Устройство для нанесения покрытий из полимерных порошковых композиций электрогазопламенным способом

Изобретение относится к технологии нанесения покрытий из полимерных порошковых композиций на поверхности изделий электрогазопламенным способом и может быть использовано в машиностроении и других отраслях промышленности. В устройстве для нанесения покрытий из полимерных порошковых композиций электрогазопламенным способом центральный канал внутри ствола выполнен в виде керамической трубки 4 с антифрикционным покрытием внутри. Узел нагрева потока воздуха содержит корпус 5 с расширяющимся входным и сужающимся выходным участками, на выходе которого имеется распыливающий насадок 8. Внутри корпуса 5 установлен тороидальный коллектор 6 с рядом отверстий. Оси отверстий направлены вдоль потока для равномерного распределения воздуха вдоль центральной трубки 4. За тороидальным коллектором 6 установлены по меньшей мере два ряда проволочных нагревателей 7, расположенных взаимоперпендикулярно относительно оси корпуса 5. На распыливающем насадке 8 установлен инфракрасный излучатель, содержащий съемный корпус 9, коаксиально расположенный относительно внешней стенки насадка 8 с образованием кольцевой полости. Кольцевая полость закрыта со стороны движения потока и открыта со стороны выхода потока, сообщенной с источником газа. Внутри кольцевой полости установлено керамическое кольцо 10 с рядом отверстий 11 для обеспечения беспламенного горения газовой смеси. Техническим результатом изобретения является увеличение интенсивности процессов теплообмена между потоком горячего воздуха и частицами порошковой композиции, повышение качества покрытия и расширение технологических возможностей установки путем последовательного проведения стадий распыления, оплавления, растекания и ускоренного процесса пленкообразования полимерных порошковых композиций на поверхности металлических и неметаллических материалов. 2 з.п. ф-лы, 3 ил.

 

Изобретение относится к технологии нанесения покрытий из полимерных порошковых композиций на поверхности изделий электрогазопламенным способом и может быть использовано в машиностроении и других отраслях промышленности для получения покрытий, придающих различные функциональные свойства обрабатываемым поверхностям.

Известно устройство для газодинамического нанесения покрытий из порошковых материалов, содержащее порошковый дозатор, соединенный с ним узел подогрева, выход которого соединен со сверхзвуковым соплом (авт. свидетельство СССР №1603581, МПК В05В 7/20, опубликован БИ №23, 1994).

Известно устройство для газодинамического нанесения покрытий из порошковых материалов, содержащее источник сжатого газа, соединенный газопроводом с узлом подогрева газа, который в свою очередь, соединен непосредственно с входом сверхзвукового сопла, закритическая часть которого сообщена с питателем дозатором порошкового материала (патент РФ №2100474, МПК С23С 4/00, В05В 7/00, С23С 26/00, опубл. 13.11.1996).

Известно устройство для нанесения покрытий напылением, содержащее источник сжатого воздуха, питатель-дозатор, узел подогрева, смонтированный перед сверхзвуковым соплом (авт. свидетельство СССР №1674585, МПК С23С 26/00, БИ №32, 1993).

Известно устройство напыления покрытий из порошковых материалов (патент РФ №2479671, МПК С23С 24/04, опубл. 20.04.2013), содержащее порошковые питатели, источник газа-носителя, используемый для разгона частиц порошкового материала, блок напыления, ускоряющее сопло на выходе блока напыления, микропроцессорный блок контроля и управления заданной температурой газа-носителя с регулирующим элементом и устройство смешения порошкового материала и газа-носителя, соединенное с ускоряющим соплом. Кожух блока напыления выполнен с внутренними перегородками с образованием между ними и наружными стенками кожуха лабиринтных каналов для прохода потока газа-носителя с его нагревом до заданной микропроцессорным блоком температуры. Устройство имеет низкое энергопотребление и обеспечивает высокое качество покрытий за счет стабилизации и контроля температуры.

Недостатком устройства является то, что порошковые частицы, попадая в зону горения, подвергаются температурной деструкции, особенно при использовании термореактивных композиций.

Известно устройство для газодинамического напыления порошковых материалов (патент РФ №2353705, МПК С23С 24/04, В05В 7/06, опубл. 27.04.2008), включающее узел подачи газа, воздуха для эжектирования порошковых частиц из питателей в сверхзвуковое сопло в зону горения.

Известно устройство (патент РФ №2229944, МПК В05В 7/20, опубл. 10.06.2004), содержащее источник сжатого газа, соединенный газопроводом с узлом подогрева газа, который, в свою очередь, соединен с входом сверхзвукового сопла, сообщающееся с питателем порошкового материала.

Известна также установка (патент РФ №2407700, МПК В82В 3/00, С23С 4/12, В05D 1/08) газопламенного напыления наноструктурированного покрытия, использующая порошковые материалы размерами 20-70 мкм, содержащая распылитель с подводом к нему топлива и газа, форсунки для впрыска топлива в камеру сгорания, выходное сопло, емкость с исходным материалом, который подается в зону нагрева сопла.

Известен способ термодинамического нанесения полимерных покрытий в электростатическом поле (патент РФ №2188083, МПК B05D 1/04, B05D 7/14, B05D 3/02, опубл. 27.08.2002). Изобретение относится к технологии нанесения полимерных порошковых композиций на поверхности крупногабаритных изделий путем их термодинамического осаждения.

Известны также серийно выпускаемые промышленностью РФ установки газопламенного напыления порошковых композиций: УПНМ-П, МРК-10, ТЗСП-UNJ-JET, УПН-7-65.

Существенной особенностью всех перечисленных устройств и установок несмотря на различия технических решений является идентичность формирования покрытий из порошковых материалов путем введения порошковых частиц в зону горения. При использовании полимерных порошковых композиций для получения покрытий указанными техническими средствами выполняются только две технологические стадии: оплавление частиц и их растекание на поверхности изделия. Стадия окончательного формирования покрытия, т.е. пленкообразования порошковых композиций, отсутствует, так как это физико-химический процесс, который реализуется при оптимальных температурно-временных режимах.

Наиболее близкой к заявляемой и принятой за прототип является портативная установка термического нанесения полимерных порошковых покрытий «XJOM» (рекламный лист ООО «Деловой стандарт»», г. Сергиев-Посад, www.xiom-ru.ru), содержащая рукоятку, смонтированный на ней ствол с центральным каналом внутри для потока распыляемой порошковой композиции, порошковый питатель с эжекторным насосом, систему подачи газовой смеси для обеспечения зоны ее горения на выходе из сопла распылительного устройства, блок управления процессами дозированной подачи порошковой композиции, температурных режимов на выходе пламени из насадки. Порошково-воздушная смесь подается через центральный канал непосредственно в зону горения газовоздушной смеси.

Задачей, на решение которой направлено заявляемое техническое решение, является получение качественных покрытий на поверхности металлических и неметаллических материалов путем последовательного проведения в течение оптимального времени следующих технологических стадий: распыление, оплавление, растекание по поверхности и пленкообразование полимерных порошковых композиций, особенно с использованием термореактивных композиций.

Технический результат, на достижение которого направлено предлагаемое изобретение, заключается в увеличении интенсивности процессов теплообмена между потоком горячего воздуха и частицами порошковой композиции, повышении качества покрытия и расширении технологических возможностей установки путем последовательного проведения стадий распыления, оплавления, растекания и ускоренного процесса пленкообразования полимерных порошковых композиций на поверхности металлических и неметаллических материалов.

Технический результат достигается тем, что в устройстве для нанесения покрытий из полимерных порошковых композиций электрогазопламенным способом, содержащем рукоятку со смонтированным на ней зарядным элементом, ствол с центральным каналом внутри для потока распыляемой порошковой композиции, узел нагрева потока воздуха, новым является то, что центральный канал внутри ствола выполнен в виде керамической трубки с антифрикционным покрытием внутри, узел нагрева потока воздуха включает корпус с расширяющимся входным и сужающимся выходным участками, на выходе которого имеется распыливающий насадок, внутри корпуса установлен тороидальный коллектор с рядом отверстий, оси которых направлены вдоль потока для равномерного распределения воздуха вдоль центральной трубки, за тороидальным коллектором установлены, по меньшей мере, два ряда проволочных нагревателей, расположенных взаимоперпендикулярно относительно оси корпуса. На распыливающем насадке установлен инфракрасный излучатель, содержащий съемный корпус, коаксиально расположенный относительно его внешней стенки с образованием кольцевой полости, закрытой со стороны движения потока и открытой со стороны выхода потока, сообщенной с источником газа, внутри кольцевой полости установлено керамическое кольцо с рядом отверстий для обеспечения беспламенного горения газовой смеси.

По внутреннему диаметру распыливающего насадка выполнены наклонные винтообразные канавки, расположенные под углом 15-18° относительно его продольной оси, для обеспечения интенсификации процесса теплообмена между частицами порошковой композиции и потоком горячего воздуха за счет вращательного движения этого потока.

На фиг. 1 представлена схема устройства для нанесения покрытий из полимерных порошковых композиций.

На фиг. 2 - разрез А-А фиг. 1.

На фиг. 3 - разрез Б-Б фиг. 1.

Здесь: 1 - рукоятка; 2 - зарядный элемент; 3 - ствол; 4 - керамическая трубка; 5 - корпус узла нагрева; 6 - тороидальный коллектор; 7 - проволочные нагреватели; 8 - распыливающий насадок; 9 - корпус инфракрасного излучателя; 10 - керамическое кольцо инфракрасного излучателя; 11 - отверстия в керамическом кольце 10; 12 - винтообразные канавки; 13 - порошковый питатель; 14 - узел предварительного нагрева: 15 - муфта присоединительная; 16 - курок; 17 - эжекторный насос; 18 - блок подготовки воздуха; 19 - пневматическая панель; 20 - газовый блок.

Устройство для нанесения покрытий из полимерных порошковых композиций содержит рукоятку 1 со смонтированным на ней зарядным элементом 2, курок 16, ствол 3 с центральным каналом внутри для потока распыляемой порошковой композиции, выполненным в виде керамической трубки 4 с антифрикционным покрытием внутри. Узел нагрева потока воздуха содержит корпус 5, с расширяющимся входным участком и сужающимся выходным участком, на выходе которого имеется распыливающий насадок 8. Внутри корпуса 5 смонтирован тороидальный коллектор 6 с рядом горизонтальных отверстий для равномерного распределения воздуха вдоль керамической трубки 4. За тороидальным коллектором 6 установлены, по меньшей мере, два ряда проволочных нагревателей 7, расположенных взаимоперпендикулярно относительно оси корпуса 5. На распыливающем насадке 8 установлен инфракрасным излучатель, содержащий съемный корпус 9, коаксиально расположенный относительно внешней стенки распыливающего насадка 8 с образованием кольцевой полости, закрытой со стороны движения потока и открытой со стороны выхода потока, сообщенной с источником газа. Внутри кольцевой полости установлено керамическое кольцо 10 с рядом отверстий 11 малого диаметра для обеспечения беспламенного горения газовой смеси. По внутреннему диаметру распыливающего насадка 8 выполнены наклонные винтообразные канавки 12, расположенные под углом 15-18° относительно продольной оси для обеспечения интенсификации процесса теплообмена между частицами порошковой композиции и потоком горячего воздуха за счет вращательного движения этого потока.

Регулирование и контроль расхода порошковой композиции производится с помощью манометров 21, 22, 23, 24, регуляторов давления 27, 28, 29, блока подготовки воздуха 18 и пневмопанели 19.

Регулирование и контроль расхода газовой смеси в газовом блоке 20 производится с помощью манометров 25, 26 и регулятора давления 30.

Работает устройство следующим образом. В начальный момент времени от блока подготовки воздуха 18 и пневматической панели 19 с пульта управления сжатый воздух при определенном давлении подается на нижнюю полость порошкового питателя 13 для образования псевдоожиженного состояния порошковой композиции. Одновременно газовая смесь из газового блока 20 подводится в корпус 9 инфракрасного излучателя, где поджигается перед керамическим кольцом 10 для беспламенного горения. Температура на выходе керамического кольца 10 регулируется подачей газовой смеси.

При нажатии на курок 16 рукоятки 1 воздух подводится в тороидальный коллектор 6 в корпусе 5 узла нагрева. Движение воздуха происходит через горизонтальные отверстия коллектора 6 вдоль оси центральной керамической трубки 4 снаружи его через два ряда проволочных нагревателей 7 (сечение А и В фиг. 2 и фиг. 3). Нагретый поток воздуха с регулируемой температурой направляется в распыливаюший насадок 8.

Порошково-воздушная смесь из порошкового питателя 13 эжекторным насосом 17 при открытом клапане узла предварительного нагрева 14 порошково-воздушной смеси подводится на вход зарядного устройства и через его ствол 3 подается на вход центральной керамической трубки 4. Нагретая предварительно порошково-воздушная смесь попадает в распыливающий насадок 8 с винтообразными канавками 12 и, встречаясь внутри с потоком горячего воздуха, приобретает вихревое движение для интенсификации теплообменных процессов порошковых частиц в потоке горячего воздуха.

Оплавленные частицы полимерной порошковой композиции, попадая на поверхность изделия, нагретого потоком горячего воздуха и инфракрасного излучения, растекаются по поверхности, образуя расплав, и под воздействием инфракрасных излучений подвергаются ускоренному пленкообразованию.

Осуществление переноса частиц полимерных порошковых композиций к поверхности изделия обеспечивает последовательное выполнение следующих стадий технологического процесса: распыление, оплавление, растекание и пленкообразование, не подвергая деструкции частицы полимерной порошковой композиции при прохождении зоны повышенной температуры в устройстве газопламенного напыления.

В заявляемом устройстве обеспечивается предварительный нагрев порошково-воздушной смеси перед зарядкой порошковых частиц, которые затем смешиваются потоком горячего воздуха узла нагрева в сужающемся сопле с образованием вихревого движения с целью интенсификации теплообмена порошковых частиц с потоком горячего воздуха для последовательного проведения стадий распыления, оплавления и растекания частиц на покрываемой поверхности с одновременным воздействием электромагнитных волн инфракрасного диапазона, обеспечивающих ускоренный процесс пленкообразования полимерной порошковой композиции.

Таким образом, в заявляемом устройстве обеспечивается предварительный нагрев порошково-воздушной смеси перед зарядкой порошковых частиц, которые затем смешиваются с потоком горячего воздуха узла нагрева в распыливающем насадке 8 с образованием вихревого движения с целью интенсификации теплообмена порошковых частиц с потоком горячего воздуха для последовательного проведения стадии распыления, оплавления и растекания частиц на покрываемой поверхности с одновременным воздействием электромагнитных волн инфракрасного диапазона, обеспечивающих ускоренный процесс пленкообразования полимерной порошковой композиции.

1. Устройство для нанесения покрытий из полимерных порошковых композиций электрогазопламенным способом, содержащее рукоятку со смонтированным на ней зарядным элементом, ствол с центральным каналом внутри для потока распыляемой порошковой композиции, узел нагрева потока воздуха, отличающееся тем, что центральный канал внутри ствола выполнен в виде керамической трубки с антифрикционным покрытием внутри, узел нагрева потока воздуха включает корпус с расширяющимся входным и сужающимся выходным участками, на выходе которого имеется распыливающий насадок, внутри корпуса установлен тороидальный коллектор с рядом отверстий, оси которых направлены вдоль потока для равномерного распределения воздуха вдоль центральной трубки, за тороидальным коллектором установлены, по меньшей мере, два ряда проволочных нагревателей, расположенных взаимоперпендикулярно относительно оси корпуса, на распыливающем насадке установлен инфракрасный излучатель, содержащий съемный корпус, коаксиально расположенный относительно его внешней стенки с образованием кольцевой полости, закрытой со стороны движения потока и открытой со стороны выхода потока, сообщенной с источником газа, внутри кольцевой полости установлено керамическое кольцо с рядом отверстий для обеспечения беспламенного горения газовой смеси.

2. Устройство по п. 1, отличающееся тем, что по внутреннему диаметру распыливающего насадка выполнены наклонные винтообразные канавки для обеспечения вращательного движения потока горячего воздуха.

3. Устройство по п. 2, отличающееся тем, что наклонные винтообразные канавки расположены под углом 15-18° относительно продольной оси распыливающего насадка.



 

Похожие патенты:

Изобретение относится к технологии генерации газокапельных струй повышенной дальнобойности и может использоваться в противопожарной технике, в сельском хозяйстве при орошении земель и других отраслях.

Изобретение относится к способу и устройству газопламенного напыления наноструктурированных покрытий. Распылитель содержит форкамеру.

Изобретение относится к области машиностроения и предназначено для детонационного наращивания поверхности физических объектов. В способе используют детонационный циклический инструмент (1) с манипулятором (2) и блок установки обрабатываемой детали (4) с приводом.

Изобретение относится к способу получения наноструктурированных покрытий для защиты поверхностей изделий. Способ включает формирование в камере сгорания распылителя высокотемпературного газового потока путем сжигания топлива в окислителе, подачу в камеру сгорания исходного материала, являющегося источником образования наночастиц, образование и перенос высокотемпературным газовым потоком наночастиц и осаждение их на подложке.

Изобретение относится к области машиностроения и предназначено для детонационного наращивания толщины линейных физических объектов. В способе управления процессом детонационного напыления деталей объектив видеокамеры (2) ориентируют в направлении обрабатываемой детали (3).

Изобретение относится к способу и устройству для формирования аморфной покрывающей пленки (варианты). Пленку формируют посредством выпуска пламени, содержащего частицы материала для пламенного напыления, струей из пистолета для пламенного напыления по направлению к материалу-основе, вызывания плавления частиц посредством пламени и охлаждения как частиц, так и пламени посредством охлаждающего газа перед тем, как частицы достигают материала-основы.

Изобретение относится к способу атмосферного плазменного напыления и может быть использовано для нанесения покрытия на различные детали машин, например на турбины.

Изобретение относится к порошковой металлургии, в частности к детонационному напылению. Может использоваться для разгона и нагрева порошков при нанесения покрытий.

Изобретение относится к технологии генерации газокапельных струй повышенной дальнобойности и может использоваться в противопожарной технике, в сельском хозяйстве при орошении земель и других отраслях, связанных с необходимостью создания дальнобойных газожидкостных струй.

Изобретение относится к области детонации, а именно к детонационному метателю для получения износостойких покрытий, и может быть использовано в любой отрасли машиностроения для получения износостойких покрытий, включая космонавтику и судостроение.

Изобретение относится к области напыления покрытий. В устройстве для детонационного напыления покрытий в начале ствола установлена приемная камера для герметичной ампулы. Камера содержит корпус, клапан, контакт для воспламенения смеси и крышку. Крышка направлена по оси ствола и имеет пазы для облегчения прорыва при воспламенении смеси газов с целью создания детонационной волны в стволе 1. В ампулу предварительно закачана смесь горючих газов. Техническим результатом изобретения является снижение стоимости установки, упрощение и повышение производительности процесса напыления. 2 ил.

Изобретение относится к области машиностроения и предназначено для импульсного дозирования подачи порошка при газотермическом детонационном напылении слоя покрытия на физический объект. Устройство для газотермического детонационного напыления слоя покрытия с импульсным дозированием подачи порошка содержит корпус 1, в котором установлены емкость для порошка 2 с порошком 3, распределительный диск 4, установленный на оси 7 с выполненными по периферийной части диска 4 дозирующими подающими цилиндрическими полостями 5, клапан 10 со штоком 11, который соединен с запорным устройством 12, канал 13, соединенный со стволом 14, блок управления 15. Диск 4 в зоне дозирующих подающих цилиндрических полостей 5 с каждой стороны снабжен концентрическим выступом, причем края выступа расположены симметрично относительно дозирующих подающих цилиндрических полостей 5. Диск 4 снабжен перепускными отверстиями 6, расположенными по окружности внутри концентрического выступа диска 4. В корпусе под диском выполнен криволинейный канал 8, входное отверстие которого расположено напротив перепускных отверстий 6, а выходное отверстие расположено на одной оси с дозирующей подающей цилиндрической полостью 5 и каналом 9, соединенным с каналом 13. Технический результат: обеспечение возможности упростить дозирование и повысить его точность, компактно распределить в голове газового детонирующего объекта порошок и уменьшить его непроизводительное расходование, улучшить качество наносимого покрытия, повысить надежность устройства. 4 ил.

Изобретение относится к нанотехнологиям и может быть использовано для получения наноуглерода. Способ включает подачу в реакционную камеру, выполненную в виде ствола, периодически закрываемого с одного и открытого с другого конца, со стороны закрываемого конца через систему быстродействующих клапанов и смеситель в проточном режиме чистого или с добавкой кислорода ацетилена, а затем легко детонирующей ацетилен-кислородной смеси, инициирование детонации у закрытого конца камеры и после прохождения детонационной волны образование наноуглерода в результате детонационного разложения ацетилена, при этом в конце цикла получения наноуглерода производят продувку ствола газообразным углеводородом с общей формулой CnH2n+2 или CnH2n, реализуют частотное повторение циклов в автоматическом режиме, а полученный наноуглерод собирают в коллекторе. Изобретение обеспечивает получение наноуглерода необходимой степени чистоты высокопроизводительным способом с повышенными эффективностью использования исходного сырья и взрывобезопасностью. 2 ил.,1 табл., 1 пр.

Изобретение относится к способу и устройству пламенного напыления термопластических порошков, наносящихся посредством расплавления. Устройство для пламенного напыления термопластических порошков содержит пистолет-распылитель, созданный для выполнения распыления термопластических порошков и с возможностью подачи в него горючего газа для образования пламени, подлежащего направлению на изделие, на которое необходимо нанести покрытие, для нагрева поверхности указанного изделия до соответствующей рабочей температуры. Пистолет-распылитель содержит смесительное устройство (1), формирующее внутри себя раздельные камеры (7, 9, 12) выпуска, созданные с возможностью подачи в них подлежащих распылению термопластических порошков, смешанных с переносящим инертным газом, потока сжатого воздуха и/или азота и горючего газа, таким образом, чтобы направлять через смесительную камеру (15) на выходе из смесительного устройства суммарный поток (30) указанных термопластических порошков на нагретую поверхность. Пистолет-распылитель содержит по меньшей мере пару направленных под углом элементов (17, 18), направленных под углом таким образом, чтобы ориентировать соответствующие потоки (31, 32) сжатого воздуха и/или азота в направлении, сходящемся к указанному суммарному потоку (30) выбрасываемых термопластических порошков, вытекающему из упомянутого смесительного устройства (1), таким образом, чтобы модифицировать форму упомянутого суммарного потока (30) выбрасываемых термопластических порошков, придавая указанному суммарному потоку (30), по существу, форму плоского веера. Устройство также содержит средства для подачи термопластических порошков, связанные со смесительным устройством (1), средства (13) для впрыска потока сжатого воздуха и/или азота и средства (14) для впрыска горючего газа. Направленные под углом впрыскивающие элементы (17, 18) размещены в радиальном направлении между средствами (13) для впрыска потока сжатого воздуха и/или азота и средствами (14) для впрыска указанного горючего газа. Направленные под углом впрыскивающие элементы (17, 18) размещены в радиальном направлении между средствами (13) для впрыска потока сжатого воздуха и/или азота и средствами (14) для впрыска указанного горючего газа. Техническим результатом изобретения является обеспечение превосходной равномерности напыления порошков, упрощение операции нанесения покрытия для пользователя, универсальность применения и относительно приемлемая стоимость. 5 з.п. ф-лы, 3 ил.
Наверх