Ик спектроскопический способ определения анизометрии частиц наполнителя в объеме полимерной матрицы

Изобретение относится к области исследования частиц наполнителя в объеме полимерной матрицы с помощью ИК спектроскопии, в частности к методам экспресс-анализа анизометрии полимерных композитов методом Фурье-ИК спектроскопии. ИК спектроскопический способ определения анизометрии частиц наполнителя в объеме полимерной матрицы заключается в последовательной регистрации ИК спектров пропускания образцов, состоящих из полимерной матрицы и наполнителя, причем , где nМ и nН - соответственно показатели преломления матрицы и наполнителя, при повороте образца во фронтальной и/или поперечной плоскостях. Преобразование полученных спектров в кривые распределения частиц наполнителя по размерам и идентификация их экстремумов позволяет определить анизометрию частиц наполнителя в полимерной матрице. Техническим результатом является разработка ИК спектроскопического экспресс-способа определения анизометрии частиц наполнителя в объеме полимерной матрицы. 13 ил., 1 табл.

 

Изобретение относится к области исследования частиц наполнителя в объеме полимерной матрицы с помощью ИК спектроскопии, в частности к методам экспресс-анализа анизометрии полимерных композитов методом Фурье-ИК спектроскопии.

Определение анизометрии частиц наполнителя в полимерных композитах важно для прогнозирования их физических и механических свойств. Равномерным распределением анизометричных частиц наполнителя в полимерной матрице удается добиться существенного улучшения свойств полимерного материала. При этом наполнитель с большей анизометрией формы обладает большим усиливающим действием.

Известен способ определения формы и размера частиц наполнителя в объеме полимерной матрицы с помощью метода малоуглового рентгеновского рассеяния.

Картина малоуглового рассеяния является результатом интерференции когерентно рассеянных на образце лучей. При длинах волн рентгеновского излучения от 0,05 до 0,5 нм метод малоуглового рассеяния позволяет исследовать структуры размерами от единиц до нескольких сотен нанометров. Интерференционная картина рассеяния формируется сложением множества вторичных когерентно рассеянных волн, которые отличаются друг от друга по фазе. Фазовые отличия и амплитуды слагаемых волн зависят от пространственного распределения электронной плотности, т.е. от структуры исследуемого объекта, которая и определяет форму экспериментальной кривой рассеяния I(s), где s - вектор рассеяния. Его модуль определяется выражением

, где

Θ - угол рассеяния; λ - длина волны рентгеновского излучения.

Анализ кривой позволяет определить электронный радиус инерции и максимальный размер частиц в монодисперсных системах и их распределение по размерам - в полидисперсных. Метод определения структурных параметров частиц и их распределения по размерам основан на математической обработке результатов измерений угловой зависимости интенсивности рассеянного образцом рентгеновского излучения.

Недостатками способа являются: сложность математической обработки экспериментальных результатов; интерпретация данных малоуглового рассеяния требует предварительных характеристик исследуемого объекта; детектируемые размеры лежат в узком диапазоне от 1 до 100 нм.

Известен способ измерения размера и формы частиц методом оптической и электронной микроскопии.

Оптическая микроскопия позволяет оценить реальные размеры и форму частиц. Метод позволяет определить степень дисперсии и образование в анализируемой системе агломератов. Приборное обеспечение для оптической микроскопии недорого. Следует заметить, что 1 г материала, состоящий из частиц размером 10 мкм и плотностью 2,5 г/см3, содержит 760×106 частиц. При таком количестве частиц невозможно рассмотреть каждую частицу в отдельности. Случайные и систематические погрешности при использовании этого метода возникают из-за непредставительного пробоотбора, статистики подсчетов и ошибочной идентификации фаз оператором.

Недостатком способа является невозможность использования оптической микроскопии для дисперсного анализа в условиях массового производства.

Использование дорогостоящих электронных микроскопов в сочетании с системами обработки изображения позволяет анализировать состав фаз.

Недостатки способа электронной микроскопии: сложная пробоподготовка, длительность анализа, неприемлемая для использования в условиях производства.

В основу изобретения положена задача разработки ИК спектроскопического экспресс-способа определения анизометрии частиц наполнителя в полимерной матрице.

Технический результат настоящего изобретения заключается в разработке ИК спектроскопического экспресс-способа определения анизометрии частиц наполнителя в объеме полимерной матрицы.

Технический результат настоящего изобретения достигается тем, что для оценки анизометрии частиц наполнителя в объеме полимерной матрицы, при условии выполнения условия , где nМ и nН - показатели преломления матрицы и наполнителя соответственно, последовательно регистрируют ИК-спектры пропускания, поворачивая образец во фронтальной и/или поперечной плоскостях, производят математическую обработку измеренного спектра с последовательным получением спектров вычитания и кривой распределения частиц наполнителя по размерам, по изменению размера частиц наполнителя при повороте образца определяется анизометрия частиц наполнителя в полимерной матрице.

Изобретение иллюстрируется Фиг. 1-8 и Таблицей 1.

Фиг. 1. ИК спектры ненаполненной и наполненной углеродными наночастицами полипропиленовой пленки и результат вычитания спектров. 1 - ИК спектр ненаполненной полипропиленовой пленки, 2 - ИК спектр пленки, наполненной углеродными наночастицами, 3 - спектр вычитания, полученный в программе Opus.

Фиг. 2. Спектр вычитания полипропиленовой пленки, наполненной углеродными наночастицами и результат аппроксимации, где 1 - спектр вычитания пленки, наполненной углеродными наночастицами, 2 - результат аппроксимации.

Фиг. 3. Результат преобразования спектра вычитания пленки, наполненной углеродными наночастицами.

Фиг. 4. Кривая распределения углеродных наночастиц по размерам в объеме полипропиленовой матрицы.

Фиг.5. Схема расположения композитной пленки при регистрации ИК спектров. Направление экструзии совпадает с длинной стороной пленки, а направление ИК излучения перпендикулярно плоскости рисунка.

Фиг. 6. Индикатрисы распределения среднего размера углеродных наночастиц в объеме полипропиленовой матрицы, где а) - неориентированная пленка, с кратностью вытягивания λ=1, б) ориентированная пленка, с кратностью вытягивания λ=8.

Фиг. 7. Индикатрисы распределения среднего размера пор в объеме полимерной матрицы, где а) пористый полистирол, б) пористый полиэтилен.

Сущность изобретения заключается в следующем.

Важной характеристикой рассеивающих частиц является анизометрия их геометрической формы. Обычно рассматриваются частицы наполнителя в сферическом приближении, однако на практике эти частицы часто имеют вытянутую или дискообразную плоскую форму. Фактор анизометрии частиц наполнителя существенно влияет на свойства композита. Обычно принято определять анизометрию рассеивающих частиц с помощью построения индикатрисы рассеяния и анализа ее вида, однако нахождение индикатрис рассеяния или угловых зависимостей рассеянного света является сложной и длительной процедурой.

Согласно геометрическим представлениям, если частица обладает анизометрией формы, то при поворотах такой частицы на различные углы относительно выбранного направления ее размер изменяется.

Для нахождения концентрации и размера рассеивающих частиц, их распределения по размерам используется следующий спектроскопический эффект: в том случае, когда средний диаметр d рассеивающих частиц (поры или частицы наполнителя) совпадают с длиной волны λ падающего излучения, происходит существенное снижение светопропускания, в результате чего в ИК-спектре наблюдается характерный «перегиб» Фиг. 1. Определение среднего размера упруго рассеивающих частиц и их распределения по размерам основано на принципе резонанса: коэффициент рассеяния kS в случае дифракционного рассеяния d≈λ существенно больше, чем для случая рэлеевского рассеяния (d<<λ, малые рассеивающие частицы) или рассеяния Ми (Mie) (d>>λ, крупные рассеивающие частицы), и действуют законы геометрической оптики.

Рассмотрим алгоритм определения среднего размера частиц наполнителя в полимерной матрице по максимуму кривой распределения частиц по размерам на примере композита - полипропиленовой пленки, наполненной углеродными наночастицами при ее вращении во фронтальной плоскости.

1) Выделяем из ИК-спектра образца полипропиленовой пленки, наполненной углеродными наночастицами компоненту, связанную с рассеянием на частицах наполнителя, путем вычитания из спектра наполненного материала спектра ненаполненного Фиг. 1. Вычитание проводится, например, в программе Opus програмного обеспечения к ИК спектрометру.

2) Аппроксимируем спектр вычитания к функции вида

Фиг. 2.

3) Переводим результат аппроксимации из обратных сантиметров в микрометры по оси X Фиг. 3.

4) Дифференцируем с учетом факта дифракционного рассеяния кривую Фиг. 3 по длине волны и получаем кривую распределения рассеивающих частиц dS/dλ по размерам Фиг. 4.

5) По положению максимума на кривой распределения рассеивающих частиц по размерам Фиг. 4. определяем средний размер рассеивающих частиц.

6) Повторяем п. 1-5 при повороте полипропиленовой пленки, наполненной углеродными наночастицами во фронтальной плоскости.

7) Определяем анизометрию углеродных наночастиц в объеме полипропиленовой матрицы по формуле

,

где min и max - соответственно минимальный и максимальный средний размер рассеивающих частиц при повороте во фронтальной и/или поперечной плоскостях.

Для полимерного композита, представляющего собой неориентированную, с кратностью вытягивания λ=1, полипропиленовую пленку с 1% углеродных волокон из индикатрисы распределения среднего размера углеродных наночастиц в объеме полипропиленовой матрицы Фиг. 6а определяем

Для ориентированной пленки, с кратностью вытягивания λ=8, аналогичного состава из индикатрисы распределения среднего размера углеродных наночастиц в объеме полипропиленовой матрицы Фиг. 6б А=0,013.

Для пористых пленок полистирола и полиэтилена анизометрия частиц наполнителя - воздуха, определенная из индикатрис распределения среднего размера наполнителя Фиг. 7а и 7б, составила соответственно А≈0 и А=0,0004.

Оценить форму частиц наполнителя можно по Таблице 1.

ИК спектроскопический экспресс способ определения анизометрии частиц наполнителя в объеме полимерной матрицы реализован на стандартном оборудовании лаборатории спектроскопии ЦКП ФГБОУ ВО «Тверской государственный университет».

ИК спектроскопический способ определения анизометрии частиц наполнителя в объеме полимерной матрицы, заключающийся в последовательной регистрации ИК спектров пропускания образцов, состоящих из полимерной матрицы и наполнителя, причем |nМ-nН|>0, где nМ и nН - показатели преломления матрицы и наполнителя соответственно, при повороте образца во фронтальной и/или поперечной плоскостях, преобразовании спектров в кривые распределения частиц наполнителя по размерам, идентификации экстремумов кривых распределения частиц наполнителя по размерам, определении анизометрии частиц наполнителя в полимерной матрице.



 

Похожие патенты:

Изобретение относится к измерительной технике, в частности к способам определения размеров частиц в аэрозольных облаках, и может быть использовано в целях охраны окружающей среды и маскировочных мероприятий.

Изобретение относится к области исследования частиц с помощью ИК спектроскопии, в частности к методам экспресс-анализа полимерных композитов. В способе определения ориентации анизометричных частиц наполнителя в объеме полимерной матрицы при выполнении условия |nМ-nН|>0, где nМ и nН - показатели преломления матрицы и наполнителя соответственно, производится регистрация ИК спектров пропускания при облучении композитов под разными углами источником ИК излучения.

Изобретение относится к технике измерений, где необходимо проводить оперативный анализ качества моторного масла. Способ анализа загрязненности моторного масла двигателя внутреннего сгорания дисперсными частицами включает зондирование исследуемой дисперсной среды пучком маломощного лазерного и ультразвукового излучения, регистрацию рассеянного и отраженного дисперсными частицами излучения, эталонный канал с чистым моторным маслом и два канала контроля в исследуемом объеме картера двигателя.

Изобретение относится к технике измерений, может использоваться в автомобильной, сельскохозяйственной, авиационной, нефтеперерабатывающей и других отраслях промышленности, где необходимо проводить оперативный анализ качества моторного масла.

Изобретение относится к области оптических методов измерения физико-химических характеристик аэрозольных сред и может быть использовано при разработке лидарных комплексов для дистанционного контроля дисперсного состава аэрозольных облаков стойких токсичных химикатов (ТХ) при возникновении запроектных аварий в местах хранения и уничтожения химического оружия (УХО) и на других химически опасных объектах.

Изобретение относится к устройствам контроля состояния атмосферного воздуха и может быть использовано для мониторинга загрязнения окружающей среды, а также для контроля аварийных выбросов.

Изобретение относится к исследованию аэрозолей жидкостей различной вязкости и предназначено для определения дисперсных характеристик аэрозоля в широком диапазоне размеров частиц, в том числе нанометров.

Изобретение относится к исследованию физико-механических свойств сталей и сварных соединений и может применяться в различных отраслях промышленности. Сущность: по окончании процесса воздействия на образец ударным изгибом предварительно готовят микрошлиф образца.

Предложенный способ позволяет измерять распределение по фракциям и концентрации твердых и жидких частиц аэрозоля в интервале размеров частиц: от 0,8 мкм до 2 мкм, от 2 мкм до 5 мкм, от 5 мкм до 10 мкм и более 10 мкм при помощи полупроводниковых кондуктометрических сенсоров по изменению проводимости.

Изобретение относится к области исследования многофазных потоков, в частности к технике определения параметров твердой, жидкой и газообразной фаз потока оптическими средствами, и может быть использовано для определения концентрации и массовой плотности дисперсной фазы в пространстве, а также оценивать распределение частиц дисперсной фазы по размерам и ослабление света в мутной среде.

Изобретение относится к области метеорологии и касается способа определения дисперсионного состава аэрозоля. При проведении измерений поляризованное излучение разделяют и одну из частей отклоняют и измеряют. Другую часть поляризованного излучения направляют на области, не пропускающие направленное поляризованное излучение, фокусируют излучение в счетном объеме, находящемся перед одной из областей, и измеряют излучение за этой областью, пропускающей излучение, рассеянное в счетном объеме. По измеренному излучению определяют размер частиц аэрозоля в счетном объеме. Технический результат заключается в повышении точности измерений. 1 ил.

Изобретение относится к измерительной технике, может быть использовано для определения диаметра ферромагнитных частиц и объемной доли твердой фазы магнитной жидкости. Способ определения диаметра частиц и объемной доли твердой фазы магнитной жидкости, включающий в себя этапы, на которых осуществляют измерения при различных значениях внешнего магнитного поля, при этом измеряют вязкое трение, а диаметр частиц и объемную долю твердой фазы магнитной жидкости рассчитывают путем нахождения минимума функционала где Нi– значения напряженности магнитного поля, – значения вязкого трения, определенные экспериментально, – зависимость вязкого трения от параметров магнитной жидкости и напряженности магнитного поля; d –диаметр частиц, φ – объемная доля твёрдой фазы; α и β – числовые коэффициенты. Технический результат – сокращение времени измерений. 2 ил.

Изобретение относится к области метеорологии. Способ аспирационной оптической спектрометрии аэрозоля включает направление поляризованного излучения на задерживающую область, перед которой его экранируют. Направленное излучение фокусируют в счетном объеме, находящемся перед экраном, и измеряют излучение за областью, задерживающей направленное поляризованное излучение и пропускающей излучение, рассеянное в счетном объеме. Размер частицы дисперсной среды в счетном объеме определяют по измеренному излучению. Технический результат заключается в повышении точности определения дисперсного состава аэрозоля. 1 ил.

Способ предназначен для автоматического анализа состава пульпы в операциях измельчения и флотации при обогащении полезных ископаемых и может быть использован для контроля состава гетерофазных потоков в химии и металлургии. Осуществляют отбор из потока пульпы и подсушивание до заданной стабильной влажности пробы твердой фазы пульпы на фильтрующей поверхности под воздействием перепада давления, создаваемого путем подведения вакуума. Осажденную на фильтрующей поверхности пробу твердой фазы механически перемещают к анализатору состава и проводят рентгенофлюоресцентный анализ элементного состава пробы твердой фазы пульпы. Дополнительно визиометрическим анализом цветовых характеристик анализируется минеральный состав пробы. Дополнительно проводится анализ ионного состава жидкой фазы пульпы. Устройство для осуществления способа включает пробоотборное приспособление в виде полой емкости с перфорированной фильтрующей поверхностью и полого штока, комбинированный вакуумно-нагнетательный насос, сообщенный через ресивер и золотник с полым штоком, цилиндр с серво- или пневмоприводом для возвратно-поступательного перемещения пробоотборного приспособления. Дополнительно устройство оснащено визиометрическим анализатором цветовых характеристик пробы и потенциометрическим датчиком рН жидкой фазы пульпы. Техническим результатом является уменьшение погрешности измерения вещественного состава пробы, сокращение времени анализа, уменьшение продолжительности профилактических работ, а также расширение функциональных возможностей за счет анализа минерального состава твердой фазы пробы и ионного состава жидкой фазы. 2 н. 3 з.п. ф-лы, 2 табл., 3 ил.

Изобретение относится к способам анализа. Способ состоит в том, что поток частиц освещают световым пучком и регистрируют изображение частиц, по которым и судят о размерах и формах частиц. Световой пучок после прохождения потока разворачивают по отношению к исходному пучку и вновь пропускают через поток, где регистрация изображения частиц происходит с трех углов светового потока. Cветовой пучок при помощи полупрозрачного зеркала, зеркала и объектива дополнительно направляется в счетный объем, и с помощью полупрозрачного эллиптического зеркала, объектива, диафрагмы и фотоэлектронного умножителя регистрируются рассеянные частицами световые импульсы, а прямой световой поток поглощается ловушкой света, отражаясь от зеркала. Технический результат состоит в существенном повышении информативности данных для оценки формы и размера частиц. 1 ил.

Изобретение относится к медицине, а именно к лабораторной диагностике, и может быть использовано для исследования физических характеристик нативной биологической жидкости (НБЖ). Для этого через ее анализируемый образец, помещенный в прозрачную кювету, пропускают зондирующий лазерный луч оптического диапазона (ЗЛОД), измеряют характеристики рассеяния ЗЛОД на микро- и наночастицах (МЧ и НЧ) НБЖ с помощью одного матричного фотоприемника (МФП) для получения информации о характеристиках малоуглового динамического рассеяния указанного луча МЧ и по меньшей мере одного одноэлементного фотоприемника (ОЭФП), расположенного в диапазоне углов 30°…150° для получения информации о характеристиках излучения, рассеянного НЧ. Результаты измерений направляют в компьютер для математической обработки (МО). После изучения полученных результатов МО на образец НБЖ оказывают внешнее воздействие, вызывающее изменение флуктуационных характеристик рассеянной мощности, уточняющих или дополняющих после повторных оптических измерений ранее полученные характеристики. Изобретение обеспечивает повышение диагностической информативности исследования характеристик и состояния субмикронных частиц при оптическом анализе методом динамического рассеяния на указанных частицах лазерного излучения в образце нативной биологической жидкости. 3 з.п. ф-лы, 5 ил., 5 пр.

Изобретение относится к области измерительной техники и может быть использовано для определения гранулометрического состава жидких дисперсных сред в химической, лакокрасочной промышленностях, в биологии, экологии и других областях науки, связанных с определением размера взвешенных частиц. Заявленная система гранулометрического анализа жидких дисперсных сред содержит источник светового излучения, фотокамеру и нейросетевой блок. Исследуемый материал поступает из технологического резервуара 1 в проточную измерительную камеру 3, куда вводится зондирующий коллимированный световой луч, при этом картина рассеянного средой излучения снимается цифровой фотокамерой 10. В модуле выборки признаков 11 производится отбор необходимых для нейросетевого преобразования данных в нейросетевом блоке 12. Обучающий вектор подается в блок 12 с блока объективного анализа 14, основанном на седиментометрическом или микроскопическом методе гранулометрического анализа. Обучение нейросетевого блока происходит при начальной градуировке, а также в случаях, когда картина рассеяния света сильно отличается от уже известных. Описанная система способна выполнять экспресс-анализ в поточных условиях и обладает повышенной метрологической надежностью за счет периодической калибровки и дообучения системы в процессе работы. Технический результат - повышение точности и метрологической надежности системы экспрессного определения гранулометрического состава за счет периодической автоматической калибровки и дообучения системы в процессе работы. 1 ил.

Использование относится к области измерений, связанной с анализом взвешенных частиц. Устройство анализа взвешенных частиц включает источник лазерного излучения, системы объективов и зеркал, где световой пучок разворачивают равномерно под углом к исходному пучку и вновь пропускают через поток частиц и регистрация изображений частицы происходит с трех углов светового потока. При этом в плоскость регистрации эти изображения переносятся объективом видеокамеры, подключенной к персональному компьютеру, а для повышения точности измерения устройство дополнительно содержит полупрозрачное зеркало, зеркало, полупрозрачное эллиптическое зеркало, объектив с зеркалом, диафрагму, ловушку света, фотоэлектронный умножитель, усилитель, аналого-цифровой преобразователь, подключенный к компьютеру, два цифро-аналоговых преобразователя, подключенных к компьютеру, и два усилителя мощности соответственно для управления лазером и вентилятором, матрицу ПЗС (вместо видеокамеры), к которой подключен усилитель, аналого-цифровой преобразователь, DSP-процессор, при этом к компьютеру также подключены жидкокристаллический индикатор и интерфейс сопряжения с внешними устройствами. Технический результат - повышение точности определения размеров вне зависимости от комплексного показателя преломления в более широком размерном диапазоне. 1 ил.

Изобретение относится к области исследования и анализа материалов. Способ определения размеров наночастиц, добавленных в исходный коллоидный раствор, включает облучение раствора с добавленными наночастицами лазерным излучением. Измерение текущей интенсивности рассеянного излучения в течение заданного периода времени и расчет распределения по размерам наночастиц в указанном растворе Iобр(d) методом динамического рассеяния. При этом предварительно аналогичным образом получают распределение по размерам наночастиц в исходном растворе Iф(d), измеряют среднюю скорость счета фотонов в течение указанного периода времени для исходного раствора Рф и раствора с добавленными наночастицами Робр и измеряют коэффициенты пропускания на длине волны лазерного излучения для исходного раствора Тф и раствора с добавленными наночастицами Тобр. Распределение по размерам добавленных наночастиц рассчитывают как . Технический результат заключается в упрощении определения размеров наночастиц, добавленных в исходный коллоидный раствор. 3 ил.

Устройство для измерения размеров капель воды водовоздушных потоков содержит корпус, державку с кассетой со стеклами, блок управления, подвижной цилиндрический кожух, закрывающий кассету и приводимый в движение микроэлектродвигателем, установленным в корпусе. В кожухе выполнены два прямоугольных окна, положение которых относительно направления потока устанавливается за счет поворота кожуха микродвигателем на 90° с фиксацией времени экспозиции. Технический результат заключается в повышение точности измерения размеров капель и точности определения дисперсного состава. 2 ил.
Наверх