Способ очистки газового потока

Изобретение относится к области очистки газов и может быть использовано в быту, в различных отраслях промышленности и энергетики для отделения от газового потока содержащихся в нем аэрозольных частиц. Изобретение может также найти свое применение для очистки воздуха от дорожной пыли, включая аэрозольное загрязнение от выхлопных газов двигателей внутреннего сгорания, износа шин и тормозных колодок автомобилей и дорожного покрытия. Изобретение направлено на повышение эффективности очистки газового потока. Способ заключается в пропускании очищаемого газового потока через пористый с открытыми порами материал, в порах которого во время очистки формируют неоднородное электрическое поле величиной не менее 0,1 кВ/см. Технический результат в заявляемом способе очистки газового потока достигается за счет отклонения траекторий движения аэрозольных частиц электрическим полем от линий тока газового потока при движении газового потока по порам пористой перегородки. Отклонившиеся от линий тока газового потока аэрозольные частицы зацепляются за стенки пор пористой перегородки и сепарируются от газового потока. В порах, таким образом, задерживаются частицы, размер которых значительно меньше, чем размер пор, что позволяет повысить эффективность очистки от аэрозольных частиц. Предложенный способ позволяет использовать обычные волокнистые фильтрующие материалы, изготовленные для фильтров грубой очистки, для тонкой очистки газовых потоков. Обеспечивается практически полная очистка газового потока от аэрозольных частиц всего диапазона их размеров, включая нанометровый диапазон. 1 табл., 2 ил.

 

Изобретение относится к области очистки газов и может быть использовано как в быту, так и в различных отраслях промышленности и энергетики и транспорта для очистки газов от содержащихся в нем аэрозольных частиц.

Известен способ очистки газов, заключающийся в охлаждении газового потока при его движении из верхней камеры в нижнюю по вертикальному цилиндрическому корпусу, в котором через патрубки входа и выхода циркулирует охлаждающий агент (см. А.Г. Амелин "Теоретические основы образования тумана", М., Химия, 1966 г., стр. 164). В известном способе парогазовая смесь через верхнюю камеру проходит по трубам, охлажденным движущимся в межтрубном пространстве хладагентом. При соприкосновении с холодной поверхностью труб происходит охлаждение газа и конденсация на этой поверхности содержащегося в газе пара. Конденсация паров происходит на содержащихся в газе аэрозольных частицах. Конденсируемая в трубах жидкость с аэрозольными частицами собирается в нижней камере и вытекает их нее через патрубок выхода конденсата. Очищенный газ выходит через патрубок нижней камеры. В известном способе производится конденсация и отделение от газа аэрозольных частиц лишь той части газа, которой удается соприкоснуться с поверхностью труб за время нахождения газа в трубе. Остальная же часть аэрозольных частиц остается в составе выходящего из устройства газа. Таким образом, для повышения степени очистки газа от аэрозольных частиц требуется увеличение габаритных размеров устройства, реализующего известный способ очистки.

В патенте РФ на изобретение №2175880, МПК 7 B01D 5/00 представлено описание способа очистки газового потока от аэрозольных частиц, в котором совмещены процессы конденсации и сепарации паров с использованием коронного разряда. Сепарация сконденсированных паров в описанном способе реализована с помощью электрофильтра, содержащего соединенный с источником высокого напряжения коронирующий электрод и установленный относительно него с зазором осадительный электрод. Принцип работы электрофильтра достаточно полно освящен в литературе (см., например, А.Г. Касаткин «Основные процессы и аппараты химической технологии» Госхимиздат, 1950 г., стр. 138-150). В анализируемом электрофильтре электрические заряды, возникающие в зазоре между коронирующим и осадительным электродом, попадая на аэрозольные частицы газовой смеси, заряжают их. Электрическое поле в зазоре между коронирующим и осадительным электродом вынуждают заряженные аэрозольные частицы двигаться по направлению силовых линий к осадительному электроду, чем обеспечивается очищение газовой смеси от аэрозольных частиц. Конденсация паров в описываемом способе реализуется генерацией коронного разряда в газовом потоке. В процессе коронного разряда повышается плотность электрически заряженных частиц, содержащихся в газовом потоке, и при плотности электрических зарядов более 105 е/см3 (e - элементарный электрический заряд) электрически заряженные аэрозольные частицы начинают активно захватывать молекулы конденсируемых паров, превращаясь в крупные молекулярные комплексы. Молекулярная влага и аэрозольные частицы конденсата увлекаются из объема газового потока к осадительному электроду, где реализуется пристеночная конденсация. Таким образом, в описываемом электрофильтре в процессе конденсации задействованы не только случайно попавшие на стенки конденсируемой поверхности молекулы паров, но и молекулярные комплексы. Последние образуются в объеме движущегося газового потока с помощью электрически заряженных частиц и доставляются к поверхности заземленной конструкции электрическим полем. В результате действия механизма конденсации, совмещенного с механизмом электрофильтра, в описанном способе обеспечивается полнота сепарации паров из очищаемого газового потока без существенного увеличения габаритных размеров фильтра. Кроме того, известным способом можно улавливать и аэрозольные частицы, захватившие молекулы конденсируемых паров, т.е. реализовать так называемый принцип мокрой очистки газов.

Наиболее близким техническим решением к предлагаемому техническому решению относится способ очистки газового потока, описанный в патенте РФ №2293597 RU. В известном способе в начале очистки в очищаемом газовом потоке формируют неоднородное электрическое поле и генерируют в очищаемом газовом потоке коронный разряд. Содержащиеся в газовом потоке аэрозольные частицы в процессе воздействия на них электрическим полем и коронным разрядом получают электрический заряд. Далее газовый поток с электрически заряженными аэрозольными частицами пропускаются через осадительный электрод, выполненный в виде пористой с открытыми порами перегородки. При прохождении газового потока через пористую поверхность осадительного электрода электрически заряженные аэрозольные частицы осаждаются на порах осадительного электрода. Известный способ имеет высокую эффективность для очистки увлажненных газовых потоков. Эффективность реализации известного способа определяется в значительной степени степенью пересыщения паров очищаемого газового потока. Электрические заряды, локализованные на аэрозольных частицах, инициируют процессы конденсации. Увлажняются даже самые мелкие аэрозоли, чем и достигается высокая степень очистки.

Вместе с тем, как известно, коронный разряд сам является источником загрязнения газового потока мелкодисперсными аэрозолями. См. Л.И. Толпыгин и др. О перспективах возможности очистки воздуха от аэрозольных частиц посредством неоднородного электрического поля. Экология и промышленность России. Октябрь, 2014 г., стр. 48-51. При использовании известного способа затруднительно добиться высокой эффективности очистки для сухих газовых потоков, что ограничивает область применения известного способа очистки.

Целью предлагаемого изобретения является повышение эффективности очистки газового потока.

Для достижения поставленной цели в известном способе очистки газа от аэрозолей, заключающемся в воздействии электрическим полем на очищаемый газовый поток и пропускании очищаемого газового потока через пористый с открытыми порами материал, электрическое поле величиной не менее 0,1 кВ/см формируют в порах фильтрующего материала путем подачи высокого напряжения на электрод, установленный по центру заполненной фильтрующим материалом ячейки, образованной установленными с зазором относительно друг друга заземленными пластинами.

Технический результат в заявляемом способе очистки газового потока достигается за счет отклонения траекторий движения аэрозольных частиц электрическим полем от линий тока газового потока при движении газового потока по порам фильтрующего материала. Отклонившиеся от линий тока газового потока аэрозольные частицы зацепляются за стенки пор и сепарируются от газового потока. В порах, таким образом, задерживаются частицы, размер которых значительно меньше, чем размер пор. Более эффективное воздействие на аэрозольные частицы и их отклонение от линий тока обеспечивается при использовании неоднородного электрического поля. Под действием неоднородного электрического поля на частицах индуцируется дипольный момент, вследствие чего частицы движутся в сторону увеличения градиента электрического поля. См. Л.И. Толпыгин и др. О перспективах возможности очистки воздуха от аэрозольных частиц посредством неоднородного электрического поля. Экология и промышленность России. Октябрь, 2014 г., стр. 48-51.

Реализация заявляемого способа очистки газового потока следующая. Поперечное сечение воздуховода, по которому перемещается подлежащий очистке от аэрозольных частиц газовый ток, перекрывается пористым с открытыми порами фильтрующим материалом. В качестве фильтрующего материала могут быть использованы стекловолокна или другие фильтрующие материалы, широко предлагаемые на рынке для использования в фильтрах грубой очистки. Фильтрующий материал укладывается в ячейки, образованные заземленными электропроводными пластинами, установленными с зазором относительно друг друга. Для укрепления конструкции электропроводные пластины могут быть установлены между двумя сетками. Для повышения эффективности очистки рекомендуется использовать материал с высоким значением диэлектрической проницаемости не менее 1,3. Чем выше значение диэлектрической проницаемости материала, тем выше эффективность очистки. В пористом материале формируется неоднородное электрическое поле величиной не менее 0,1 кВ/см, градиент которого не менее 0,01 кВ/см2. Формирование неоднородного электрического поля осуществляется путем подачи напряжения на электрод, установленный по центру заполненной фильтрующим материалом ячейки, образованной установленными с зазором относительно друг друга заземленными пластинами. Содержащиеся в очищаемом газовом потоке аэрозольные частицы неоднородным электрическим полем увлекаются в сторону увеличения градиента электрического поля, отклоняются от линий тока газового потока, зацепляются за стенки пор перегородки и сепарируются от газового потока. Очищенный от аэрозольных частиц газовый поток выходит наружу. При переполнении пор производится либо регенерация фильтрующего материала с очисткой пор, либо, при невозможности осуществления регенерации, производится замена фильтрующего материала. Учитывая, что путем воздействия неоднородным электрическим полем на очищаемый газ в фильтрующем материале задерживаются частицы, размер которых значительно меньше размера пор, предложенное техническое решение позволяет повысить эффективность очистки, не увеличивая при этом гидравлического сопротивления очищаемому потоку. Степень различия в размерах пор и сепарируемых аэрозолей определяется временем прохождения очищаемого газа через фильтрующий материал, а также значениями параметров неоднородного электрического поля (напряженность электрического поля и степень его неоднородности).

На рис. 1 представлена условная схема конструкции фильтра, обеспечивающего реализацию предлагаемого способа очистки. Фильтр включает в себя конструкцию, выполненную из установленных между двумя сетками 1 с зазором относительно друг друга электропроводных пластин 2. Ячейки, образованные электропроводными пластинами 2, заполнены фильтрующим материалом 3. По центру ячеек внутри фильтрующего материала 3 электрически изолированно установлены электроды 4, соединенные с одним из полюсов высоковольтного источника питания 5, другой полюс которого соединен с электропроводными пластинами. При наличии контура заземления второй полюс высоковольтного источника питания и электропроводные пластины могут быть заземлены. Для фиксации фильтрующего материала ячейки могут быть перекрыты конструкцией, прозрачной для прохождения газового потока, например сеткой 1. Устройство работает следующим образом. Подлежащий очистке газовый поток (на рис. 1 показан стрелкой W) проходит в поры фильтрующего материала. При подаче высокого напряжения на электроды 4 между электродами 4 и заземленными электропроводными пластинами 2 образуется неоднородное электрическое поле. Неоднородное электрическое поле на содержащихся в очищаемом газовом потоке аэрозольных частицах индуцирует дипольный момент, который вынуждает аэрозольные частицы двигаться в сторону увеличения градиента сформированного электрического поля. При движении газового потока по порам фильтрующего материала, аэрозольные частицы отклоняются от линий тока, что увеличивает вероятность столкновения их с поверхностью пор и, как следствие, повышает эффективность очистки газового потока. Проведенные автором изобретения исследования показали высокую эффективность предложенного способа. График распределения аэрозольных частиц, содержащихся в очищаемом воздухе (фон) и в очищенном воздухе (кривые, обозначенные как фильтр, 6 кВ, 10 кВ, 15 кВ, 20 кВ) представлен на рис. 2. Кривая, обозначенная «фильтр» отображает распределение частиц, содержащихся в воздухе, прошедшем через фильтрующий материал. Кривые, обозначенные на рисунке 6 кВ, 10 кВ, 15 кВ, 20 кВ, - распределение частиц, содержащихся в воздухе, прошедшем через тот же фильтрующий материал, при воздействии на него неоднородным электрическим полем 0,1; 0,17; 0,25; 0,33 кВ/см. Поле формировалось путем подачи на электроды напряжения, соответственно 6 кВ, 10 кВ, 15 кВ, 20 кВ. Для наглядности изображения концентрации частиц после фильтра на графике представлены увеличенными соответственно в 5 (фильтр и 6 кВ), в 50 (10 и 15 кВ) и 100 (20 кВ) раз.

Результаты экспериментальных исследований представлены в таблице 1. Распределение аэрозольных частиц, содержащихся в очищенном фильтром воздухе.

Фильтрующий материал на основе стекловолокон, предназначенный для использования в фильтрах грубой очистки, ФВР-PS3-G3, в эксперименте обеспечивал пятикратное снижение концентрации аэрозольных частиц. Эффективность очистки во всем диапазоне размеров частиц составила 82,4% во всем диапазоне размеров частиц. В диапазоне частиц 50-200 нм эффективность очистки испытуемого фильтрующего материала составляла 60-70%. Эффект повышения эффективности очистки газового потока от аэрозольных частиц обычным волокнистым фильтрующим материалом существенно проявляется при приложении разности потенциалов в 6 кВ, которое обеспечивает формирование в фильтрующем материале неоднородного электрического поля значением не менее 0,1 кВ/см, градиент которого не менее 0,01 кВ/см2. При формировании в фильтрующем материале электрического поля с напряженностью электрического поля ~0,1 кВ/см эффективность очистки воздуха по концентрации частиц возросла практически до 97% во всем диапазоне размеров частиц. Исключение составил диапазон размеров частиц 20-80 нм, где эффективность очистки достигала значения 80-90%. При повышении напряженности электрического поля воздух очищался практически полностью, улавливались практически все частицы. В очищенном воздухе оставалось всего до нескольких десятков частиц на см3 во всем диапазоне размеров частиц, включая нанометровый диапазон, при фоновом загрязнении в несколько тысяч частиц на см3.

Таким образом, предложенное техническое решение благодаря новым признакам позволяет повысить эффективность способа очистки и достичь поставленной цели изобретения.

Изобретение создано при поддержке грантов РФФИ №№14-08-00836, 15-0804724, 15-0810081.

Способ очистки газа от аэрозолей, заключающийся в воздействии электрическим полем на очищаемый газовый поток и пропускании очищаемого газового потока через пористый с открытыми порами фильтрующий материал, отличающийся тем, что электрическое поле величиной не менее 0,1 кВ/см формируют в порах фильтрующего материала путем подачи высокого напряжения на электрод, установленный по центру заполненной фильтрующим материалом ячейки, образованной установленными с зазором относительно друг друга заземленными пластинами.



 

Похожие патенты:

Предложена система для производства диоксида углерода, включающая в себя: подсистему сбора, выполненную для сбора технологического газа, причем технологический газ включает в себя углеводород; подсистему сжигания, выполненную для сжигания углеводорода в технологическом газе и получения газообразного потока сгорания, при этом газообразный поток продуктов сгорания включает в себя диоксид углерода и воду; и подсистему отделения, выполненную для отделения диоксида углерода от газообразного потока продуктов сгорания.

Изобретение относится к обработке углеводородного газа с использованием низкотемпературного процесса и может быть использовано в процессах промысловой подготовки к транспорту продукции газоконденсатных месторождений.

Изобретение относится к усовершенствованному способу оксосинтеза с рециркуляцией преобразованных отходов масел. Способ включает гидроформилирование олефина с синтез-газом в реакторе с полученим продукта оксосинтеза и побочного продукта - отходов масел, характеризующегося более низкой или более высокой температурой кипения, чем продукт оксосинтеза, отделение продукта оксосинтеза от отходов масел, преобразование отделенных отходов масел в синтез-газ, включающее испарение отходов масел газообразным углеводородом в резервуаре испарителя с получением смешанного парообразногопотока газообразного углеводорода и испаренных отходов масел и прямое окисление смешанного парообразного потока с получение синтез-газа, и рециркуляцию синтез-газа.

Изобретение относится к опреснению соленой воды, в том числе морской или минерализованной воды дистилляцией, и может быть использовано для локального водоснабжения пресной водой.

Изобретение относится к технологии дополнительного извлечения ценных компонентов из природного углеводородного газа и может быть использовано на предприятиях газоперерабатывающей промышленности. Способ комплексного извлечения ценных примесей из природного гелийсодержащего углеводородного газа с повышенным содержанием азота включает стадии: первого уровня очистки сырьевого потока природного углеводородного газа от механических примесей и капельной жидкости, второго уровня очистки первого потока очищенного углеводородного газа от примесей сероводорода, диоксида углерода и метанола, регенерации потока насыщенного абсорбента, отпарки кислой воды от метанола, сероводорода и диоксида углерода, компримирования и осушки низконапорных кислых газов, третьего уровня осушки, очистки от соединений ртути второго потока очищенного углеводородного газа, низкотемпературного разделения третьего потока осушенного и очищенного углеводородного газа, расширения и охлаждения деэтанизированного газа с частичной его конденсацией в «холодном боксе», криогенного деазотирования, удаления водорода из азотно-гелиевой смеси, криогенной доочистки полупродукта жидкого гелия от примесей азота, кислорода, аргона и неона, криогенного выделения гелия, адсорбционной очистки ШФЛУ, газофракционирования очищенной ШФЛУ, подготовки товарного топливного газа, хранения жидких азота и гелия в сосудах Дьюара в товарном парке.

Изобретение относится к устройству для регулирования технологических газов в установке для получения металлов прямым восстановлением руд. Устройство имеет восстановительный реактор, смонтированное выше по потоку относительно восстановительного реактора устройство для разделения газовых смесей с сопряженным нагнетательным устройством, установленное ниже по потоку относительно восстановительного реактора газоочистительное устройство, сконфигурированное для регулирования количества технологических газов, и устройство для регулирования давления, которое таким образом размещено перед местом присоединения подводящего трубопровода к перепускному трубопроводу для технологических газов, в частности так называемого отходящего газа, что уровень давления поддерживается постоянным в устройстве для разделения газовых смесей с сопряженным нагнетательным устройством.

Изобретение относится к системам и способам фракционного отделения газовой смеси, содержащей диоксид углерода. Система отделения включает в себя источник газовой смеси, содержащей по меньшей мере первый компонент и второй компонент, и сепарационную установку в гидравлической связи с источником для приема газовой смеси и по меньшей мере частичного отделения первого компонента от второго компонента, причем сепарационная установка содержит по меньшей мере одно из устройств: вихревой сепаратор и емкость высокого давления.

Изобретение относится к переработке жидких радиоактивных отходов (ЖРО). Установка для переработки ЖРО содержит узел их нейтрализации, соединенный со сборной емкостью, парогенератор, цилиндрический роторно-пленочный испаритель с рубашкой и со штуцерами ввода ЖРО, отвода концентрата и вторичного пара, ротор с закрепленными по всей его длине лопатками, распределяющими ЖРО по обогреваемой поверхности испарителя в виде тонкой пленки, линию слива конденсата первичного пара, сепаратор и конденсатор.

Изобретение относится к газонефтяной промышленности, в частности к сбору и обработке природного углеводородного газа по технологии абсорбционной осушки, и может применяться в процессах промысловой подготовки к транспорту продукции газовых и газоконденсатных месторождений.

Настоящее изобретение относится к области газохимии и касается очистки газовых потоков от кислых примесей, в частности углекислого газа. Изобретение касается способа очистки газового потока, содержащего углекислый газ.

Изобретение относится к нефтедобывающей промышленности, в частности к установкам сепарации водогазонефтяной смеси, и направлено на повышение степени утилизации попутного нефтяного газа. Система сепарации водогазонефтяной смеси включает трубопровод подачи сырья, соединенный с блоком сепарации сырья, имеющим отвод водонефтяной эмульсии, и содержит не менее двух ступеней сепарации, каждая из которых имеет вход для сырья и отводы попутного нефтяного газа, соединенные с газовым сепаратором, имеющим отвод газа потребителю. Система дополнительно содержит струйное устройство сепарации потока, расположенное на входе трубопровода подачи сырья, выполненное в виде конфузорно-диффузорного перехода, имеющего профиль Вентури с двумя щелями эжекции: одна - в области сужения, которая сообщается с входным патрубком подачи газа среднего давления, соединенным с отводом попутного нефтяного газа второй ступени сепарации, другая - на образующей диффузора, которая сообщается с входным патрубком подвода газа низкого давления, соединенным с отводом попутного нефтяного газа концевой ступени сепарации, причем в целях отвода попутного нефтяного газа второй и концевой ступеней сепарации установлены промежуточные газовые сепараторы. Изобретение обеспечивает стабильную, надежную работу системы сепарации водогазонефтяной смеси при минимальных объемах газа сепарации низкого давления и максимальном выходе легких углеводородных фракций в выходном потоке товарной нефти. 1 з.п. ф-лы, 2 ил.

Изобретение относится к аппаратам для концентрирования различных суспензий и может быть использовано в пищевой и химической отраслях промышленности. Барботажный вакуум-выпарной аппарат содержит корпус с патрубками для ввода, при этом аппарат состоит из двух частей, верхней и нижней, причем верхняя часть снабжена паровой рубашкой, с ней соединен патрубок для удаления испаряемых паров, а внутри аппарата установлен коллектор с радиально расположенными трубками для барботирования суспензии горячим воздухом и центральная рециркуляционная труба с входными и выходными окнами, в которой установлен вал с ротором для рециркуляции суспензии из входных окон в выходные; к внешней части центральной рециркуляционной трубы закреплены мешалки со скребками, при этом центральная рециркуляционная труба установлена с возможностью вращения в подшипниках, при этом вал ротора и центральная рециркуляционная труба вращается за счет электропривода через коническую и две цилиндрические зубчатые передачи. Технический результат - повышение качества сгущаемой суспензии, интенсификация процесса тепломассообмена и снижение энергозатрат на процесс выпаривания. 4 ил.

Изобретение представляет: распределитель для жидкой или газообразной среды, внутренняя полость распределителя включает размещенные соосно центральной оси вращения внутри друг друга полые фигуры вращения - оболочки, имеющие сквозные отверстия или окна, с возможностью перемещения и поворота любой из них относительно других и корпуса распределителя, его переключение связано с возможностью совмещения определяемых управляющим распределением устройством отверстий или окон в оболочках и корпусе распределителя. Изобретение позволяет оптимизировать процесс управления распределителем для жидкой или газообразной среды по нескольким параметрам, а так же позволяет достичь высокой плавности переключения, исключающей гидравлические удары, что дает возможность использовать распределитель в жидкостных отстойниках для забора или подачи конкретной жидкостной фазы в конкретный уровень без смешивания фаз. 24 з.п. ф-лы, 5 ил.

Изобретение относится к области теплоэнергетики, а более точно к устройству для очистки дымовых газов от оксидов азота селективным некаталитическим восстановлением. Устройство включает корпус дымохода, внутри которого расположена распределительная решетка для ввода аммиачного раствора внутрь газового потока дымовых газов. Распределительная решетка выполнена из поворотных сегментов и кинематически соединена с узлом управления. Поворотные сегменты расположены между двух кольцевых диафрагм, из которых одна герметично соединена с камерой сбора отработанного аммиачного раствора и корпусом, а другая с направляющим диффузором. При этом перед выходным патрубком дымовых газов установлен дополнительный конус, сопряженный геометрически с направляющим диффузором и соединенный с устройством его перемещения. Предложенное устройство повышает степень очистки дымовых газов от окислов азота, просто в изготовлении и надежно в процессе эксплуатации. 4 з.п. ф-лы, 3 ил.

Изобретение относится к очистителю, который разделяет газы, полученные в электролитическом генераторе из загрязнителей электролита, а также электролитическому генератору, содержащему такой очиститель, и способу газоочистки. Газоочиситель для электролитического генератора содержит резервуар для сбора, вход для очистки, предназначенный для подачи двухфазной текучей среды, содержащей очищаемый газ, в резервуар, множество промывочных тарелок, разбрызгиватель, выполненный с возможностью распределения промывочной жидкости по множеству промывочных тарелок, конденсатор для повторного ожижения, содержащий теплообменник, в котором циркулирует хладагент, и выход для очистки, предназначенный для направления потока очищаемого газа через множество промывочных тарелок и конденсатор. Изобретение обеспечивает простую и эффективную очистку газа. 3 н. и 11 з.п. ф-лы, 3 ил.

Изобретение относится к устройствам, предназначенным в основном для защиты воздушного бассейна Земли от канцерогенных газов и осадков, вылетающих из торчащих в небо труб промышленных предприятий (или организаций) в металлургической или химической промышленности, включая котельные, ТЭЦ и др. Способ комплексной очистки воздушного бассейна от производственных отходов/выбросов из труб осуществляется в замкнутом и непрерывном режиме. Технический результат достигается путем создания многоуровневого каскада герметичных емкостей (например, в виде резервуаров, хранилищ, сборников или бассейнов), изолированных от внешней воздушной или водной среды с, как правило, многоэтапной автоматической, полуавтоматической или ручной регулировкой процессов очистки вредных газов или составов (выбросов) без использования торчащих в небо труб, причем резервирование основных элементов, узлов, блоков, агрегатов и емкостей осуществляется как по принципу дублирования в масштабах 1:1, так, возможно, и в уменьшенных вариантах по габаритам. Последнее согласовано с длительностью циклов выполнения ремонта, профилактики, технического обслуживания, замены или очистки основных емкостей или оборудования от очищенных и/или очищаемых продуктов промышленных производств. То есть, чем дольше цикл очистки, удаления отходов/выбросов или ремонта основного оборудования и емкостей, тем большие габаритные размеры должны иметь резервные емкости, чтобы процесс очистки воздушного бассейна не прерывался. Технический результат - создание многоуровневого каскада герметичных емкостей (например, в виде резервуаров, хранилищ, сборников или бассейнов), изолированных от внешней воздушной или водной среды с, как правило, многоэтапной автоматической, полуавтоматической или ручной регулировкой процессов очистки вредных газов или составов (выбросов) без использования торчащих в небо труб, причем резервирование основных элементов, узлов, блоков, агрегатов и емкостей осуществляется как по принципу дублирования в масштабах 1:1, так, возможно, и в уменьшенных вариантах по габаритам. Последнее согласовано с длительностью циклов выполнения ремонта, профилактики, технического обслуживания, замены или очистки основных емкостей или оборудования от очищенных и/или очищаемых продуктов промышленных производств. 1 ил.

Изобретение относится к охране окружающей среды и может быть использовано для нейтрализации токсичных вредных продуктов при очистке промышленных выбросов, продуктов сжигания промышленных и бытовых отходов, а также выхлопных газов бензиновых и дизельных двигателей. Способ предусматривает образование сорбционного катализатора, который состоит из смеси глауканита, интеркалированного графита и раствора солей тяжелых металлов и состоит из слоев различного фракционного состава. Способ характеризуется тем, что используется глауканит концентрацией не менее 70% и СВЧ-термообработка. 1 табл.

Изобретение относится к способам получения технических газов из воздуха. Способ получения технических газов из воздуха включает генератор пневматической энергии, соединенный с газоразделительной установкой. Генератор пневматической энергии выполняют в виде гидроагрегата, установленного в створе природного или техногенного водотока. На гидроагрегат, имеющий подвижные в радиальном направлении стенки в виде мембран, устанавливают камеры сжатия воздуха, рабочие органы которых приводят в возвратно-поступательное движение энергией периодического гидравлического удара. Сжатый атмосферный воздух из генератора пневматической энергии собирают в ресивере, сглаживающем пульсации давления, далее после очистки и осушки подают в установку разделения воздуха, выделенный технический газ направляют потребителю. Изобретение позволяет снизить себестоимость получения технических газов за счет использования гидравлической энергии природных и техногенных водотоков для генерации пневматической энергии, необходимой для работы газоразделительных установок различного типа. 1 ил.

Изобретение относится к области обработки воздуха. Способ калибровки датчика воздуха устройства обработки воздуха включает в себя этапы, на которых: i) - очищают воздух, используя устройство обработки воздуха; ii) - измеряют первое количество воздуха, используя датчик воздуха для получения первого значения для калибровки датчика воздуха, причем первое количество воздуха представляет собой смесь окружающего воздуха и очищенного воздуха, причем устройство обработки воздуха расположено в воздухонепроницаемом пространстве, а этап 2 дополнительно включает в себя этапы, на которых: определяют, удовлетворяет ли качество первого количества воздуха в воздухонепроницаемом пространстве заданному критерию; и если качество первого количества воздуха удовлетворяет заданному критерию, измеряют первое количество воздуха, используя датчик воздуха, для получения первого значения. Это позволяет повысить точность измерений и, как следствие, оптимизировать работу устройства обработки воздуха. 2 н. и 9 з.п. ф-лы, 3 ил.

Изобретение относится к способам модернизации установок подготовки природного и попутного нефтяного газа к транспорту методом низкотемпературной сепарации и может быть использовано в нефтегазовой промышленности. Способ модернизации действующей установки низкотемпературной сепарации газа заключается в установке на линии подачи охлажденного газа в узел редуцирования дефлегматора, верх которого соединяют линией вывода газа дефлегмации с узлом редуцирования, а низ - линией вывода флегмы с блоком сепарации конденсата. Верхнюю часть дефлегматора оборудуют двумя секциями тепломассообменных элементов, которые соединяют линиями подачи газа и конденсата с блоком низкотемпературной сепарации, а также линиями вывода газа и конденсата с блоком рекуперации холода и блоком сепарации конденсата, соответственно. Течение технологических сред между точками подключения дефлегматора на линиях подачи охлажденного газа в узел редуцирования, подачи газа низкотемпературной сепарации в блок рекуперации холода и подачи конденсата низкотемпературной сепарации в блок сепарации конденсата перекрывают с помощью запорной арматуры. Техническим результатом является увеличение степени извлечения тяжелых углеводородов при обеспечении заданного качества подготовки газа. 1 ил., 1 пр.

Изобретение относится к области очистки газов и может быть использовано в быту, в различных отраслях промышленности и энергетики для отделения от газового потока содержащихся в нем аэрозольных частиц. Изобретение может также найти свое применение для очистки воздуха от дорожной пыли, включая аэрозольное загрязнение от выхлопных газов двигателей внутреннего сгорания, износа шин и тормозных колодок автомобилей и дорожного покрытия. Изобретение направлено на повышение эффективности очистки газового потока. Способ заключается в пропускании очищаемого газового потока через пористый с открытыми порами материал, в порах которого во время очистки формируют неоднородное электрическое поле величиной не менее 0,1 кВсм. Технический результат в заявляемом способе очистки газового потока достигается за счет отклонения траекторий движения аэрозольных частиц электрическим полем от линий тока газового потока при движении газового потока по порам пористой перегородки. Отклонившиеся от линий тока газового потока аэрозольные частицы зацепляются за стенки пор пористой перегородки и сепарируются от газового потока. В порах, таким образом, задерживаются частицы, размер которых значительно меньше, чем размер пор, что позволяет повысить эффективность очистки от аэрозольных частиц. Предложенный способ позволяет использовать обычные волокнистые фильтрующие материалы, изготовленные для фильтров грубой очистки, для тонкой очистки газовых потоков. Обеспечивается практически полная очистка газового потока от аэрозольных частиц всего диапазона их размеров, включая нанометровый диапазон. 1 табл., 2 ил.

Наверх