Газораспределительная станция

Изобретение относится к газовой технике, в частности к газораспределительным станциям (ГРС) для снижения давления газа в газопроводе. Технический результат - снижение энергоемкости эксплуатации ГРС за счет использования теплового потенциала вихревой трубы при получении электрического потенциала в термоэлектрическом генераторе. ГРС содержит блок управления, технологический блок с газопроводом высокого и низкого давления, емкость сбора конденсата, соединенную с газопроводом высокого давления и через запорный орган с газопроводом низкого давления, эжектор, вихревую трубу, установленную на газопроводе высокого давления, при этом вихревая труба снабжена термоэлектрическим генератором, включающим корпус с каналом для горячего потока и каналом для холодного потока, а также комплект дифференциальных термопар, при этом «горячие» концы дифференциальных термопар закреплены внутри канала для горячего потока, а «холодные» концы дифференциальных термопар закреплены внутри канала для холодного потока. 2 ил.

 

Изобретение относится к газовой технике, в частности к газораспределительным станциям для снижения давления газа в газопроводе.

Недостатком данной газораспределительной станции является энергоемкость регулирования процесса снижения давления, обусловленная дросселированием газа, поступающего по газопроводу высокого давления в газопровод низкого давления из-за отсутствия возможности использования энергии перепада давления, например в качестве энергосберегающего источника тепла системы отопления помещения газораспределительной станции вместо осуществляемого в настоящее время сжигания газа в отопительных устройствах (возможностью регулирования системы отопления в зависимости от температуры окружающей среды).

Известна газораспределительная станция (см. патент РФ № 2428621, МПК F17D 1/04, опубл. 10.09. 2011. Бюл. №25), содержащая блок управления, технологический блок с газопроводом высокого и низкого давления, емкость сбора конденсата, соединенную с газопроводом высокого давления и через запорный орган с газопроводом низкого давления, эжектор, вихревую трубу, установленную на газопроводе высокого давления, теплообменник, соединенный с выходом горячего потока вихревой трубы, а выход ее холодного потока соединен с конденсатоотводчиком, при этом блок управления снабжен датчиком температуры наружного воздуха и регулятором расхода горячего потока вихревой трубы, расположенного на входе эжектора, а теплообменник выполнен пластинчатым и расположен на рециркуляционном контуре системы отопления и своим выходом соединен с входом эжектора, при этом выход эжектора соединен с газопроводом низкого давления, а его камера смешивания соединена с конденсатоотводчиком.

Недостатком является снижение нормированных параметров процесса горения из-за неполного удаления при низких температурах наружного воздуха, присутствующего в природном газе избытка влаги, что обусловлено нарушением тепломассообмена в изменяющемся температурном режиме грунта как окружающей среды для емкости сбора конденсата.

Известна газораспределительная станция (см. патент РФ № 2544404, МПК F17D 1/04, опубл. 20.03. 2015. Бюл. №8), содержащая блок управления, технологический блок с газопроводом высокого и низкого давления, емкость сбора конденсата, соединенную с газопроводом высокого давления и через запорный орган с газопроводом низкого давления, эжектор, вихревую трубу, установленную на газопроводе высокого давления, теплообменник, соединенный с выходом горячего потока вихревой трубы, а выход ее холодного потока соединен с конденсатоотводчиком, причем блок управления снабжен датчиком температуры наружного воздуха и регулятором расхода горячего потока вихревой трубы, расположенным на входе эжектора, а теплообменник выполнен пластинчатым и расположен на рециркуляционном контуре системы отопления и своим выходом соединен с входом эжектора, при этом выход эжектора соединен с газопроводом низкого давления, а его камера смешивания соединена с конденсатоотводчиком, причем наружная поверхность емкости сбора конденсата покрыта теплоизолирующим и теплоаккумулирующим материалом, выполненным в виде пучков вытянутых тонких волокон из базальта, расположенных вертикально.

Недостатком является энергоемкость процесса эксплуатации, обусловленная необходимостью освещения (от постороннего источника электрической энергии с обязательным снижением напряжения до нормированного безопасного 12÷24 В из-за высокой степени взрывоопасности природного газа под высоким давлением) изолированного и удаленного по условиям техники безопасности блока управления регулированием, а также помещения в темное время суток, что повышает стоимостные затраты.

Технической задачей предлагаемого изобретения является снижение энергоемкости эксплуатации газораспределительной станции путем устранения отбора электрической энергии из систем энергоснабжения на освещение за счет использования теплового потенциала вихревой трубы при получениии электрического потенциала в термоэлектрическом генераторе.

Технический результат достигается тем, что газораспределительная станция содержит блок управления, технологический блок с газопроводом высокого и низкого давления, емкость сбора конденсата, соединенную с газопроводом высокого давления и через запорный орган с газопроводом низкого давления, эжектор, вихревую трубу, установленную на газопроводе высокого давления, теплообменник, соединенный с выходом горячего потока вихревой трубы, а выход ее холодного потока соединен с конденсатоотводчиком, причем блок управления снабжен датчиком температуры наружного воздуха и регулятором расхода горячего потока вихревой трубы, расположенным на входе эжектора, а теплообменник выполнен пластинчатым и расположен на рециркуляционном контуре системы отопления и своим выходом соединен с входом эжектора, при этом выход эжектора соединен с газопроводом низкого давления, а его камера смешивания соединена с конденсатоотводчиком, причем наружная поверхность емкости сбора конденсата покрыта теплоизолирующим и теплоаккумулирующим материалом, выполненным в виде пучков вытянутых тонких волокон из базальта, расположенных вертикально, при этом вихревая труба снабжена термоэлектрическим генератором, включающим корпус с каналом для горячего потока и каналом для холодного потока, а также комплект дифференциальных термопар, при этом «горячие» концы дифференциальных термопар закреплены внутри канала для горячего потока, а «холодные» концы дифференциальных термопар закреплены внутри канала для холодного потока, кроме того, вход канала для холодного потока соединен с выходом холодного канала вихревой трубы, а вход канала для горячего потока соединен с выходом горячего канала вихревой трубы, а его выход соединен с регулятором расхода горячего потока вихревой трубы.

На фиг. 1 представлена принципиальная схема газораспределительной станции; на фиг. 2 - внешняя поверхность емкости сбора конденсата, покрытая теплоизолирующим и теплоаккумулирующим материалом, выполненным в виде пучков вытянутых тонких волокон из базальта.

Газораспределительная станция содержит блок управления 1, технологический блок 2 с газопроводами высокого давления 3 и низкого давления 4 и емкость сбора конденсата 5, соединенную с газопроводом высокого давления 3, при этом емкость сбора конденсата 5 дополнительно соединена через запорный орган 7 с газопроводом низкого давления 4. Кроме того, газопровод высокого давления 3 связан с газовой полостью 6 в емкости сбора конденсата 5 через конденсатоотводчик 8 и кран 9. В линии связи блок управления 1 и емкости сбора конденсата 5 установлен датчик уровня 10, кран 11 соединяет газопроводом газовую полость 6 с атмосферой. На газопроводе высокого давления 3 установлена вихревая труба 12.

Вихревая труба 12 снабжена термоэлектрическим генератором 29, включающим корпус 30 с каналом 31 для горячего потока и каналом 32 для холодного потока, а также комплект дифференциальных термопар 33. «Горячие» концы 34 дифференциальных термопар 33 закреплены внутри канала 31 для горячего потока, а «холодные» концы 35 дифференциальных термопар 33 закреплены внутри канала 32 для холодного потока. Вход 36 канала 32 для холодного потока соединен с выходом 13 холодного потока вихревой трубы, а его выход 37 соединен с конденсатоотводчиком 8. Вход 38 канала 31 для горячего потока соединен с выходом 14 горячего потока вихревой трубы, а его выход 39 соединен с регулятором расхода 26 горячего потока вихревой трубы 12.

Выход 20 теплообменника 16 соединен с входом 21 эжектора 22, при этом выход 23 эжектора 22 соединен с газопроводом низкого давления 4, а его камера смешивания 24 соединена с конденсатоотводчиком 8. Блок управления 1 снабжен датчиком температуры 25 наружного воздуха и регулятором расхода 26 горячего потока вихревой трубы 12, расположенного на входе 21 эжектора 22, а для увеличения количества тепла, отдаваемого теплообменником 16 в систему отопления 18 помещения 19 газораспределительной станции, он выполнен пластинчатым, как «обладающий наибольшим коэффициентом теплоотдачи для теплообмена между нагревающим газовым теплоносителем (горячий поток природного газа от вихревой трубы 12) и нагреваемым жидкостным теплоносителем (вода системы отопления 18). По теплоэнергетическому коэффициенту пластинчатые теплообменники являются наиболее эффективными по сравнению с другими теплообменниками обычного назначения для давления до 1 МПа и температуре рабочих сред до 140-150°С и могут заменять все типы кожухотрубных, скоростных и пластинчатых конструкций системы теплоснабжения (см., например, стр. 212 и 219 Коваленко А.Н., Глушков А.Ф. Теплообменники с интенсификацией теплоотдачи. М.: Энергоатомиздат. 1986. 240 с.).

Наружная поверхность 27 емкости сбора конденсата 5 покрыта теплоизолирующим и теплоаккумулирующим материалом, выполненным в виде пучков вытянутых тонких волокон из базальта 28, расположенных вертикально.

Газораспределительная станция работает следующим образом.

После термодинамического расслоения в вихревой трубе 12 горячий поток природного газа из выхода 14 поступает на термоэлектрический генератор 29 через вход 38 канала 31 для горячего потока корпуса 30 и, перемещаясь внутри канала 31, контактирует с «горячими» концами 34 дифференциальных термопар 33 и через выход 39 направляется к регулятору расхода 26 горячего потока вихревой трубы 12. Одновременно холодный поток природного газа после термодинамического расслоения в вихревой трубе 12 из выхода 13 поступает на вход 36 канала 32 для холодного потока корпуса 30 и, перемещаясь внутри канала 32, контактирует с «холодными» концами 35 дифференциальных термопар 33 и через выход 37 направляется к конденсатоотводчику 8. В результате на каждом элементе комплекта дифференциальных термопар 33, состоящего из «горячего» 34 и «холодного» 35 концов при использовании в качестве термопар, например, хромель-копель возникает термо-ЭДС до 6,96 мВ (см., например, Иванова Г.Н. Теплотехнические измерения и приборы. М.: Энергоатомиздат, 1984. 230 с.). Это позволяет получить на выходе термоэлектрического генератора 29 напряжение в пределах 12÷36 В (см., например, Технические основы теплотехники. Теплотехнический эксперимент. Справочник / под. общ. ред. В.М. Зорина. М.: Энергоатомиздат, 1980. 560 с.), что вполне достаточно для освещения как блока регулирование, так и помещения газораспределительной станции в целом без подводки электроэнергии от сети энергоснабжения.

При возрастании отрицательных температур наружного воздуха глубина промерзания грунта также увеличивается (см., например, СНиП 2.01.01-83 Строительная климатология и геофизика. М.: Стройиздат. 1982), что приводит к изменению температурного режима поступления в емкость сбора конденсата 5 влаги, количество которой уменьшается вплоть до полного прекращения из-за замерзания выхода трубопровода от крана 9 конденсатоотводчика 8. Кроме того, в газовой полости 6 с понижением температуры наружной поверхности емкости сбора конденсата 5, контактирующей с промерзающим грунтом. Нарушается тепломассообменный процесс (см., например, Осипова В.Л. Теплопередача. М.: 1980) и наблюдается кристаллизация влаги и сопутствующих природному газу компонентов, что также приводит к ухудшению условий эксплуатации газораспределительной станции.

При покрытии наружной поверхности 27 емкости сбора конденсата 5 теплоизолирующим и теплоаккумулирующим материалом, выполненным в виде пучков вытянутых тонких волокон 28 из базальта, расположенных вертикально, осуществляется теплоизоляция корпуса емкости сбора конденсата 5 от промерзающего грунта, что устраняет потери теплоты с поддержанием заданного температурного режима поступления влаги по трубопроводу из конденсатоотводчика 8 через кран 9. Расположение на наружной поверхности 27 вытянутых тонких волокон 28 из базальта, расположенных вертикально, обеспечивает при поступлении в газовую полость 6 влаги с теплотой процесса конденсации аккумуляцию теплоты, начиная с нижнего уровня корпуса емкости сбора конденсата 5 и до его верхнего уровня, т.е. к местам соединения трубопроводов с кранами 7, 9 и 11, а также датчиком уровня 10 (см., например, Волокнистые материалы из базальтов Украины. Киев: Техника. 1971, 76 с.). В результате в газовой полости 6 наблюдаются оптимальные условия теплообмена конденсирующейся массы сопутствующих компонентов природного газа при изменяющихся погодно-климатических условиях эксплуатации газораспределительной станции.

Природный газ по газопроводу высокого давления 3 поступает в помещение 9 газораспределительной станции к технологическому блоку 2 для осуществления регулирования давления газа, причем регуляторы давления работают на достаточно высоком (от 3,5 и более кратном) перепаде давления между газопроводами высокого давления 3 и низкого давления 4 с невостребованным погашением избытка энергии (см. Промышленное газовое оборудование. Справочник. Саратов: Газовик, 2002. 624 с.).

Для использования энергии движущегося в газопроводах 3 и 4 газа в качестве частичного погасителя избыточного давления применяется вихревая труба, а ее горячий поток - как источник тепла в системе отопления помещения 19. В технологическом блоке 2 природный газ из газопровода высокого давления 3 направляется в вихревую трубу 12, где в результате термодинамического расслоения разделяется на периферийный с высоким давлением горячий поток с температурой около 100°С (см., например, Меркулов А.П. Вихревой эффект и его применение в промышленности. Куйбышев, 1969. 369 с.), и холодный поток с низким давлением с температурой ниже температуры газа, поступающего в вихревую трубу 12.

Из выхода 39 канала 31 для горячего потока корпуса 30 термоэлектрического генератора 29 горячий поток, являющийся источником тепла, направляется на вход регулятора расхода 26, расположенного на входе 21 эжектора 22 и соединенного с входом 15 пластинчатого теплообменника 16. В зависимости от температуры окружающей среды при отрицательных температурах наружного воздуха, регистрируемых датчиком температуры 25 наружного воздуха, блок управления 1 подает команду на полное или частичное поступление через регулятор расхода 26 горячего потока из вихревой трубы 12 на вход 15 пластинчатого теплообменника 16, расположенного на рециркуляционном контуре 17 системы отопления 18 помещения 19 газораспределительной станции. После нагрева воды системы отопления 18 частично остывший до 40-50°С горячий поток из выхода 20 пластинчатого теплообменника 16 поступает на вход 21 эжектора 22. При частичной подаче горячего потока из вихревой трубы 12 на вход 15 пластинчатого теплообменника 16, когда отрицательная температура наружного воздуха не требует полной отдачи тепловой энергии на систему отопления 18 помещения 19 от вихревой трубы 12, на вход 21 эжектора поступает горячий поток как от выхода 14, так и от выхода 20 пластинчатого теплообменника 16.

Холодный поток газа с конденсатом, полученным как в процессе охлаждения парообразной влаги при термодинамическом расслоении газа, так и сопутствующим движущемуся газу по газопроводу высокого давления 3, из выхода 37 канала 32 для холодного потока корпуса 30 термоэлектрическим генератором 29 поступает в конденсатоотводчик 8, где происходит отбор конденсата с последующим его самотеком через кран 9 по трубопроводу в емкость сбора конденсата 5. При заполнении емкости сбора конденсата 5 до определенного уровня (например, 0,75 объема) от датчика уровня 10 поступает сигнал в блок управления 1 о необходимости опорожнить емкость сбора конденсата 5. Для опорожнения емкости сбора конденсата 5 закрывается кран 9 и открывается запорный кран 7. Газ, находящийся в емкости сбора конденсата 5, поступает в газопровод низкого давления 4, и тем самым в емкости сбора конденсата 5 давление снижается. Это позволяет перекачивать находящийся в емкости сбора конденсата 5 конденсат в забирающее устройство, например в автоцистерну, перекрывая запорный кран 7 и открывая кран 11.

Очищенный от конденсата в конденсатоотводчике 8 холодный поток газа с давлением более низким, чем давление газа на входе в вихревую трубу 12, поступает в камеру смешивания 24 эжектора 22, где смешивается с горячим и/или частично охлажденным в пластинчатом теплообменнике 16 потоком, имеющим более высокое давление, чем холодный поток. Смешивание с горячим и/или частично охлажденным горячего и холодного потоков перед поступлением из выхода 23 эжектора 22 в газопровод низкого давления 4 обеспечивает получение потока газа с температурой, устраняющей появление инея и тем более возможность обмерзания конденсирующейся влаги. Использование эжектора 22 не только позволяет предотвратить потери газа, используемого в качестве источника тепла, но и предотвращает обмерзание при дросселировании.

Оригинальность предлагаемого технического решения заключается в том, что снабжение газораспределительной станции термогенератором, соединенным с выходами «горячего» и «холодного» потоков природного газа, термодинамически расслоенного в вихревой трубе, обеспечивает снижение, особенно при длительной эксплуатации, энергозатрат на регулирование и автоматизированный контроль энергоносителя путем устранения необходимости дополнительных энергозатрат на освещение помещения.

Газораспределительная станция, содержащая блок управления, технологический блок с газопроводом высокого и низкого давления, емкость сбора конденсата, соединенную с газопроводом высокого давления и через запорный орган с газопроводом низкого давления, эжектор, вихревую трубу, установленную на газопроводе высокого давления, теплообменник, соединенный с выходом горячего потока вихревой трубы, а выход ее холодного потока соединен с конденсатоотводчиком, причем блок управления снабжен датчиком температуры наружного воздуха и регулятором расхода горячего потока вихревой трубы, расположенным на входе эжектора, а теплообменник выполнен пластинчатым и расположен на рециркуляционном контуре системы отопления и своим выходом соединен с входом эжектора, при этом выход эжектора соединен с газопроводом низкого давления, а его камера смешивания соединена с конденсатоотводчиком, причем наружная поверхность емкости сбора конденсата покрыта теплоизолирующим и теплоаккумулирующим материалом, выполненным в виде пучков вытянутых тонких волокон из базальта, расположенных вертикально, отличающаяся тем, что вихревая труба снабжена термоэлектрическим генератором, включающим корпус с каналом для горячего потока и каналом для холодного потока, а также комплект дифференциальных термопар, при этом «горячие» концы дифференциальных термопар закреплены внутри канала для горячего потока, а «холодные» концы дифференциальных термопар закреплены внутри канала для холодного потока, кроме того, вход канала для холодного потока соединен с выходом холодного канала вихревой трубы, а вход канала для горячего потока соединен с выходом горячего канала вихревой трубы, а его выход соединен с регулятором расхода горячего потока вихревой трубы.



 

Похожие патенты:

Предлагаемое изобретение относится к газоснабжению и может быть использовано для обогрева и электроснабжения основного оборудования газораспределительных пунктов и газораспределительных станций путем трансформации энергии давления транспортируемого газа в тепловую, а тепловую в электрическую.

Изобретение относится к газовой промышленности, в частности, к технологии редуцирования природного газа, и предназначено для использования при транспортировке и потреблении природного газа.

Настоящее изобретение предлагает систему подачи газа, включающую устройство для хранения газа, силовое устройство и устройство для заправки газом. Устройство для хранения газа включает две группы цилиндров, имеющие одинаковое число цилиндров.

Изобретение относится к газовой технике, в частности к газораспределительным станциям (далее ГРС) для снижения давления газа в газопроводе. ГРС содержит блок управления, технологический блок с газопроводом высокого и низкого давления, емкость сбора конденсата, соединенную с газопроводом высокого давления и через запорный орган с газопроводом низкого давления, эжектор, вихревую трубу, установленную на газопроводе высокого давления, теплообменник, соединенный с выходом горячего потока вихревой трубы, а выход ее холодного потока соединен с конденсатоотводчиком.

Изобретение относится к устройству для утилизации энергии сжатого газа. Устройство содержит каскады низкого и высокого давления, блок измерения расхода газа, радиатор, средства для регулирования температуры газа, поступающего потребителю, основной теплообменник, холодильную камеру, потребитель холода, источник электроэнергии и дополнительный теплообменник.

Способ предназначен для комбинированной выработки электроэнергии, промышленного холода и конденсата. Способ заключается в следующем: природный газ забирают из магистрали высокого давления перед редуцирующим устройством и через байпасный газопровод направляют в магистраль низкого давления, при этом природный газ направляют в энергоутилизационную турбодетандерную установку для выработки электрической энергии в турбодетандере при расширении природного газа высокого давления, далее его направляют в газотурбинную установку для выработки электрической энергии с помощью газотурбинного двигателя и затем его направляют в теплоутилизационную турбодетандерную установку для выработки электрической энергии в турбодетандере при расширении природного газа высокого давления.

Изобретение относится к комплексу для доставки природного газа потребителю, включающему средство его трансформирования в газогидрат. Средство содержит реактор, сообщенный с источником газа и воды, средство охлаждения смеси воды и газа и средство поддержания давления в реакторе не ниже равновесного, необходимого для гидратообразования, средство отгрузки газогидрата в транспортное средство снабженное грузовыми помещениями, выполненными с возможностью поддержания термодинамического равновесия, исключающего диссоциацию газогидрата, и средство разложения газогидрата с получением газа.

Изобретение относится к способу подготовки природного газа для транспортирования, включающий получение газовых гидратов путем смешения газа с водой в реакторе непрерывного охлаждения и поддержания требуемых температур полученной смеси с одновременным поддержанием давления не ниже равновесного, необходимого для гидратообразования.

Изобретение относится к устройству для подготовки природного газа для транспортирования, включающему реактор, сообщенный с источником газа и воды, средство охлаждения смеси воды и газа и средство поддержания давления в реакторе не ниже равновесного, необходимого для гидратообразования.

Изобретение относится к области газовой промышленности и энергетики, в частности к установкам перекачки природного газа и энергетическим установкам, утилизирующим энергию избыточного давления природного газа.

Изобретение относится к области транспорта газа по магистральным газопроводам, в частности к способам работы газораспределительной станции (ГРС). Способ работы ГРС включает средства измерения давления и температуры газа в газопроводах высокого и среднего давления, фильтрации и регулирования давления газа, согласно которому природный газ из газопровода высокого давления подают в аккумулирующие емкости одинакового объема, предварительно заполняют природным газом с давлением на 0,5-0,6 МПа выше, чем давление в газопроводе среднего давления, дросселируют газ с повышением давления до 2,5-3 МПа, при этом за счет сжатия газа в них повышается температура, после чего дросселируют, очищают от примесей и подают газ с положительной температурой в газопровод среднего давления для газоснабжения потребителей. Технический результат - повышение температуры газа до положительного значения при подаче в газопровод среднего давления, исключение гидратообразования в зимний и летний периоды работы ГРС, отказ от установки на ГРС подогревателей газа и обеспечение экономии газа, расходуемого на собственные нужды. 1 ил.

Изобретение относится к области газоснабжения и может быть использовано в составе газораспределительных станций (ГРС) и газорегуляторных пунктов (ГРП) для утилизации энергии потока газа. Детандер-генераторный агрегат с системой его регулирования, включающий электрогенератор, регулирующий орган с приводом, усилитель сигнала и блок сравнения, отличающийся тем, что на линии редуцирования между предохранительным запорным клапаном и регулятором давления дополнительно установлен объемный пневмодвигатель, при этом выход объемного пневмодвигателя соединен с его входом через регулирующий клапан, датчик перепада давлений на объемном пневмодвигателе соединен с элементом сравнения, усилителем сигнала и исполнительным устройством, связанным с регулирующим клапаном. Техническим результатом является возможность работы детандер-генераторной установки с относительно малыми давлениями и расходами, независимо от неравномерности отбора газа потребителями и изменения момента сопротивления, а также увеличение доли утилизированной энергии. 1 ил.

Изобретение относится к газораспределительным станциям. Предложенная станция включает модуль подготовки газа, состоящий из блока переключения с узлами переключения высокого и низкого давления и узлом распределения, узла очистки газа, подогревателя с узлами нагрева газа и воздуха, блока одоризации газа с емкостью одоранта и блока автономного энергообеспечения. Кроме того, станция включает по меньшей мере один модуль редуцирования и учета газа, который состоит из по меньшей мере одного блока редуцирования с узлом коммерческого учета. При работе станции газ высокого давления, поступающий через узел переключения высокого давления, очищают, нагревают горячим теплоносителем, подаваемым из узла нагрева теплоносителя, одорируют и через узел распределения направляют потребителю после редуцирования и коммерческого учета. Часть газ высокого давления подают на собственные нужды по байпасным линиям для питания блока автономного энергообеспечения, пневмоприводной запорно-регулирующей арматуры, узла нагрева теплоносителя. Технический результат - автономность работы станции, обеспечение газом нескольких потребителей, снижение металлоемкости станции и уменьшение энергопотребления. 1 з.п. ф-лы, 1 ил.

Изобретение относится к газораспределительным станциям. Предложенная станция включает модуль подготовки газа, состоящий из блока переключения с узлами переключения высокого и низкого давления и узлом распределения, узла очистки газа, подогревателя с узлами нагрева газа и воздуха, блока одоризации газа с емкостью одоранта, расположенного на линии газа низкого давления, и блока автономного энергообеспечения. Кроме того, станция включает по меньшей мере один модуль редуцирования и учета газа, который состоит из по меньшей мере одного блока редуцирования с узлом коммерческого учета и резервной нитки редуцирования и коммерческого учета. При работе станции газ высокого давления, поступающий через узел переключения высокого давления, очищают, нагревают горячим теплоносителем, подаваемым из узла нагрева теплоносителя, и через узел распределения направляют потребителю после редуцирования, коммерческого учета и одорирования. Часть газ высокого давления подают на собственные нужды по байпасным линиям для питания блока автономного энергообеспечения, пневмоприводной запорно-регулирующей арматуры, узла нагрева теплоносителя. Технический результат - автономность работы станции, обеспечение газом нескольких потребителей, снижение металлоемкости станции и уменьшение энергопотребления. 1 з.п. ф-лы, 1 ил.

Регулятор (1) давления эксплуатационного газа содержит проточный канал (2) для газа; перемещаемую задвижку (3), установленную в канале (2) с образованием сужения канала (2) для создания перепада давления газа с давления подачи до давления поставки; приводную камеру (4), сообщающуюся с расположенным ниже по потоку участком (2b), ограниченную первой перемещаемой стенкой (5), которая соединена с задвижкой (3) так, чтобы повышение давления поставки вызывало соответствующее смещение задвижки (3), приводящее к уменьшению поперечного сечения сужения, и наоборот; упругий элемент (8), выполненный с возможностью противодействия силе давления газа, воздействующей на первую перемещаемую стенку (5), путем приложения к ней заданной силы, стремящейся сместить задвижку (3) так, чтобы увеличить поперечное сечение сужения и компенсационную камеру (6), заполненную компенсационным газом и ограниченную второй перемещаемой стенкой (7), соединенной с задвижкой (3) так, чтобы обеспечивать возможность передачи силы давления компенсационного газа на задвижку (3). При работе регулятора осуществляют операцию ежемоментного регулирования давления компенсационного газа в соответствии с указанным давлением поставки. Повышаются точность и быстрота регулирования газа. 3 н. и 9 з.п. ф-лы, 2 ил.
Изобретение относится к газовой промышленности. Настоящее изобретение представляет способ и установку для нагрева природного газа, причем способ включает в себя следующие стадии: a) подачу природного газа, который имеет температуру от -10°C до 50°C и находится под давлением по меньшей мере в 30 бар, из трубопровода снабжения природным газом в первую систему полостей теплообменника, b) подачу средства нагрева (теплоносителя), имеющего температуру в пределах от 30°C до 160°C, во вторую систему полостей теплообменника, причем первая и вторая система полостей герметически изолированы друг от друга и от окружающей среды, c) нагрев природного газа в первой системе полостей до температуры в пределах от 20°C до 150°C посредством теплоносителя во второй системе полостей, причем в качестве теплообменника применяют пластинчатый теплообменник, включающий в себя по меньшей мере две пары теплообменных пластин. Теплообменные пластины каждой пары теплообменных пластин полностью сварены по меньшей мере по своим наружным краям, d) отвод нагретого природного газа из первой системы полостей по меньшей мере еще на одну стадию обработки. Техническим результатом является повышение КПД и уменьшение габаритов теплообменника, благодаря чему можно добиться снижения затрат. 3 н. и 6 з.п. ф-лы.

Изобретение относится к антифрикционному агенту на основе меркаптотриазола для газопроводов и способу его приготовления. Антифрикционный агент готовят с помощью следующих этапов: получение 1,3-диаминотиомочевины из гидразингидрата и сероуглерода в массовом отношении от 3:1 до 4:1 под действием катализатора I; получение дитиокарбогидразона по реакции конденсации 1,3-диаминотиомочевины и ароматического альдегида в массовом отношении от 1:1 до 1:1,5; получение меркаптотриазольного соединения из дитиокарбогидразона и ароматического сложного эфира в массовом отношении от 1:1 до 1:3 под действием катализатора II; растворение меркаптотриазольного соединения в ацетоне, добавление туда фосфорной кислоты или фосфата(ов) и тщательное перемешивание их с получением целевого продукта. Катализатор I представляет собой 2-хлорэтанол, 2-меркаптоэтанол, этиленхлоргидрин или 2-(2-хлорэтокси)этанол. Катализатор II представляет собой гидроксид калия или гидроксид натрия. Изобретение обеспечивает простые эксплутационные и мягкие реакционные условия, доступность исходных веществ и подходит для онлайновой атомизации и впрыскивания. 2 н. и 10 з.п. ф-лы, 2 ил., 3 пр.

Изобретение относится к газораспределительным станциям, располагаемым на ответвлениях магистральных трубопроводов, и может быть использовано в газовой промышленности. Предложено два варианта комплекса: первый состоит из модуля подготовки газа, включающего блок переключения с узлами переключения высокого давления, распределения и переключения низкого давления, узел очистки газа, нагреватель с узлами нагрева газа и генератором горячего воздуха, блок одоризации газа, блок автономного энергообеспечения, узел подготовки и учета импульсного и топливного газа, систему отопления и вентиляции, а также включает по меньшей мере один модуль с узлами редуцирования и коммерческого учета. Во втором варианте нагреватель оснащен генератором теплоносителя. При работе комплекса газ высокого давления очищают, нагревают горячим воздухом (вариант 1) или циркулирующим теплоносителем (вариант 2), небольшую часть газа подают на собственные нужды в блок автономного энергообеспечения, узел подготовки и учета импульсного и топливного газа и пневмоприводы динамического оборудования и запорно-регулирующей арматуры, а основную часть после редуцирования и коммерческого учета после одоризации направляют потребителю. В генератор горячего воздуха (вариант 1) подают топливо, воздух и конденсат, а горячий воздух после нагрева им газа направляют в систему отопления и вентиляции. В варианте 2 из генератора теплоносителя выводят отработанные газы. Технический результат - обеспечение автономности работы комплекса, возможности подачи газа нескольким потребителям, возможности изменения производительности в диапазоне, превышающем рабочие диапазоны узла редуцирования, снижение металлоемкости и уменьшение энергопотребления. 2 н. и 4 з.п. ф-лы, 2 ил.

Изобретение относится к устройствам регулирования давления в газовой магистрали с помощью турбодетандеров и может быть использовано на газораспределительных станциях для выработки электрической энергии. Устройство содержит газораспределительное устройство, контроллер, датчики давления, турбодетандер, инвертор, датчик нагрузки, нагревательные элементы, силовые ключи, масштабирующие усилители, сумматоры, расходомер, блоки сравнения, корректор и задатчик номинального режима работы турбодетандера, корректор и задатчик минимального значения нагрузки нагревательных элементов, блок вычисления разности давлений, блок вычисления запасенной энергии газа, компараторы, блоки сигнализации и отключения максимального значения внешней нагрузки. Технический результат - повышение надежности работы устройства посредством поддержания требуемой величины подогрева природного газа в зависимости от его расхода и согласования запасенной энергии сжатого газа и электроэнергии, отдаваемой в сеть. 1 ил.

Изобретение относится к газовой технике, в частности к газораспределительным станциям для снижения давления газа в газопроводе. Технический результат - снижение энергоемкости эксплуатации ГРС за счет использования теплового потенциала вихревой трубы при получении электрического потенциала в термоэлектрическом генераторе. ГРС содержит блок управления, технологический блок с газопроводом высокого и низкого давления, емкость сбора конденсата, соединенную с газопроводом высокого давления и через запорный орган с газопроводом низкого давления, эжектор, вихревую трубу, установленную на газопроводе высокого давления, при этом вихревая труба снабжена термоэлектрическим генератором, включающим корпус с каналом для горячего потока и каналом для холодного потока, а также комплект дифференциальных термопар, при этом «горячие» концы дифференциальных термопар закреплены внутри канала для горячего потока, а «холодные» концы дифференциальных термопар закреплены внутри канала для холодного потока. 2 ил.

Наверх