Медно-никелевый сплав и изделие, выполненное из него


 


Владельцы патента RU 2600787:

Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") (RU)

Изобретение относится к области металлургии, а именно к сплавам на основе никеля, предназначенным для изготовления деталей и узлов, обладающих высоким уровнем износо- и коррозионной стойкости, антифрикционных свойств, применяемых в авиационной промышленности. Сплав на основе никеля содержит, в мас.%: медь 29,5-32,5; железо 1,6-2,9; кремний 4,7-5,1; марганец 0,5-1,8; молибден 0,1-0,3; вольфрам 0,8-1,2; титан 0,1-0,3; углерод 0,05-0,35; магний 0,03-0,30; диспрозий 0,035; кальций 0,02; церий 0,07; никель - остальное. Сплав характеризуется высокими значениями ударной вязкости, предела прочности и твердости. Повышается ресурс и надежность изделий, выполненных из сплава. 2 н.п. ф-лы, 2 табл., 3 пр.

 

Изобретение относится к области металлургии, а именно к сплавам на основе никеля, предназначенным для изготовления деталей и узлов, обладающих высоким уровнем износо- и коррозионной стойкости, антифрикционных свойств, применяемых в авиационной промышленности.

Уровень надежности топливной аппаратуры ГТД во многом определяется применением современных электронных систем управления, контроля и диагностики. Вместе с тем большое влияние на работоспособность этой системы оказывают материалы для деталей особо ответственного назначения, к которым относятся золотниковые пары. От их бесперебойной работы зависит надежность не только топливной аппаратуры, но и ГТД в целом. Повышение ресурса золотниковых деталей в настоящее время является одной из наиболее актуальных задач, особенно в связи с расширившимся применением топлив с высоким содержанием серы, т.к. ресурс агрегатов гидроавтоматики определяется ресурсом золотниковых деталей, применяемых в них. Традиционные пары, такие как бронза-сталь и сталь-сталь, не выдерживают жестких условий эксплуатации применения новых топлив из-за недостаточной прочности и износостойкости (для бронз) или из-за склонности к схватыванию при превышении определенных условий эксплуатации.

Дальнейшее повышение ресурсных характеристик золотниковых деталей возможно за счет разработки нового сплава, который бы сочетал в себе высокую коррозионную стойкость с более высокими прочностными характеристиками и твердостью, что позволит повысить износостойкость медно-никелевой композиции.

Известен сплав (CN 1405343, опубл. 26.03.2003 г. ) имеющий следующий химический состав в мас.%:

Медь 28,0-33,0
Железо 1,0-2,0
Кремний 0,1-1,0
Марганец 1,0-2,0
Титан 0,40-0,80
Алюминий 2,0-4,0
Углерод 0,05-0,30
Никель остальное

Недостатками указанного сплава является низкая износостойкость, поскольку основной упрочняющей фазой является не силицидная, имеющая исключительно высокую микротвердость, а типичная для жаропрочных сплавов γ′-фаза типа Ni3(Al, Ti), имеющая меньшую микротвердость. Изделия имеют склонность к схватыванию при превышении определенных условий эксплуатации. Из данного сплава изготавливаются рабочие валы топливных насосов, инструменты и приборы для нефтяных скважин, хирургические инструменты.

Из уровня техники (патент РФ №2278178, МПК С22С 19/03, опубл. 20.06.2006 г. ) известен сплав на основе никеля, который применятся в деталях узлов трения систем автоматического управления ГТД следующего состава в мас.%:

Медь 30,0-33,0
Кремний 2,5-3,2
Алюминий 2,5-3,2
Титан 0,5-0,1
Магний 0,03-0,30
Лантан 0,07-0,25
Скандий 0,01-0,03
Никель остальное

Недостатком указанного сплава и изделий из него является его недостаточно высокие механические свойства.

Наиболее близким аналогом, взятым за прототип (патент РФ №2191843, МПК С22С 19/03, опубл. 19.01.2001 г. ), является сплав следующего состава, в мас.%:

Медь 30,0-32,0
Железо 1,5-2,8
Кремний 3,9-4,3
Марганец 0,5-1,5
Титан 0,05-0,25
Углерод 0,05-0,30
Магний 0,03-0,20
Ниобий 0,05-0,25
Никель остальное

Недостатками этого сплава является низкий предел прочности σв=1200 МПа, а также невысокие значение твердости HRC 38-40 ед., что негативно сказывается в работе, поскольку в жестких условиях эксплуатации, а также вследствие недостаточной прочности и износостойкости сплав имеет склонность к схватыванию.

Технической задачей настоящего изобретения является разработка состава нового деформируемого высокопрочного износо- и коррозионностойкого медно-никелевого сплава для деталей узлов трения систем автоматического управления и опытных технологий его получения.

Техническим результатом изобретения является разработка сплава на основе никеля и изделия, выполненного из него, обладающих по сравнению с прототипом более высокими механическими свойствами, такими как ударная вязкость, предел прочности и твердости.

Для достижения поставленного технического результата предлагается сплав на основе никеля, содержащий медь, железо, кремний, марганец, титан, магний, углерод, дополнительно содержащий молибден, вольфрам, диспрозий, кальций и церий при следующем соотношении компонентов в мас.%:

Медь 29,5-32,5
Железо 1,6-2,9
Кремний 4,7-5,1
Марганец 0,5-1,8
Молибден 0,1-0,3
Вольфрам 0,8-1,2
Титан 0,1-0,3
Углерод 0,05-0,35
Магний 0,03-0,30
Диспрозий 0,035
Кальций 0,02
Церий 0,07
Никель остальное,

и изделие, выполненное из этого сплава.

Введение дополнительного компонента в сплав - вольфрама - в заявленном соотношении с другими компонентами позволяет повысить ударную вязкость, причем вольфрам также компенсирует снижение ударной вязкости с ростом содержания кремния до 5,1%.

Введение титана и молибдена в указанных количествах обусловлено необходимостью комплексного модифицирования структуры, которое способствует измельчению микрозерна за счет образования дополнительных плоскостей скольжения в процессе деформации и тем самым повышает твердость сплава. Для обеспечения низких значений уровня газовых примесей в качестве технологических добавок вводят щелочноземельные элементы магний и кальций в количестве 0,07 и 0,02% соответственно, а в качестве раскислителя - церия и диспрозия на 0,07 и 0,035%.

Введение углерода, помимо частичного раскисляющего действия, обеспечивает образование карбидов, способствующих повышению твердости сплава.

Примеры осуществления изобретения.

Сплав выплавляют в вакуумных индукционных печах с использованием как чистых шихтовых материалов, так и отходов собственного производства на стандартном оборудовании по принятой технологии. Разлив металла производится, в основном, в металлические формы (медные, чугунные изложницы). Затем слитки сплава подвергают деформации на прессе на прутки, поковки, шайбы. Полученные литые заготовки продеформируют с 045-90 на прутки 015-50 мм. Прутки подвергают термообработке, состоящей из закалки и старения.

Составы и свойства предлагаемого сплава и сплава-прототипа приведены в таблицах 1 и 2.

Из таблицы 2 видно, что заявленным изобретением обеспечивается прирост механических свойств предлагаемого сплава по сравнению со сплавом-прототипом: по пределу прочности на 10%, по твердости на 15-10%.

Использование предлагаемого сплава позволит повысить ресурс и надежность изделий авиационной техники.

1. Сплав на основе никеля, содержащий медь, железо, кремний, марганец, титан, магний и углерод, отличающийся тем, что он дополнительно содержит молибден, вольфрам, диспрозий, кальций и церий при следующем соотношении компонентов в мас. %

Медь 29,5-32,5
Железо 1,6-2,9
Кремний 4,7-5,1
Марганец 0,5-1,8
Молибден 0,1-0,3
Вольфрам 0,8-1,2
Титан 0,1-0,3
Углерод 0,05-0,35
Магний 0,03-0,30
Диспрозий 0,035
Кальций 0,02
Церий 0,07
Никель остальное

2. Изделие из сплава на основе никеля, отличающееся тем, что оно выполнено из сплава по п. 1.



 

Похожие патенты:

Изобретение относится к изготовлению сплавов на основе никелида титана, применяемых для медицинских имплантатов. Способ изготовления литых изделий включает переплав металлического полуфабриката индукционной центробежной плавкой в карборундовом тигле.

Изобретение относится к области металлургии, а именно к деформационно-термомеханической обработке монокристаллов ферромагнитных сплавов Ni-Fe-Ga-Co. Способ получения нанокомпозита с двойным эффектом памяти формы на основе монокристаллов ферромагнитного сплава Ni49Fe18Ga27Co6 включает отжиг монокристалла в атмосфере инертного газа с последующей закалкой в воду и старение под нагрузкой при 673 K в вакууме.

Группа изобретений относится к металлическим волокнам жаростойкого сплава, которые могут быть использованы для получения истираемых уплотнений проточной части турбины авиационного газотурбинного двигателя.

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на основе никеля, легированных редкоземельными металлами. Способ получения сплава на основе никеля включает загрузку в плавильный тигель шихты в виде металлических отходов или смеси металлических отходов и легирующих металлов, введение в шихту рафинирующей добавки, расплавление шихты и разливку полученного расплава через фильтр.

Изобретение относится к области металлургии, а именно к высокопрочным инварным сплавам. Заявлен высокопрочный инварный сплав, содержащий, мас.%: никель от 25,0 до менее 38,0, кобальт 0,5÷20,0, углерод 0,05÷1,2, титан 0,05÷4,0, молибден 0,02÷6,0, ванадий 0,01÷4,0, ниобий 0,02÷5,0, вольфрам 0,02÷5,0, цирконий 0,01÷2,0, железо - остальное.

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на основе никеля, и может быть использовано при выплавке сплавов для литья лопаток газотурбинных двигателей.

Изобретение относится к области металлургии, а именно к способу получения никелевой полосы из нескольких, по меньшей мере, по существу цельных катодных листов. Способ получения никелевой полосы из катодных листов характеризуется тем, что полосу получают горячей прокаткой по отдельности листов, которые соединяют в полосу, или горячей прокаткой полосы после соединения отдельных листов.

Изобретение относится к области металлургии, а именно к получению лигатуры никель-редкоземельный металл. В способе расплавляют никель, выдерживают полученный расплав и смешивают его с редкоземельным металлом, производят индукционное перемешивание расплава, его разливку и охлаждение, при этом расплавляют никель в вакууме в инертном тигле индукционной печи, полученный расплав нагревают до температуры 1500-1700°C и выдерживают до его дегазации в плавильной камере под вакуумом, после чего снижают температуру расплава никеля до 1400-1550°C и в вакууме или атмосфере инертного газа порционно добавляют в него редкоземельный металл.
Изобретение относится к области металлургии, а именно нанесению покрытий с эффектом памяти формы. Способ получения наноструктурированных покрытий с эффектом памяти формы на стальной поверхности включает нанесение порошка с эффектом памяти формы на основе Ni на стальную поверхность, закалку с нагревом до 1000°C и последующим охлаждением в жидком азоте, пластическую деформацию полученного покрытия в три этапа при нагреве.

Изобретение относится к области металлургии, в частности к получению жаропрочных сплавов на основе никеля, обладающих высоким сопротивлением ползучести и растяжению.
Наверх