Способ получения дигидротерпинеола

Настоящее изобретение относится к способу получения дигидротерпинеола - ценного сырья для органического синтеза и фармакологии. Способ заключается в гидрировании α-терпинеола в присутствии катализатора, в качестве которого используют высокопористый ячеистый катализатор, состоящий из основы - α-оксида алюминия с активной подложкой из γ-оксида алюминия в количестве 6,5-8,0% масс. и каталитически активного компонента палладия 0,8-2,0% масс. При этом процесс осуществляют при температуре 60-80°С и исходном давлении водорода 1,8-2,0 МПа. Предлагаемый способ позволяет получить целевой продукт с выходом 90-95% при использовании упрощенной технологии. 1 табл., 3 пр.

 

Изобретение относится к способам получения дигидротерпинеола на высокопористом ячеистом катализаторе.

Дигидротерпинеол является продуктом гидрирования α-терпинеола в виде индивидуального вещества, а также в составе соснового масла - распространенного продукта лесохимической промышленности. Дигидротерпинеол - ценное сырье для органического синтеза, фармакологии и т.д.

Известен способ получения дигидротерпинеола (патент США №2052736, опубл. 1936.09.01) путем гидрирования α-терпинеола водородом, получаемым в процессе дегидрирования d,1-ментола. Реакцию проводят в течение 24 часов в присутствии 1…5% катализатора: никеля или меди, или их смесей, в том числе с добавками цинка, магния или хрома, на носителе или без него. Дополнительного подведения водорода в реакцию не требуется.

К недостаткам этого способа получения можно отнести использование в качестве источника водорода d,1-ментола, длительность процесса, необходимость отфильтровывать порошковый катализатор после проведении гидрирования.

В патенте США №2922829, опубл. 1960.01.26, получение дигидротерпинеола описано как составляющая часть процесса получения Δ3-пара-ментена. Процесс проводят в автоклаве путем гидрирования α-терпинеола на никеле Ренея при давлении водорода 1,72 МПа и температуре 125°С.

Недостатком способа является сложность технологии за счет необходимости отфильтровывать порошковый катализатор после проведении гидрирования.

Наиболее близким к заявляемому способу по технической сущности и достигаемому результату, выбранным в качестве прототипа, является способ получения дигидротерпинеола, описанный в патенте РФ №2473386, опубл. 27.01.2013. Дигидротерпинеол получают при гидрировании 10% раствора α-терпинеола в этилацетате на порошковом катализаторе, представляющем собой керамические гранулы на основе α-Al2O3 размером 30…160 мкм с нанесенным на них слоем золя γ-Al2O3, пиролитического углерода и палладия, подвергнутые термической обработке при температуре 450…550°С.

К недостаткам известного способа можно отнести проведение реакции в растворе, необходимость удалять растворитель и отфильтровывать порошковый катализатор после проведении гидрирования.

Техническим результатом, на достижение которого направлен заявляемый способ, является упрощение технологического процесса получения дигидротерпинеола за счет ликвидации стадий фильтрации катализатора и отгонки растворителя.

Указанный технический результат достигается тем, что в способе получения дигидротерпинеола гидрированием α-терпинеола в присутствии катализатора, в качестве катализатора используют высокопористый ячеистый катализатор, состоящий из основы из высокопористого ячеистого блочного материала на основе α-оксида алюминия (Al2O3) с активной подложкой из γ-оксида алюминия (Al2O3) в количестве 6,5-8,0% масс. и каталитически активного компонента палладия 0,8-2,0% масс., при этом процесс осуществляют при температуре 60-80°С и исходном давлении водорода 1,8-2,0 МПа.

Катализатор синтезируют способом, описанным в патенте РФ №2333795, МПК B01J 23/44, B01J 21/04, B01J 21/06, B01J 35/04, С07С 29/141, С07С 209/36, С07С 211/46, C09F 1/04, опубл. 20.09.2008 г., который заключается в следующем.

Заготовку из пенополиуретана пропитывают, погружая ее в шликер (Al2O3, до 25% воды и до 5% технологических добавок), и подвергают циклическому воздействию (сжатие-растяжение). Избыток шликера удаляют отжатием образцов до заданной массы. Сушку пропитанных заготовок проводят при температуре 100-120°С, а обжиг в воздушной атмосфере при 1450°С.

Для нанесения оксида алюминия (γ-Al2O3) используют раствор кристаллогидрата нитрата алюминия [Al(NO3)3·9Н2О]. Образец, изготовленный из блочного носителя низкой плотности, погружают в горячий раствор кристаллогидрата и после извлечения подсушивают сначала при комнатной температуре, а затем в сушильном шкафу при 90-100°С. Наносят последовательно два или более слоев γ-Al2O3, чтобы масса активного слоя из γ-Al2O3 была не менее 6% от общей массы катализатора. Обжиг проводят при 500-550°С для того, чтобы оксид алюминия сохранился в γ-форме.

Нанесение металлического палладия также проводят в несколько стадий. Полученный носитель пропитывают раствором нитрата палладия за одну или несколько операций, высушивают и прокаливают до разложения нитрата до оксида. Оксид палладия восстанавливают молекулярным водородом в среде спирта при комнатной или повышенной температуре.

В полученном катализаторе исследуют распределение объема пор по диаметру и удельную поверхность методами ртутной порометрии и БЭТ, исследуют морфологию на электронном сканирующем микроскопе LEO EVO 50 XVP (Karl Zeiss, Германия). Получают высокопористый ячеистый катализатор с бимодальным распределением пор в интервале 0.1…100 мкм.

Способ получения дигидротерпинеола осуществляют следующим образом.

Процесс проводят в реакторе, представляющем собой цилиндрическую емкость, изготовленную из нержавеющей стали. В реактор загружают предварительно нагретый до температуры 60-70°С α-терпинеол. Высокопористый ячеистый катализатор, состоящий из основы из высокопористого ячеистого блочного материала на основе α-Al2O3 с активной подложкой из γ-Al2O3 в количестве 6,5-8,0% масс. и каталитически активного компонента палладия 0,8-2,0% масс. помещают в среднюю часть реактора, обеспечивая его неподвижность за счет крепления крестовинами и шайбами. Реактор закрывают крышкой с карманом для термопары и штуцером для ввода водорода. Реактор с помощью специального зажима крепят на качалке, способной производить число качаний, равное 120…160 мин-1, при этом обеспечиваются условия, при которых протекание реакции не лимитируется диффузией компонентов к внешней поверхности блочного высокопористого ячеистого катализатора. Поддерживают заданную температуру в реакторе (60-80°С) за счет электрообогрева. Реактор изолируют слюдой, чтобы предотвратить потери тепла в окружающую среду. Свободный объем реактора заполняют водородом до исходного давления 1,8-2,0 МПа. Продолжительность реакции составляет 2-2,5 ч. Анализ полученного продукта проводили методом высокоэффективной жидкостной хроматографии. Выход готового продукта терпинеола составляет 90-95%.

Более высокое чем 8,0% масс или низкое чем 6,5% масс содержание γ-Al2O3 не позволит равномерно нанести на катализатор палладий, из-за чего уменьшится его каталитическая активность.

Уменьшение количества каталитически активного компонента палладия менее 0,8% масс приводит к значительному увеличению времени реакции (более 6 ч). Увеличение количества каталитически активного компонента палладия более 2,0% масс приводит к образованию большого (более 15%) количества ароматического побочного продукта - цимола.

При уменьшении температуры ниже 60°С процесс вести невозможно, т.к. α-терпинеол остается твердым веществом. Увеличение температуры более 80°С ведет к образованию большого (более 15%) количества ароматического побочного продукта - цимола.

При давлении водорода ниже 1,8 МПа реакция не идет. При исходном давлении водорода более 2,0 МПа наблюдается снижение выхода дигидротерпинеола на 10 и более %.

Пример 1.

Получение дигидротерпинеола проводят в реакторе, представляющем собой цилиндрическую емкость с внутренним диаметром 50 мм, изготовленную из нержавеющей стали. В реактор загружают 80 мл предварительно нагретого до температуры 60°С α-терпинеола. Высокопористый ячеистый катализатор (носитель α-Al2O3) массой 32,86 г, содержащий 0,8% масс. палладия, нанесенного на активную подложку из γ-Al2O3 (6,5% масс.), помещают в среднюю часть реактора, обеспечивая его неподвижность за счет крепления крестовинами и шайбами. Реактор закрывают крышкой с карманом для термопары и штуцером для ввода водорода. Реактор с помощью специального зажима крепят на качалке, способной производить число качаний, равное 120…160 мин-1. Поддерживают заданную температуру в реакторе (60°С) за счет электрообогрева. Реактор изолируют слюдой, чтобы предотвратить потери тепла в окружающую среду. Свободный объем реактора заполняют водородом до исходного давления 1,8 МПа. Продолжительность реакции составляет 2,5 ч. Выход готового продукта дигидротерпинеола составил 90%.

Пример 2. Эксперимент проводят аналогично примеру 1. Получение дигидротерпинеола проводят на высокопористом ячеистом катализаторе (носитель α-Al2O3), массой 33,17 г и содержащим 2,0% масс. палладия, нанесенного на активную подложку из γ-Al2O3 (8.0% масс.). Температура в реакторе 80°С, исходное давление водорода 2,0 МПа. Продолжительность реакции составляет 2 ч. Выход готового продукта дигидротерпинеола составил 90%.

Пример 3. Эксперимент проводят аналогично примеру 1. В реактор загружают 100 мл предварительно нагретого до температуры 70°С соснового масла с содержанием α-терпинеола не менее 60% масс. и его гидрируют на высокопористом ячеистом катализаторе (носитель α-Al2O3), массой 33,08 г и содержащим 0,8% масс. палладия, нанесенного на активную подложку из γ-Al2O3 (8,0% масс.). Температура в реакторе 80°С, исходное давление водорода 2,0 МПа.

Продолжительность реакции составляет 2 ч. Выход готового продукта дигидротерпинеола составил 95%.

После процесса очистки блочный высокопористый ячеистый катализатор подвергают регенерации. Число регенераций блочного высокопористого ячеистого катализатора достигает пятидесяти практически без потери его первоначальной активности.

Предлагаемый способ получения позволяет получить конечный продукт с выходом 90…95% при пониженном содержании в гетерогенном катализаторе активного компонента - палладия и упростить технологический процесс за счет ликвидации стадий фильтрации катализатора и отгонки растворителя.

Кроме того, использование высокопористого ячеистого катализатора с бимодальным распределением пор в интервале 0.1…100 мкм в виде каталитического слоя, через который проходит поток α-терпинеола и водород, благодаря развитой внешней и внутренней поверхности обеспечивает высокую скорость процесса, а благодаря высокой механической прочности практически полностью исключает измельчение и унос катализатора.

Способ получения дигидротерпинеола гидрированием α-терпинеола в присутствии катализатора, отличающийся тем, что в качестве катализатора используют высокопористый ячеистый катализатор, состоящий из основы - α-оксида алюминия с активной подложкой из γ-оксида алюминия в количестве 6,5-8,0% масс. и каталитически активного компонента палладия 0,8-2,0% масс., при этом процесс осуществляют при температуре 60-80°С и исходном давлении водорода 1,8-2,0 МПа.



 

Похожие патенты:
Настоящее изобретение относится к способу окисления циклоалкана с образованием смеси продуктов, содержащей соответствующие спирт и кетон, включающему контактирование циклоалкана с гидропероксидом в присутствии каталитически эффективного количества кристаллического титаносиликатного катализатора MWW-типа.

Изобретение относится к способам очистки циклогексанона. Описан способ очистки циклогексанона, полученного окислением циклогексана кислородом воздуха или дегидрированием циклогексанола, в котором процесс ректификации ведут в разрезной вакуумной ректификационной колоне (2 колонны), где дистиллят первой колонны является питанием для второй колонны; из куба первой колонны выводят смесь циклогексанола и высококипящих примесей на дальнейшее разделение, а куб второй колонны является флегмой для первой - в нее при этом вводится раствор щелочи (КОН) в циклогексаноле, эквивалентный содержанию эфиров.

Изобретение относится к способу получения первичных или вторичных спиртов общей формулы где R1=H: R2=C6H5, R1=CH3: R2=-CH2CH2CH2CH3 или R1R2=-(CH2)4-, -(CH2)5-, , , которые находят широкое применение в качестве полупродуктов в органическом синтезе, а также как растворители и экстрагенты.

Изобретение относится к барботажному реактору окисления циклогексана, включающему устройства подачи и распределения воздуха или инертной среды - азота с каналами подачи и поперечные перегородки с отверстиями.

Изобретение относится к установке каскадного окисления циклогексана, включающей, по меньшей мере, два реактора, снабженных, по меньшей мере, одной перепускной трубой, соединенной со штуцером вывода из первого или предыдущего реактора ко второму или последующему, от внутренних пристеночной полости или бачка, скрепленных с опускной трубой.

Изобретение относится к способу получения смеси циклогексанола и циклогексанона, которые являются полупродуктами в производстве полиамидов найлона-6 и найлона-6,6. .

Изобретение относится к способу получения смеси циклогексанола и циклогексанона, которые являются полупродуктами в производстве полиамидов найлона-6 и найлона-6,6. .

Изобретение относится к установкам, специально приспособленным для проведения химического взаимодействия жидкости с газообразной средой, а более конкретно к установкам каскадного окисления циклогексана кислородом воздуха в барботажных реакторах (на одной из основных технологических стадий производства капролактама и полиамидных пластмасс).

Изобретение относится к улучшенному способу гидрирования водородом α,β-ненасыщенных кетонов общей формулы , где R1,R2=H или R1-R2=-(CH2)3-. Способ заключается в гидрировании бензальалканона газообразным водородом при атмосферном давлении в среде растворителя в присутствии катализатора.
Изобретение относится к способу получения водной суспензии коллоида благородного металла и его использования. .

Изобретение относится к способу получения линалоола, являющегося промежуточным органическим соединением, используемым в фармацевтической и парфюмерной промышленности.

Изобретение относится к области катализа селективной гидрогенизации. .

Изобретение относится к органической химии, а именно к способам гидрирования ацетиленовых спиртов, являющихся промежуточными органическими соединениями, используемыми в фармацевтической и парфюмерной промышленности, с высоким выходом и высокой приведенной скоростью.
Изобретение относится к области химии, нефтехимии и может быть использовано для получения 2-этилгексанола гидрированием 2-этилгексеналя. .

Изобретение относится к способу каталитической гидрогенизации. .

Изобретение относится к области нефте- и газохимии и касается катализаторов и процессов получения легких олефинов, в частности пропилена. Катализатор одностадийного синтеза пропилена из этилена содержит оксид рения Re2O7 и оксид палладия PdO, закрепленные на поверхности анион-модифицированного носителя.
Наверх