Мембранный танк для сжиженного природного газа (тип вм)



Мембранный танк для сжиженного природного газа (тип вм)
Мембранный танк для сжиженного природного газа (тип вм)
Мембранный танк для сжиженного природного газа (тип вм)

 


Владельцы патента RU 2600419:

Общество с ограниченной ответственностью Проектно-конструкторское бюро "БАЛТМАРИН" (RU)

Изобретение относится к области судостроения и морского транспорта и касается конструкции мембранного танка для перевозки сжиженного природного газа при низких температурах. Предложен мембранный танк для сжиженного природного газа (тип ВМ), имеющий первичную наружную и вторичную внутреннюю мембраны, между которыми, а также между внутренней поверхностью отсека судна и вторичной мембраной размещен термоизоляционный слой в виде жесткого термоизолирующего материала, при этом между первичной и вторичной мембранами танка, а также между поверхностью отсека и вторичной мембраной образованы герметичные объемы для создания в них низкого вакуума, а в термоизоляционном слое образованы полости, наполненные легковесным термоизолятором. Технический результат заключается в снижении теплопроводности мембранного танка и, соответственно, уменьшении потерь сжиженного природного газа. 5 з.п. ф-лы, 3 ил.

 

Изобретение относится к области судостроения и морского транспорта, предназначенного для перевозки сжиженного природного газа (СПГ) наливом при низких температурах, а более конкретно к конструкции мембранного танка.

Известен мембранный танк, представляющий собой двойную оболочку из гофрированной криогенной стали или плоских листов инвара, которая через жесткую изоляцию с прокладками из фанеры опирается на поверхность отсека судна. Температурные деформации в оболочках гофрированных мембран компенсируются деформацией их гофров, а плоских мембран из инвара - за счет незначительного коэффициента линейного расширения их материала (Патент US 526247 от 14.12.1993, Патент US 2011/0056955 от 10.03.2011).

Известно, что конструкция традиционного мембранного танка имеет значительный коэффициент потерь СПГ в результате его испарения и этот коэффициент резко увеличивается при уменьшении объема танка.

Задачей предлагаемого изобретения является существенное уменьшение потерь СПГ за счет изменения конструкции мембранного танка.

В конструкции существующего мембранного танка (типа MARK III см. http://www.gtt.fr/product/mark-iii-svstem/) в качестве теплоизолятора между мембранами используется жесткий пенополиуретан с удельной плотностью 160-220 кг/м3, имеющий коэффициент теплопроводности в пределах 0.028-0.035 Вт/(м·K).

Известно (см. фиг. 1), что при низком вакууме (Р=0.1-10 мбар) ряд легковесных изолирующих материалов имеют очень низкий коэффициент теплопроводности в пределах 0.004-0.006 Вт/(м·K).

Данный вакуум технически достижим в больших объемах и, главное, данный вакуум можно постоянно контролировать и поддерживать на обслуживаемых судах.

С целью уменьшения теплопроводности мембранного танка предлагается использовать жесткий пенополиуретан повышенной прочности с плотностью в пределах 220-500 кг/м3, в котором создаются полости, наполненные легковесным теплоизолятором, в качестве которого можно использовать перлит, кремнезем, аэрогель, коллоидную двуокись кремния, пенополистирол или стекловолокно, а между мембранами и между корпусом судна и вторичной мембраной необходимо создать низкий вакуум в пределах 0.1-10 мбар. Указанный подход позволяет уменьшить теплопроводность мембранного танка в 2-3 раза.

В существующих конструкциях мембранных танков для передачи давления и формирования конструкции блоков изоляции используется фанера.

Однако фанера при низком вакууме может выделять газы, что может привести к ухудшению степени вакуума.

Для сохранения необходимого давления вакуума по изобретению между термоизоляционными слоями установлены пластины из высокомолекулярного полиэтилена.

В существующих конструкциях мембранных танков для уменьшения влияния кривизны (бухтиноватости) внутренней поверхности отсека на каждый прикрепляемый к отсеку судна блок теплоизоляции наносятся слои мастики.

Однако при низких температурах мастика застывает и в местах соприкосновения слоев мастики с блоком изоляции возникают значительные напряжения [Pub148_Guidance Notes on Strength Assessment of Membrane-Type LNG Containment Systems Under Sloshing Loads] (фиг. 2). Кроме этого мастика имеет высокий уровень теплопроводности, что ухудшает теплозащитные свойства изоляции.

Для повышения прочности конструкции мембранного танка, а также улучшения его теплопроводности по изобретению между поверхностью отсека и термоизоляционным слоем установлены сминаемые прокладки из термоизолирующего материала. В качестве одного из вариантов таких прокладок может быть использован войлок.

Сущность изобретения видна из фиг. 3, где показан общий вид предлагаемой конструкции мембранного танка для СПГ.

Конструкция мембранного танка включает следующие элементы:

1 - внутренняя судовая поверхность корпуса танка судна, 2 - шпилька, 3 - вторичный блок изоляции 4 - шайба, 5 - гайка, 6 - монтажная полость, 7 - сминаемая прокладка, 8 - полость для размещения легковесного теплоизолятора, 9 - легковесный теплоизолятор, 10 - болтовое соединение, 11 - монтажный диск, 12 - монтажное отверстие, 13 - монтажная плита вторичного блока изоляции, 14 - крепежный болт, 15 - крепежная гайка, 16 - контактная сварка, 17 - вторичная мембрана, 18 - монтажная лента, 19 - шуруп для крепления монтажной ленты, 20 - отгиб листа вторичной мембраны, 21 - контактная сварка листов вторичной мембраны, 22 - контактная сварка шпилек к вторичной мембране, 23 - шпильки для крепления первичного блока изоляции, 24 - крепежные гайка с шайбой, 25 - первичный блок изоляции, 26 - полость для размещения монтажных отгибов вторичной мембраны, 27 - монтажная плита первичного блока изоляции, 28 - контактная сварка для крепления первичной мембраны, 29 - первичная мембрана.

Предлагаемая конструкция формируется на основе внутренней судовой поверхности корпуса танка судна 1, к которой привариваются шпильки 2. Вторичные блоки изоляции 3, изготовленные из жесткого пенополиуретана, крепятся к шпилькам 2 через монтажную полость 6 с использованием шайб 4 и гаек 5.

Для компенсации возможных деформаций корпуса судна между вторичным блоком изоляции 3 и корпусом судна 1 устанавливается мягкая прокладка 7, которая может быть изготовлена из войлока, пробки или аналогичных сминаемых теплоизолирующих материалов.

Для уменьшения теплопроводности в блоках изоляции 3 и 25 имеются полости 8, заполненные легковесным теплоизолятором 9.

К противоположной от корпуса судна стороне вторичного блока изоляции 3 с использованием болтового соединения 10, имеющего монтажный диск 11, через монтажное отверстие 12 закрепляется монтажная плита 13, которая может быть изготовлена из высокомолекулярного полиэтилена.

Для обеспечения надежного крепления вторичного блока изоляции к корпусу судна дополнительно используется крепежный болт 14, изготовленный из высокомолекулярного полиэтилена. Крепежный болт 14 крепится к шпильке 2 с использованием крепежной гайки 15, изготовленной также из высокомолекулярного полиэтилена.

К плите 13 с помощью контактной сварки 16 крепится вторичная мембрана 17, выполненная из инвара. Контактная сварка 16 выполняется между монтажными дисками 11 и вторичной мембраной 17. Для обеспечения надежности крепления мембраны 17 к плите 13 в ней устанавливается металлическая монтажная лента 18, которая крепится к плите 13 с использованием шурупов 19. Контактная сварка 16 обеспечивает дополнительное крепление вторичной мембраны 17 к монтажной плите 13.

Вторичная мембрана 17 изготавливается из отдельных листов, имеющих отгибы 20, которые свариваются между собой контактной сваркой 21.

К вторичной мембране 17 с использованием контактной сварки 22 крепятся шпильки 23, на которые устанавливается гайка с шайбой 24. Шпильки 23 используются для крепления первичного блока изоляции 25, в котором имеются полости 26 для размещения отгибов 20, а также полости 6, 12 и 8, аналогичные полостям вторичного блока изоляции 3.

Монтажная плита 27 первичного блока изоляции 25 имеет систему крепления, аналогичную системе крепления вторичного блока изоляции 3.

К монтажной плите 27 с использованием контактной сварки 28 крепится первичная мембрана 29, которая может быть выполнена как из инвара, так и из криогенной стали.

Предлагаемая конструкция мембранного танка позволяет создать между первичной и вторичной мембранами танка, а также между поверхностью отсека и вторичной мембраной герметичные объемы, которые при низком вакууме позволят существенно уменьшить теплопроводность мембранного танка.

1. Мембранный танк для сжиженного природного газа (тип ВМ), имеющий первичную наружную и вторичную внутреннюю мембраны, между которыми, а также между внутренней поверхностью отсека судна и вторичной мембраной размещен термоизоляционный слой в виде жесткого термоизолирующего материала, отличающийся тем, что между первичной и вторичной мембранами танка, а также между поверхностью отсека и вторичной мембраной образованы герметичные объемы для создания в них низкого вакуума, а в термоизоляционном слое образованы полости, наполненные легковесным термоизолятором.

2. Мембранный танк по п. 1, отличающийся тем, что герметичные объемы выполнены с возможностью обеспечения в них вакуума в пределах 0.1-10 мбар.

3. Мембранный танк по п. 1, отличающийся тем, что в качестве термоизолирующего материала, расположенного между мембранами танка, а также между поверхностью отсека и вторичной мембраной, использован жесткий полиуретан повышенной прочности с плотностью 220-500 кг/м3.

4. Мембранный танк по п. 1, отличающийся тем, что в качестве термоизолятора в полостях термоизоляционного слоя может быть использован перлит, кремнезем, аэрогель, коллоидная двуокись кремния, пенополистирол или стекловолокно.

5. Мембранный танк любому из пп. 1-4, отличающийся тем, что между термоизоляционными слоями установлены пластины из высокомолекулярного полиэтилена.

6. Мембранный танк любому из пп. 1-4, отличающийся тем, что между поверхностью отсека и термоизоляционным слоем установлены сминаемые прокладки из термоизолирующего материала.



 

Похожие патенты:

Криостат // 2491470
Изобретение относится к устройствам для охлаждения с применением сжиженных газов и может быть использовано при проведении низкотемпературных исследований в следующих областях: физика низких температур, электрические и магнитные измерения, биофизика, медицина.

Криостат // 2482381
Изобретение относится к устройствам для охлаждения с применением сжиженных газов и может быть использовано при проведении низкотемпературных исследований. .

Изобретение относится к емкости для хранения криогенной жидкости и может быть использовано в качестве заправочного средства сторонних объектов. .

Изобретение относится к холодильной технике, в частности к крупноразмерным бакам, используемым для хранения и транспортировки криогенных продуктов. .

Изобретение относится к холодильной и криогенной технике, а точнее к области проектирования и эксплуатации емкостей для хранения продуктов при низких температурах.

Изобретение относится к области криогенной техники, а более конкретно к конструкции и эксплуатации криогенных устройств для хранения криогенных продуктов. .

Изобретение относится к технологии машиностроения, а именно к способам обезгаживания теплоизоляционных полостей крупногабаритных криогенных резервуаров с вакуумно-многослойной изоляцией, который заключается в следующем: после установки внутреннего сосуда в корпус начинается его прогрев, причем пары воды из теплоизоляционной полости вытесняют азотом или сухим воздухом, которые могут быть горячими или иметь температуру окружающей среды, и подаются в теплоизоляционную полость непрерывно или периодически с интервалом не менее 12 часов соответственно.

Изобретение относится к холодильной технике и касается конструкции и эксплуатации емкостей для длительного хранения биологических, пищевых и других продуктов в среде криогенных жидкостей.

Изобретение относится к конструкции для содержания сжиженного природного газа (СПГ) в отсеке корпуса морской конструкции, содержащей самонесущий первичный барьер, вторичный барьер, окружающий самонесущий первичный барьер, и пространство для доступа между самонесущим первичным барьером и вторичным барьером, где самонесущий первичный барьер представляет собой непроницаемый для жидкости самонесущий танк СПГ и соединен с отсеком корпуса с помощью опорных устройств, проникающих во вторичный барьер, вторичный барьер представляет собой непроницаемую для жидкости тепловую изоляцию, соединенную с внутренней поверхностью корпуса, и герметизируется с опорными устройствами с помощью гибкого непроницаемого для жидкости уплотнения таким образом, чтобы самонесущий первичный барьер и вторичный барьер были соединены по отдельности с отсеком корпуса для предотвращения передачи усилий между первичным барьером и вторичным барьером.

Танк предназначен для хранения и транспортировки сжиженного природного газа. Танк (71) включает в себя теплоизоляцию, содержащую множество смежных изоляционных блоков (28) на несущей конструкции, и уплотнение, включающее в себя множество уплотняющих металлических листов (25), расположенных на изоляционных блоках (28) и сваренных друг с другом.

Изобретение относится к изготовлению теплоизоляционных стенок из изоляционных панелей. Герметизированный и изолированный резервуар для сжиженного природного газа содержит несущую стенку, снабженную анкерными элементами в виде повторяющейся структуры, уплотняющий барьер, рассчитанный на контакт с продуктом, содержащимся в резервуаре.

Группа изобретений относится к способу формирования водонепроницаемого барьера для стенки водонепроницаемого и теплоизоляционного резервуара. Указанный способ включает следующие этапы.

Изобретение относится к области судостроения и касается создания блоков термоизоляционной герметичной стенки из полимерных композиционных материалов (ПКМ) емкостей нового типа, используемых для перевозки жидких грузов и сжиженных газов.

Изобретение относится к способу хранения криогенной текучей среды (1) и устройству для его осуществления. В данном способе применяют резервуар (2), содержащий, по меньшей мере, один бак (3), выполненный с возможностью хранения криогенной текучей среды (1).

Изобретение относится к набору деталей для сборки при изготовлении конструкции непроницаемой стенки. Набор содержит непроницаемый металлический лист (1) с рядом первых параллельных гофров (5) и рядом вторых параллельных гофров (6), пересекающихся на участке пересечения (3), удлиненный элемент жесткости (15), располагаемый в названных гофрах (6, 5) для увеличения сопротивления листа давлению, и анкерную деталь (30) с соединительным элементом, закрепляемым на наружной поверхности листа на участке пересечения гофров, на котором должен удерживаться элемент жесткости, и фиксатор (44), взаимодействующий с продольным концом элемента жесткости для удержания этого элемента жесткости внутри гофра.

Резервуар и плавучая конструкция предназначены для транспортировки сжиженного природного газа. Резервуар, по меньшей мере, одна стенка которого содержит герметичную мембрану, рассчитанную на то, чтобы соприкасаться с содержимым резервуара, и опору, примыкающую к мембране, которая содержит, по меньшей мере, один лист, лист в целом прямоугольной формы, имеющий первый ряд взаимно параллельных гофров, проходящих по всей длине прямоугольного листа, и второй ряд взаимно параллельных гофров, которые проходят поперечно гофрам первого ряда по всей ширине прямоугольного листа, при этом резервуар имеет усиливающий элемент, расположенный под одним из гофров первого ряда между мембраной и опорой и имеющий наружную оболочку, форма которой преимущественно соответствует форме гофра, под которым расположен усиливающий элемент, при этом усиливающий элемент имеет внутренний канал, проходящий через два противоположных продольных конца упомянутого усиливающего элемента, по которому между гофром и опорой может протекать газ, проходящий через усиливающий элемент.

В изобретение описан герметичный и изотермический резервуар, у которого, по меньшей мере, одна стенка содержит герметичную мембрану, рассчитанную на то, чтобы соприкасаться с содержимым резервуара, и термоизоляционный слой, примыкающий к мембране, и у которого мембрана содержит, по меньшей мере, один лист (1), имеющий, по меньшей мере, один гофр (2, 3), при этом он имеет усиливающий элемент (5), расположенный под гофром между мембраной и термоизоляционным слоем.

Изобретение относится к области судостроения и касается вопроса перевозки на судах сжиженных газов в емкостях с теплоизоляцией. Термоизоляционная герметичная стенка емкости для сжиженного природного газа состоит из закрепленных на корпусе судна с помощью механического крепления блоков, включающих первичную и вторичную теплоизоляционные панели, закрепленный на блоках первичный герметизирующий слой и расположенный между ними вторичный герметизирующий слой.

Изобретение относится к системам обработки сжиженного газа и может быть использовано на судах. Система обработки сжиженного газа для судна содержит основную линию подачи испаряющегося газа (BOG), выполненную с возможностью сжимать BOG, образуемый в грузовой цистерне, посредством компрессора и подавать его в основной двигатель в качестве топлива.
Наверх