперечное сечение плоскостью, проходящей через оси двух пар всасывающих и нагнетательных жидкостных клапанов.

Гибридная машина объемного действия (фиг. 1) содержит цилиндр 1 с размещенным в нем с зазором 2 поршнем 3 с образованием надпоршневой компрессорной 4 и подпоршневой насосной 5 полости с всасывающими 6 и 7 и нагнетательными 8 и 9 газовыми и жидкостными обратными клапанами. Оси отверстий жидкостных клапанов 7 и 9 лежат в плоскости, перпендикулярной оси цилиндра и не пересекают ее (см. также фиг. 2). В данном примере использованы две пары всасывающих 7 и нагнетательных 9 жидкостных обратных клапанов. Они размещены симметрично относительно оси цилиндра, оси их отверстий лежат в одной плоскости, и оси отверстий каждой пары всасывающих 7 и нагнетательных 9 жидкостных клапанов совпадают друг с другом. Поршень 3 содержит лабиринтное уплотнение, которое состоит из двух частей 10 и 11, размещенных вдоль образующей цилиндрической поверхности поршня 3 и имеющих разнонаправленные винтовые поверхности с прямоугольным сечением винтовых выступов. Поршень 3 установлен с возможностью вращения относительно штока 12, для чего используется подшипниковый узел 13. Шток 12 соединен с механизмом привода, создающим возвратно-поступательное движение (например, кривошипно-шатунного типа, на рисунке условно не показан).

Юбка поршня 3 снабжена лопатками 14, расположенными по окружности, их рабочая вогнутая поверхность обращена в сторону нагнетательных жидкостных клапанов 7, перпендикулярна осям отверстий жидкостных клапанов 7 и 9, и длина L лопаток 14 превышает ход поршня Sh. При этом оси отверстий жидкостных клапанов 7 и 9 расположены по касательной к окружности 15, лежащей в плоскости, перпендикулярной оси цилиндра 1, и проходящей через оси симметрии поперечного сечения лопаток.

Жидкость в насосную полость 5 попадает через линию всасывания 16 и нагнетается из нее через линию нагнетания 17.

На фиг. 1 также обозначены положения верхней и нижней мертвых точек днища поршня (ВМТ-Д и НМТ-Д) и положения верхней и нижней мертвых точек юбки поршня (ВМТ-Ю и НМТ-Ю).

Гибридная машина работает следующим образом.

При возвратно-поступательном движении поршня 3 (фиг. 1) происходит периодическое изменение объема полостей 4 и 5, в результате чего газ всасывается через клапан 6 в полость 4, сжимается в ней и подается потребителю через клапан 8, а жидкость всасывается через линию всасывания 16 и клапаны 7 в полость 5, сжимается в ней и подается потребителю через клапаны 9 и линию нагнетания 17.

В связи с тем (фиг. 2), что отверстия клапанов 7 и 9 расположены по касательной к окружности 15, в процессах всасывания и нагнетания, протекающих в полости 5, жидкость совершает в этой полости круговое движение, воздействуя на лопатки 14, которые вместе с ней также вращаются, вращая поршень 3. При этом импульс движения жидкости всегда направлен перпендикулярно рабочей вогнутой поверхности лопаток 14, что позволяет наилучшим образом использовать энергию движения жидкости для вращения поршня 3 и вращать его с высокой частотой.

Так как оси отверстий пар всасывающих 7 и нагнетательных 9 клапанов расположены симметрично относительно оси цилиндра 1 и лежат в одной плоскости, на лопатки 14, перпендикулярно их рабочей поверхности, всегда действует пара одинаковых сил, создающих крутящий момент, но не создающих перекашивающие усилия, что очень важно для работы подшипникового узла 13, от износа которого зависит работоспособность конструкции, т.к. он обеспечивает не только возможность вращения поршня 3, но и точность соблюдения зазора 2.

Благодаря тому, что соблюдено условие L>Sh, жидкость давит на рабочие поверхности лопаток 14 в течение всего цикла работы машины.

При сжатии и нагнетании жидкости в полости 5 создается избыточное по отношению к полости 4, в которой происходит процесс всасывания, давление, и жидкость пытается проникнуть через зазор 2 в компрессорную полость 4. Однако, в связи с тем, что винтовая часть 11 лабиринтного уплотнения при вращении производит откачку проникшей в нее жидкости назад в полость 5, при достаточно высокой частоте вращения поршня 3, которая обеспечивается формой, расположением лопаток 14 и расположением клапанов 7 и 9, жидкость не может преодолеть комплексное гидравлическое сопротивление части 11 лабиринтного уплотнения даже при сравнительно высоком перепаде давления на поршне 3. Это комплексное сопротивление состоит как из вышеописанного действия откачки жидкости, так и обеспечивается наличием прерывистой цилиндрической поверхности поршня, которая отстоит от поверхности цилиндра 1 на малую величину зазора 2. То есть комплексное гидравлическое сопротивление состоит в откачке жидкости, в проявлении чисто лабиринтного эффекта (чередование узкой щели - зазора 2-е внезапным расширением и сужением потока) и в сопротивлении только участков узкой щели, т.е. зазора 2. Этот комплексный эффект возникает благодаря тому, что лабиринтное уплотнение имеет прямоугольное сечение выступов.

В связи с тем, что к компрессорной полости примыкает часть 10 лабиринтного уплотнения поршня 3, которая имеет противоположное направление витков по отношению к части 11, аналогичный вышеописанному процесс протекает при сжатии и нагнетании газа в полости 4, когда в полости 5 идет процесс всасывания, и на поршне 3 снова возникает перепад давления, но уже в обратную сторону.

Таким образом, предложенная конструкция за счет высокой скорости вращения поршня 3, которая обеспечивается конструкцией и расположением лопаток 14 и клапанов 7 и 8, наличием разнонаправленных винтовых участков 10 и 11 лабиринтного уплотнения поршня 3, которое имеет прямоугольную форму выступов, обеспечивает следующие эффекты:

1. Высокая уплотняющая способность зазора между поршнем 3 и цилиндром 2, позволяющая в одной ступени сжимать газ и жидкость до сравнительно больших давлений практически без потерь работы на осуществление рабочего цикла с утечками и перетечками.

2. Отсутствие загрязнения жидкостью сжимаемого газа и наоборот -проникновения газа в жидкость, что снижает затраты на очистку газа от жидкости и наоборот.

3. Высокий ресурс работы подшипникового узла вращения поршня, и в связи с этим сохранение малого зазора 2 между поршнем 3 и цилиндром длительное время.

4. Снижение затрат мощности на обеспечение вращения поршня жидкостью.

Все это вместе взятое позволяет повысить общий КПД машины.

1. Гибридная машина объемного действия, содержащая цилиндр с размещенным в нем с зазором поршнем с образованием надпоршневой компрессорной и подпоршневой насосной полостей с всасывающими и нагнетательными газовыми и жидкостными обратными клапанами, причем поршень имеет лабиринтное уплотнение в виде винтовой линии и установлен с возможностью вращения относительно штока, оси отверстий жидкостных клапанов лежат в плоскости, перпендикулярной оси цилиндра, и не пересекают ее, отличающаяся тем, что юбка поршня снабжена лопатками, рабочая поверхность которых перпендикулярна осям отверстий жидкостных клапанов и длина которых превышает ход поршня.

2. Гибридная машина объемного действия по п. 1, отличающаяся тем, что лопатки имеют вогнутую рабочую поверхность, обращенную в сторону нагнетательного жидкостного клапана.

3. Гибридная машина объемного действия по п. 1, отличающаяся тем, что лабиринтное уплотнение состоит из двух частей, размещенных вдоль образующей поршня, с разнонаправленными винтовыми поверхностями.

4. Гибридная машина объемного действия по п. 1, отличающаяся тем, что лабиринтное уплотнение имеет прямоугольное сечение выступов.

5. Гибридная машина объемного действия по п. 1, отличающаяся тем, что насосная полость имеет как минимум две пары всасывающих и нагнетательных обратных клапанов, размещенных симметрично относительно оси цилиндра и оси отверстий которых лежат в одной плоскости.

6. Гибридная машина объемного действия по пп. 1 и 5, отличающаяся тем, что оси отверстий жидкостных клапанов расположены по касательной к окружности, лежащей в плоскости, перпендикулярной оси цилиндра и проходящей через оси симметрии поперечного сечения лопаток.



 

Похожие патенты:

Изобретение относится к области машиностроения, в частности к радиально-поршневым насосам, используемым для нагнетания жидкости с высоким давлением. Насос с жесткой связью шатуна с поршнем содержит корпус 1 с, по меньшей мере, одним цилиндром 2, в котором с образованием рабочей камеры 3 установлен выполненный за одно целое с шатуном 4 поршень 5 с опорным 6 и уплотнительным 7 элементами.

Изобретение относится к области компрессоростроения и предназначено для соединения поршня высшей ступени сжатия с поршневой группой низшей ступени сжатия. Шток составного дифференциального поршня поршневого компрессора представляет собой стержень, у одного конца которого выполнен присоединительный участок 1, а у другого конца выполнен участок 2 с наружной резьбой.

Изобретение может быть использовано в устройствах дозирования топлива. Поршень для устройства дозирования топлива, изготовленный из алюминиевого сплава, содержит упрочненную интенсивной пластической деформацией головку (1) с ультрамелкозернистой структурой материала.

Изобретение относится к поршневым компрессорам. Дисковый поршень двойного действия - состоит из двух полых литых деталей 1 и 2, изготовленных из магниевого сплава.

Заявляемая группа изобретений относится к области машиностроения, а именно к компрессоростроению, и может быть использована в цилиндрах различного назначения, в частности в цилиндропоршневых узлах поршневых компрессоров.

Изобретение относится к области машиностроения, а именно к компрессоростроению. Шток поршневой состоит из цилиндрического стержня, на боковой поверхности которого последовательно выполнены первый резьбовой участок (1), рабочий участок (3), упорный бурт (4), посадочная поверхность под поршень (5) и второй резьбовой участок (6).

Изобретение относится к поршневой машине (10, 40), содержащей по меньшей мере один цилиндр (12a, 12b) и одну головку (18a, 18b) цилиндра, закрывающую отверстие цилиндра (12а, 12b). .

Изобретение относится к двойным цилиндропоршневым блокам, предназначенным для использования в двигателях и поршневых компрессорах высокого давления. .

Изобретение относится к компрессоростроению и может быть использовано для получения сжатого газа или воздуха. Особенность заключается в том, что поршневой компрессор дополнительно содержит уравновешивающие эжекторы и уравновешивающие клапаны, причем поршни приводят в движение с помощью джареда механической энергии, а нагнетательная магистраль представляет собой емкость сжатого газа или воздуха, при этом надпоршневая камера первого цилиндра через ее выпускной клапан и уравновешивающий эжектор подключена к штоковой камере второго цилиндра, а штоковая камера первого цилиндра через выпускной клапан и уравновешивающий эжектор подключена к надпоршневой камере второго цилиндра, кроме того, уравновешивающие эжекторы через уравновешивающие клапаны соединены с емкостью сжатого газа или воздуха, причем впускные и выпускные клапаны надпоршневой и штоковой камер первого цилиндра выполнены самодействующими, а уравновешивающие и выпускные клапаны второго цилиндра выполнены принудительного типа действия.

Изобретение относится к области энергомашиностроения. При движении поршневых групп система управления отслеживает величины давления газа в той полости поршня, где происходит его сжатие, и на основе этих величин вырабатывает алгоритм закрытия выпускных клапанов в конце движения поршневых групп с таким расчетом, чтобы по их прибытию в конечные точки движения скорости поршневых групп оказались равны нулю.

Изобретение относится к области энергомашиностроения и используется для предотвращения ударов поршневых групп о торцы цилиндров в любой свободнопоршневой машине.

Изобретение относится к области энергомашиностроения и предназначено для преобразования электроэнергии в энергию давления жидкого или газообразного рабочего тела.

Изобретение относится к области компрессоростроения, а именно к устройствам для нагнетания газа поршневого типа, и может быть использовано в различных отраслях народного хозяйства.

Изобретение относится к компрессоростроению, в частности к свободнопоршневому газогенератору, предназначенному для получения сжатого газа при сгорании органического топлива.

Изобретение относится к компрессоростроению и может быть использована в транспортных средствах при строительстве и реконструкции зданий и сооружений, в промышленности и сельском хозяйстве и других сферах человеческой деятельности.

Изобретение относится к компрессоростроению и может быть использовано при создании машин, сжимающих чистые газы и обладающих высоким ресурсом работы. .

Изобретение относится к области энергетики и может быть использовано при создании поршневых высокоэффективных машин для сжатия и перемещения газов и жидкостей. Машина содержит цилиндр 1 и размещенный в нем с радиальным зазором 2 поршень 3 с компрессорной 5 и насосной 6 полостями. На цилиндрической поверхности поршня имеется канавка 15, разделяющая его поверхность на две части 16 и 17. Боковые поверхности канавок расположены под острым углом к оси поршня 3 и цилиндра 1 в направлении к компрессорной полости 5. Объем канавки определяется выражением: где V - объем канавки, D - диаметр поршня, δ - радиальный зазор между поршнем и цилиндром, - средний перепад давления на поршне в процессе сжатия-нагнетания газа, L - длина цилиндрической части поршня, заключенная между нижним выступом канавки и нижним торцом поршня, µ - динамическая вязкость жидкости, τ - время, за которое поршень перемещается из нижней мертвой точки в верхнюю мертвую точку и наоборот, - средняя скорость поршня, с которой он перемещается из нижней мертвой точки в верхнюю мертвую точку и наоборот. Повышается КПД при сравнительно больших зазорах и надежность пуска. 1 з.п. ф-лы, 2 ил.
Наверх