Способ получения нанокристаллического порошка диоксида циркония

Изобретение относится к технологии неорганических материалов, в частности к способам получения нанокристаллического порошка диоксида циркония, стабилизированного добавками редкоземельных элементов (РЗЭ), и может быть использовано для изготовления катализаторов и сорбентов, технической керамики различного назначения (теплозащитных материалов, твердых электролитов для твердооксидных топливных элементов и т.д.). Описан способ получения нанопорошка диоксида циркония, включающий осаждение гидроксида циркония с добавкой редкоземельного элемента, одновременное проведение сушки и прокаливания промытой пасты прекурсора в микроволновой печи под действием СВЧ-излучения с фиксированной частотой 2450 МГц, где стадию осаждения проводят, используя добавку ионов диспрозия в количестве 7-10 мол.% Dy2O3, при этом мощность СВЧ-излучения составляет 1,5 кВт, время процесса 3,5 ч при температуре 800°С. Технический результат: получение однофазного, нанокристаллического, малоагрегированного порошка диоксида циркония с кубической структурой. 2 ил., 2 пр.

 

Предлагаемое изобретение относится к технологии неорганических материалов, в частности к способам получения нанокристаллического порошка диоксида циркония, стабилизированного добавками редкоземельных элементов (РЗЭ), и может быть использовано для изготовления катализаторов и сорбентов, технической керамики различного назначения (теплозащитных материалов, твердых электролитов для твердооксидных топливных элементов и т.д.).

Наиболее эффективными способами получения нанокристаллического порошка диоксида циркония являются методы синтеза из водной фазы (соосаждение, золь-гель метод) с последующим прокаливанием прекурсоров до соответствующего оксида [1]. Диоксид циркония в зависимости от условий получения может находиться в трех полиморфных модификациях: моноклинной, тетрагональной и кубической. Главными недостатками получаемых материалов являются возможное наличие в них моноклинной фазы, а также высокая степень агрегации получаемых нанокристаллических порошков. Однако для получения катализаторов и сорбентов с высокой активной поверхностью, а также плотной керамики с высокой прочностью необходимо в качестве исходных веществ использовать малоагрегированные нанокристаллические порошки диоксида циркония, имеющие высокотемпературную (тетрагональную или кубическую) кристаллическую структуру.

Одним из способов стабилизации высокотемпературных фаз ZrO2 является введение добавок структурно близких к нему оксидов, образующих устойчивые твердые растворы с кристаллической структурой типа флюорита. В качестве стабилизирующих добавок используют следующие оксиды: MgO, CaO, Y2O3, CeO2, ThO2, Ln2O3 (Ln - РЗЭ), образующих с ZrO2 твердые растворы [2].

Известен способ получения композиции на основе оксидов циркония, празеодима, лантана или неодима для использования в каталитической системе [3], по которому для получения материала с удельной поверхностью 29 м2/г после прокаливания при 1000°С в течение 10 ч смесь соединений циркония и добавки осаждается основанием, полученная суспензия нагревается и к ней добавляется анионный или неионогенный ПАВ и далее осадок прокаливается. Недостатком данного способа является добавление ПАВ, приводящее к возможному загрязнению углеродом конечного продукта, а также возможность агрегации частиц в ходе сушки и их спекания в процессе прокаливания.

В литературе описаны способы получения порошка диоксида циркония [4], согласно которым для снижения агрегации порошков диоксида циркония после осаждения гидроксида циркония (с добавкой ионов иттрия) промытый осадок подвергается действию СВЧ-сушки, импульсного магнитного поля (ИМП) и ультразвукой (УЗ) обработке, после чего прокаливают при температурах 350-900°С, что приводит к получению нанопорошка диоксида циркония с размером кристаллитов 5-25 нм, удельной поверхностью 40-135 м2/г и легко разрушающимися агломератами. Недостатком описанных в [4] способов является возможность агрегации частиц (кристаллитов) диоксида циркония из-за их спекания в процессе прокаливания с образованием агрегатов размером 500-1000 нм и более.

Наиболее близким к предлагаемому изобретению и принятым в качестве прототипа является способ получения диоксида циркония, описанный в патенте [5], согласно которому после осаждения гидроксида циркония (с добавкой ионов иттрия) стадии сушки и прокаливания проводят одновременно под действием СВЧ-излучения в частотном диапазоне 500-20000 МГц с непрерывной мощностью 3,0-50,0 кВт в течение 5-60 мин.

Недостатком прототипа является получение только тетрагональной фазы ZrO2 (Y2O3).

Технический результат заключается в получении однофазного, нанокристаллического, малоагрегированного порошка диоксида циркония с кубической структурой.

Это достигается тем, что в способе получения нанопорошка диоксида циркония, включающем осаждение гидроксида циркония с добавкой редкоземельного элемента, одновременное проведение сушки и прокаливания промытой пасты прекурсора в микроволновой печи под действием СВЧ-излучения с фиксированной частотой 2450 МГц, стадию осаждения проводят, используя добавку ионов диспрозия в количестве 7-10 мол. % Dy2O3, при этом мощность СВЧ-излучения составляет 1,5 кВт, время процесса 3,5 ч при температуре 800°С.

Добавка оксида диспрозия в количестве 7-10 мол. % обеспечивает содержание ионов диспрозия для получения кубической фазы. Использование добавки оксида диспрозия в количестве менее 7 мол. % приводит к появлению примеси моноклинной фазы в порошке ZrO2(Dy2O3), использование добавки оксида диспрозия в количестве более 10 мол. % не приводит к изменению фазового состава порошка ZrO2(Dy2O3).

Данный способ получения был реализован в микроволновой печи «HAMiLab-C1500». В качестве исходных веществ были использованы оксихлорид циркония ZrOCl2×8H2O, нитрат диспрозия Dy(NO3)3×5H2O, 25% водный раствор аммиака NH4OH, дистиллированная вода.

Пример 1. 22,3 г ZrOCl2×8H2O и 5,1 г Dy(NO3)3×5H2O растворяли в 200 мл дистиллированной воды. Полученный раствор фильтровали для удаления нерастворимых взвешенных частиц, получая прозрачный раствор солей с рН 0,8-0,9. 19 мл 25% NH4OH доводили до 100 мл дистиллированной водой. При интенсивном перемешивании раствор смеси солей Zr и Dy дозировали в раствор аммиака, получая вязкую суспензию белого цвета с рН 9,5-10,0.

Полученную суспензию фильтровали и далее осадок гидроксида циркония промывали дистиллированной водой до отсутствия в промывных водах растворимых анионов. Промытый осадок переносили в кварцевый тигель и помещали в микроволновую печь. Процесс сушки и прокаливания проводили под действием СВЧ-излучения с рабочей частотой 2450 МГц и непрерывной мощностью 1,5 кВт в течение 3 ч 30 мин (30 мин нагрев до 800°С, 3 ч изотермический отжиг при 800°С) с получением нанопорошка диоксида циркония, стабилизированного добавкой ионов оксида диспрозия, ZrO2(7,2 мол. % Dy2O3). Рентгенографический анализ показал наличие нанокристаллитов кубической фазы диоксида циркония c-ZrO2 с размером ОКР 22 нм (фиг. 1). Удельная поверхность (по БЭТ) полученного нанокристаллического порошка диоксида циркония составила 33 м2/г. Размер частиц (агрегатов) составил менее 1000 нм (фиг. 2).

Пример №2. Процесс получения гидроксида циркония и его дальнейшей обработки в микроволновой печи осуществляется, как описано в примере №1. Отличие состоит в том, что в ходе процесса масса добавки Dy(NO3)3×5H2O составила 3,85 г. Рентгенографический анализ полученного порошка ZrO2(5,6 мол. % Dy2O3) показал, что продукт имеет примесь моноклинной фазы в количестве 11%.

Пример №3. Процесс получения гидроксида циркония и его дальнейшей обработки в микроволновой печи осуществляется, как описано в примере №1. Отличие состоит в том, что в ходе процесса масса добавки Dy(NO3)3×5H2O составила 8,2 г. Рентгенографический анализ полученного порошка ZrO2(10,6 мол.% Dy) показал наличие нанокристаллитов кубической фазы диоксида циркония c-ZrO2 с размером ОКР 20 нм. Удельная поверхность (по БЭТ) полученного нанокристаллического порошка диоксида циркония составила 35 м2/г.

Таким образом, приведенные примеры показывают, что введение добавки ионов диспрозия в гидроксид циркония на стадии осаждения в количестве 7-10 мол. % Dy2O3, а также проведение последующей сушки и прокаливания промытой пасты прекурсора в микроволновой печи под действием СВЧ-излучения позволяет получать однофазный, нанокристаллический, малоагрегированного порошка диоксида циркония с кубической структурой.

Предлагаемый способ может быть также распространен на диоксид циркония, стабилизированный добавками других РЗЭ.

СПИСОК ЛИТЕРАТУРЫ

1. Шабанова Н.А., Попов В.В., Саркисов П.Д. Химия и технология нанодисперсных оксидов. М.: Академкнига, 2006, 309 с.

2. Рутман Д.С., Торопов Ю.С., Плинер С.Ю. и др. Высокоогнеупорные материалы из диоксида циркония. М.: Металлургия, 1985, 130 с.

3. Патент WO №2005082782, кл. B01D 53/94.

4. Konstantinova Т.Е., et. al. The mechanisms of particle formation in Y-doped ZrO2 // Int. J. Nanotechnology, 2006, v. 3, №1, p. 29-38.

5. Патент РФ №2404125, кл. C01G 25/02.

Способ получения нанопорошка диоксида циркония, включающий осаждение гидроксида циркония с добавкой редкоземельного элемента, одновременное проведение сушки и прокаливания промытой пасты прекурсора в микроволновой печи под действием СВЧ-излучения с фиксированной частотой 2450 МГц, отличающийся тем, что стадию осаждения проводят, используя добавку ионов диспрозия в количестве 7-10 мол.% Dy2O3, при этом мощность СВЧ-излучения составляет 1,5 кВт, время процесса 3,5 ч при температуре 800°С.



 

Похожие патенты:
Изобретение может быть использовано для дезактивации сложнообогащаемого цирконового концентрата Зашихинского месторождения, содержащего примесь кремния в виде кварца и полевых шпатов.

Изобретение относится к аэрогелям, кальцинированным изделиям и изделиям с кристаллической структурой, содержащим ZrO2, и может найти применение в стоматологии. Способ получения аэрогеля включает стадии, на которых обеспечивают первый золь диоксида циркония, содержащий частицы кристаллического оксида металла, характеризующиеся средним размером первичных частиц не более чем 50 нанометров, добавляют радикально реакционно-способный модификатор поверхности к золю диоксида циркония с получением радикально полимеризуемого поверхностно-модифицированного золя диоксида циркония, добавляют инициатор радикальной полимеризации, нагревают с образованием геля, экстрагируют спирт, если присутствует, из геля посредством сверхкритической экстракции с получением аэрогеля.
Изобретение относится к порошковой металлургии, в частности к синтезу карбида циркония, и может быть использовано при изготовлении огнеупорных тиглей, элементов высокотемпературных вакуумных и газонаполненных электропечей, полирующего материала и катализатора для каталитических процессов.
Изобретение относится к порошковой металлургии, в частности к синтезу диборида циркония, и может быть использовано для изготовления чехлов высокотемпературных термопар, нагревателей высокотемпературных электропечей сопротивления, испарителей и лодочек для вакуумной металлизации, тиглей для прецизионной металлургии, труб для перекачивания расплавленных металлов.
Изобретение относится к получению чистых соединений циркония и гафния экстракционным способом. Способ извлечения циркония и гафния из технологических растворов с получением экстракта для последующего разделения этих элементов включает совместную экстракцию циркония и гафния из азотнокислых растворов растворами трибутилфосфата в органическом разбавителе на основе непредельных ароматических углеводородов.

Изобретение может быть использовано в химической технологии. Для получения наноразмерных и наноструктурированных материалов на основе слоистых трихалькогенидов переходных металлов общей формулы MQ3, где M=Ti, Zr, Hf, Nb, Та; Q=S, Se, Те, в качестве исходного материала используют порошкообразные трихалькогениды, которые диспергируют в наноразмерные частицы посредством ультразвуковой обработки в органическом растворителе.

Изобретение относится к способу обработки материала на основе диоксида циркония. Способ включает взаимодействие на стадии взаимодействия (18) разложенного циркона ZrO2·SiO2 (16) с гидродифторидом аммония NH4F·HF (20) в соответствии с уравнением реакции 1.1: ZrO 2 ⋅ SiO 2 + NH 4 F ⋅ HF → ( NH 4 ) 3 ZrF 7 + ( NH 4 ) 2 SiF 6 + H 2 O       1 .1 , с образованием в качестве продуктов (22) взаимодействия (NH4)3ZrF7 и (NH4)2SiF6.

Изобретение относится к области гидрометаллургии циркония и гафния. Способ экстракционного разделения циркония и гафния включает суммарную экстракцию циркония и гафния из азотнокислого исходного раствора с использованием раствора трибутилфосфата в углеводородном разбавителе, их разделение при понижении кислотности с извлечением циркония из реэкстракта гафния оборотным экстрагентом с объединением обоих экстрактов в протоке и слабокислую реэкстракцию циркония с последующей регенерацией экстрагента.
Изобретение относится к технологии редких металлов, в частности к гидрометаллургии циркония и гафния. Способ разделения циркония и гафния включает получение гидроксидов циркония и гафния при температуре, не превышающей 30-35°С, обезвоживание полученных гидроксидов циркония и гафния, растворение их в азотной кислоте и последующее извлечение циркония экстракцией трибутилфосфатом из полученного раствора в противотоке, причем из ячейки в середине каскада выводят водную фазу, добавляют в нее азотную кислоту и полученный раствор вводят в следующую ступень по движению водной фазы.

Изобретение относится к металлорганическим латентным каталитическим соединениям, которые являются подходящими в качестве катализаторов в реакциях полиприсоединения или поликонденсации, которые катализируются катализатором типа кислоты Льюиса, в частности, для сшивки блокированного или не блокированного изоцианата или изотиоцианатного компонента с полиолом или политиолом с формированием полиуретана (ПУ).

Изобретение относится к сублимационному выращиванию эпитаксиальных массивов самоорганизованных монокристаллических наноостровков кремния на сапфировых подложках и может быть использовано в качестве нанотехнологического процесса, характеризующегося повышенной стабильностью формирования однородных по размерам наноостровков кремния с пониженной степью дефектности их структуры.

Изобретение относится к способу переработки природного битума в бензиновые и дизельные фракции путем каталитического крекинга в среде ацетилена в присутствии мезопористого алюмосиликата с диаметром пор 50 Ǻ, взятого в количестве 5-10 мас.%, модифицированного наноразмерным порошком никеля со средним размером частиц 20 нм, полученного методом газофазного синтеза, в количестве 0,5-2,0% к массе цеолита.

Изобретение относится к промышленности строительных материалов, а именно к составам для производства теплоизоляционного автоклавного газобетона и изделий на его основе, которые могут применяться для теплоизоляции промышленных установок и ограждающих конструкций зданий и сооружений.

Изобретение относится к способу получения композиционного материала на основе сверхвысокомолекулярного полиэтилена (СВМПЭ), обладающего теплопроводящими электроизоляционными свойствами, методом полимеризационного наполнения.

Настоящее изобретение относится к способу получения полимерных микросфер, содержащих квантовые точки. Описан способ получения полимерных микросфер, содержащих квантовые точки, включающий приготовление раствора квантовых точек в органическом растворителе, содержащем катионактивное ПАВ, представляющее собой алкилдиметилэтилбензиламмоний хлорид в количестве 1-2 мас.%, с концентрацией квантовых точек в растворе 0,1-1,0 г/л, с последующим добавлением к раствору квантовых точек полимерных микросфер полистирола или полиметилметакрилата, при соотношении полимер:раствор квантовых точек, равном 1:1, полученную смесь подвергают ультразвуковой обработке, затем выдерживают в течение 2-6 часов при комнатной температуре и диспергируют в С2-С4-алифатическом спирте с катионактивным ПАВ, представляющим собой алкилдиметилэтилбензиламмоний хлорид, взятый в количестве 1-2 мас.%, выдерживают в течение 5-15 минут, затем центрифугируют для выделения образовавшегося осадка, состоящего из полимерных микросфер, содержащих квантовые точки.

Группа изобретений относится к применению модифицированных наночастиц оксида кремния в древесно-стружечных плитах, к древесно-стружечной плите и к способу ее изготовления.

Использование: для изготовления устройства с субмикронным джозефсоновским π-контактом. Сущность изобретения заключается в том, что способ изготовления устройства с субмикронным джозефсоновским π-контактом заключается в том, что в качестве слабой связи джозефсоновского перехода используют единичный нанопровод, сформированный из последовательно чередующихся магнитных и немагнитных участков таким образом, что магнитный участок имеет субмикронные размеры во всех направлениях X, Y, Z, где Z - направлен вдоль нанопровода, а немагнитные участки выполнены из сверхпроводящего материала или из нормального металла с большими длинами когерентности ξN, который помещают горизонтально на подложку и подводят к немагнитным участкам сверхпроводящие контакты.

Изобретение относится в области нанотехнологии, медицины, фармакологии и фармацевтике. Технической задачей изобретения является упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе.

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул зеленого чая, характеризующемуся тем, что в качестве оболочки используется высоко- или низкоэтерифицированный яблочный или цитрусовый пектин, а в качестве ядра используется экстракт зеленого чая, при осуществлении способа экстракт зеленого чая добавляют в суспензию пектина в этаноле в присутствии 0,01 г поверхностно-активного вещества E472c, при этом массовое соотношение ядро:оболочка при пересчете на сухое вещество составляет 1:3, затем при перемешивании 1300 об/мин приливают этилацетат, полученную суспензию отфильтровывают и сушат при комнатной температуре Способ обеспечивает упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул.

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, обладающих кардиотоническим действием, и описывает способ, характеризующийся тем, что в качестве оболочки используется каррагинан, а в качестве ядра используется настойка боярышника, при осуществлении способа настойку боярышника добавляют в суспензию каррагинана в бензоле в присутствии поверхностно-активного вещества E472c при перемешивании 1300 об/мин, при этом массовое соотношение ядро:оболочка при пересчете на сухое вещество составляет 1:1, или 1:3, или 3:1, полученную суспензию отфильтровывают и сушат при комнатной температуре.

Изобретение относится к способу нанесения покрытия на полимерные пористые конструкции и может быть использовано для формирования композиционных полимерных пористых конструкций на основе полилактида медицинского назначения с размером пор от 300 мкм, отличающихся повышенной биоактивностью и гидрофильностью. Описан способ нанесения биоактивного композиционного покрытия на основе хитозана на полимерные пористые конструкции на основе полилактида, заключающийся в модифицировании поверхности порошка гидроксиапатита 3-аминопропилтриэтоксисиланом в спирте, сушке при температуре 70-90°С в течение 3-5 часов, смешении в дистиллированной воде порошка хитозана и гидроксиапатита при температуре 70-90°С в течение 0,5-1 часа, добавлении уксусной кислоты до получения 1М раствора, перемешивании до гомогенности в течение 1-2 часов, внесении полимерной пористой конструкции в раствор, перемешивании в течение 1-2 часов, добавлении 1М раствора NaOH до получения рН 5,5, перемешивании в течение 2-5 часов, добавлении по каплям NaOH до рН>6, отмывке пористой конструкции с осажденным композиционным покрытием в дистиллированной воде до достижения нейтрального рН. Технический результат: создание биоактивной полимерной биорезорбируемой конструкции с повышенной адгезией клеток к поверхности и цитокондуктивностью. 2 ил.

Изобретение относится к технологии неорганических материалов, в частности к способам получения нанокристаллического порошка диоксида циркония, стабилизированного добавками редкоземельных элементов, и может быть использовано для изготовления катализаторов и сорбентов, технической керамики различного назначения. Описан способ получения нанопорошка диоксида циркония, включающий осаждение гидроксида циркония с добавкой редкоземельного элемента, одновременное проведение сушки и прокаливания промытой пасты прекурсора в микроволновой печи под действием СВЧ-излучения с фиксированной частотой 2450 МГц, где стадию осаждения проводят, используя добавку ионов диспрозия в количестве 7-10 мол. Dy2O3, при этом мощность СВЧ-излучения составляет 1,5 кВт, время процесса 3,5 ч при температуре 800°С. Технический результат: получение однофазного, нанокристаллического, малоагрегированного порошка диоксида циркония с кубической структурой. 2 ил., 2 пр.

Наверх