Способ получения биологически активных пептидов

Изобретение относится к области биотехнологии, в частности к способу получения рекомбинантного биологически активного пептида на основе пептидов, входящих в состав миелопида. Представленный способ включает трансфекцию клеток Escherichia coli BL21 (DE3) плазмидной ДНК рЕТ30а, несущей ген, представленный последовательностью ATGGGTCGTGGCTTCTTAGGCTTTCCAACTGGCCGTGGTCTGGTGGTGTATCCATGGGGTCGTGGTCTGGTGTGCTATCCGCAAGGTCGTGGCTTCCGTCCACGCATCATGACTCCAGGCCGCGGCTTTCTGGGCTTCCCGACCACTGGTCGTCTCGTTGTGTACCCGTGGACCGGCCGCCTGGTTTGTTACCCACAGACGGGTCGCTTTCGCCCGCGTATTATGACGCCGTAA, кодирующий рекомбинантный белок, культивирование полученного штамма с индукцией экспрессии белка добавлением IPTG, лизирование, включающее обработку клеток ультразвуковым дезинтегратором с получением супернатанта, очистку супернатанта на Q-Sepharose и SP-Sepharose, объединение фракций, содержащих целевой продукт. Предложенный способ может быть использован при производстве и применении лекарственных субстанций на основе смеси биологически активных пептидов. 5 ил., 2 табл., 3 пр.

 

Изобретение относится к области биотехнологии, в частности к способу получения биологически активных пептидов путем экспрессии in vitro в клетках, содержащих генетические конструкции, кодирующие рекомбинантные белки, состоящие из биологически активных пептидов, разделенных сайтами узнавания протеаз (рисунок 1). Биологически активные пептиды представляют собой гормоны, их биологически активные фрагменты и/или продукты протеолиза различных белков организма. Рекомбинантный белок после введения в организм способен гидролизоваться с высвобождением биологически активных пептидов. Предложенный способ позволяет оптимизировать производство и применение лекарственных субстанций на основе смеси различных биологически активных пептидов.

Биологически активные пептиды играют важную роль как медиаторы в огромном количестве регуляторных систем. Одна часть таких пептидов получается классическим путем экспрессии прогормонов с последующим процессингом и секрецией активного компонента - пептида во внеклеточное пространство. Биологические функции таких пептидов хорошо изучены и описаны.

В то же время исследования последних десятилетий выявили вторую группу биологически активных пептидов, представляющую собой продукт протеиназного гидролиза белков различных тканей. К настоящему времени хорошо установлены такие биологически активные фрагменты, происходящие из казеина, гемоглобина, основного меилинового белка, глютена, цитохрома, лактоферина, альбумина и некоторых других [A novel system of peptidergic regulation. Karelin AA1, Blishchenko EYu, Ivanov VT. FEBS Lett. 1998 May 22; 428(1-2):7-12].

Отличительной особенностью таких пептидов является, во-первых, короткая аминокислотная последовательность (не более восьми аминокислот), во-вторых, биологический эффект проявляет смесь нескольких пептидов, выделяемых совместно из одной ткани.

Примером такой смеси пептидов может быть Миелопид, препарат широкого спектра действия. Препарат получают путем экстракции предварительно культивируемых клеток костного мозга свиньи с последующей многоступенчатой очисткой нужной фракции. Выделенная фракция изучена, и структура пептидов определена [патент РФ 2041716].

Представляется очевидным, что при современном уровне развития техники получение коротких пептидов из тканей и клеток животных является очень затратным и плохо воспроизводимым.

Современным и перспективным методом получения пептидов является использование генно-инженерных конструкций, несущих необходимы гены, кодирующие целевые пептиды.

В патенте РФ 2507212 предлагается способ получения рекомбинантных пептидов с использованием штаммов-продуцентов E.coli. Недостатком предложенного метода является экспрессия каждого пептида отдельно. Во-первых, короткие пептиды можно экспрессировать только в составе слитного белка общей массой не менее 10 кД. При среднем весе целевого пептида менее 1 кД это резко понижает выход продукта и увеличивает его стоимость. Во-вторых, как уже отмечалось, препараты содержат несколько пептидов. Следовательно, необходимо получение нескольких отдельных штаммов-продуцентов, производящих нужное число пептидов. Это еще значительно удорожает производство. В итоге в случае реализации предложенного изобретения цена продукта будет значительно выше смеси пептидов, получаемых традиционным методом из тканей животных.

Целью изобретения является создание общего простого воспроизводимого метода получения смеси коротких пептидов, обладающих изученной биологической активностью.

Получен полипептид, представляющий собой чередование коротких активных пептидов из изученной композиции, перемежающихся сайтами узнавания специфических протеаз (рисунок 1). Слитная конструкция с сайтами узнавания протеазами моделирует природную ситуацию, когда пептиды являются продуктами протеиназного гидролиза белков. Это дает возможность высвобождать активные пептиды постепенно, в количествах, достаточных для биологического эффекта без передозировки каждого компонента.

Для получения рекомбинантного белка, обладающего биологической активностью пептидов, входящих в состав миелопида, и представленного последовательностью , проводили трансфекцию клеток Escherichia coli BL21 (DE3) плазмидной ДНК рЕТ30а, несущей ген, представленный последовательностью , кодирующий рекомбинантный белок, культивирование полученного штамма с индукцией экспрессии белка добавлением IPTG, лизирование, включающее обработку клеток ультразвуковым дезинтегратором с получением супернатанта, очистку супернатанта на Q-Sepharose и SP-Sepharose, объединение фракций, содержащих целевой продукт.

Техническим результатом заявленного изобретения является повышение эффективности профилактики и лечения путем повышения биологической активности рекомбинатного белка, на основе пептидов, входящих в состав миелопида, при этом биологически активные пептиды в составе рекомбинантного белка разделены сайтами узнавания протеаз, что дает возможность высвобождать активные пептиды постепенно. Кроме того, использование протяженного полипептида позволяет избегать применения чужеродного белка как компонента слитной конструкции, что повышает выход целевых пептидов. Заявленный рекомбинантный (протяженный полипептид) с представленной последовательностью и содержащий одновременно все короткие пептиды позволяет использовать в качестве источника субстанции единичный штамм-продуцент, что технологически более выгодно. Использование заявленной плазмиды обеспечивает эффективный синтез заявленного рекомбинантного белка.

Краткое описание чертежей

Рисунок 1. Схема рекомбинантных белков. П1, П2 и т.д. - биологические пептиды C1, С2 и т.д. - сайты узнавания протеаз. Причем i≥3, биологически активные пептиды могут как различаться, так и быть идентичны, сайты узнавания протеаз также могут различаться и быть идентичны.

Рисунок 2. Аминокислотная последовательность заявленного рекомбинантного белка на основе пептидов.

Рисунок 3. Нуклеотидная последовательность гена, кодирующего рекомбинантный белок на основе пептидов, входящих в состав Миелопида.

Рисунок 4. Хроматографический профиль прохождения рекомбинантного белка на основе пептидов, входящих в состав Миелопида через SP-Sepharose. Мажорный пик соответствует выходу рекомбинантного белка.

Рисунок 5. Хроматографический профиль элюции рекомбинантного белка на основе пептидов, входящих в состав Миелопида с аналитической колонки Kromasil 300-5С18.

Изобретение иллюстрируют примеры.

ПРИМЕР 1. Получение рекомбинантного белка на основе пептидов, входящих в состав миелопида

Аминокислотная последовательность рекомбинантного белка представлена на рисунке 2.

Для получения рекомбинантного белка была создана генетическая конструкция на основе плазмиды рЕТ30а, которая содержит ген, кодирующий данный рекомбинантный белок. Последовательность гена представлена на рисунке 3.

Плазмидой трансфецировались клетки E.coli штамма BL21(DE3). После трансфекции клетки пересевали в культуральную колбу с бульоном LB и канамицином 25 мкг/мл. Культура выращивалась на шейкере при 280 об/мин при температуре 37°С до достижения оптической плотности значения OD585=0,8E. Индукция экспрессии белка проводилась добавлением IPTG до концентрации 1 mM. Культура дополнительно культивировалась 4 часа, далее клетки осаждались центрифугированием при 5000g. Осадок клеток лизировали в 8 М мочевине и обрабатывали на ультразвуковом дезинтеграторе. Лизат клеток центрифугировали при 20000g 2 часа. Супернатант фильтровали через колонку с Q-Sepharose. Фракцию, не связавшуюся с данным сорбентом, хроматографировали на SP-Sepharose в градиенте NaCl (стартовый буфер: 20 mM TrisHCl рН 6.8, 20 mM NaCl, итоговый буфер 20 mM TrisHCl рН6.8, 400 mM NaCl). Хроматографический профиль представлен на рисунке 4. Фракции, содержащие целевой продукт, объединяли и диализовали в 0,9% NaCl. Чистоту продукта анализировали методом ВЭЖХ (рисунок 5).

ПРИМЕР 2. Влияние рекомбинантного белка на количество клеток, продуцирующих антитела, в лимфатических узлах иммунизированных животных

15 мышей-самок, гибридов первого поколения (CBA×C57BL), весом 20-22 г иммунизировали 5% взвесью эритроцитов барана в физиологическом растворе, подкожно по 0,1 мл в подушечки задних конечностей. Через 14 дней после первой иммунизации была проведена повторная иммунизация той же дозой и тем же способом. На 4-е сутки после второй иммунизации мышей разделили на 3 группы по 5 особей в группе. Первой группе (контрольной) вводили подкожно в подушечки задних лап по 0,1 мл физиологического раствора; второй группе вводили по 0,1 мл физиологического раствора, содержащего 1,5 мкг коммерческого препарата миелопид, и третьей группе - по 0,1 мл физиологического раствора, содержащего 1,5 мкг рекомбинантного белка. Через сутки все мыши были забиты и у них были удалены подколенные лимфоузлы. Лимфоузлы гомогенизировали и в полученной клеточной суспензии определяли методом Ерне количество клеток, продуцирующих антитело класса IgG к эритроцитам барана. Коэффициент стимуляции (К) антителообразования рассчитывали как отношение количества зон гемолиза в опытных чашках к количеству зон гемолиза в контрольных. Достоверность разницы между экспериментальными группами оценивали по t-критерию Стьюдента. Полученные результаты представлены в Таблице 1.

Из полученных данных видно, что коэффициент стимуляции - миелопид/контроль составляет (36,4/25,2)=1,44, а коэффициент стимуляции - рекомбинантный белок/контроль составляет (92,4/25,2)=3,67.

Таким образом, введение экспериментальным животным полученного рекомбинантного белка заявленным способом приводит к значительно более выраженной стимуляции антителообразования (К=3,3), т.е. обеспечивая синергетический эффект действия входящих в него миелопептидов, чем после введения миелопида (К=1,45), что подтверждает повышение биологической активности полученного рекомбинантного белка, содержащего комплекс миелопептидов.

ПРИМЕР 3. Изучение способности рекомбинантного белка восстанавливать гуморальный иммунный ответ при вторичном иммунодефицитном состоянии

10 мышам-самкам, гибридам первого поколения (CBA×C57BL), весом 18-20 г вводили внутрибрюшинно циклофосфамид в дозе 200 мг/кг в физиологическом растворе. 5 мышам вводили физиологический раствор. На следующие сутки всех 15 животных иммунизировали 5% взвесью эритроцитов барана в физиологическом растворе подкожно по 0,1 мл в подушечки задних конечностей. На 2-е и 3-й сутки после иммунизации 5 животным из группы, которая получала циклофосфамид, внутримышечно вводили по 1,5 мкг рекомбинантного белка в 0,1 мл физиологического раствора. На 4 сутки после иммунизации эритроцитами барана все мыши были забиты и у них были удалены подколенные лимфоузлы. Лимфоузлы гомогенизировали и в полученной клеточной суспензии определяли методом Ерне количество клеток, продуцирующих антитело класса IgM к эритроцитам барана. Достоверность разницы между экспериментальными группами оценивали по t-критерию Стьюдента. Полученные результаты представлены в Таблице 2.

Таким образом, введение экспериментальным животным со вторичными иммунодефицитами полученного рекомбинантного белка заявленным способом приводит к восстановлению гуморального иммунного ответа. Таким образом, полученный рекомбинантный слитый полипептид обладает биологической активностью входящих в состав пептидов, что дает возможность его использования для профилактики и лечения ВИД.

В связи с вышеизложенным, использование синтезированной плазмиды обеспечивает эффективный синтез заявленного рекомбинантного белка с биологической активностью. Получение рекомбинантного белка на основе пептидов, входящих в состав миелопида с представленной последовательностью, позволяет не только сохранить функциональную активность входящих в его пептидов, но и повысить его биологическую активность. Поскольку после введения в организм рекомбинантный белок способен гидролизоваться по сайтам узнавания специфических протеаз с высвобождением входящих в него коротких миелопептидов, что дает возможность высвобождать активные пептиды постепенно и обеспечивает синергетический эффект при иммунизации (как отмечено в вышеуказанном примере).

Способ получения рекомбинантного белка, обладающего биологической активностью пептидов, входящих в состав миелопида, и представленного последовательностью
MFLGFPTGRGLVVYPWGRGLVCYPQGRGFRPRIMTPGRGFLGFPTTGRLVVYPWTGRLVCYPQTGRFRPRIMTP, включающий трансфекцию клеток Escherichia coli BL21 (DE3) плазмидной ДНК рЕТ30а, несущей ген, представленный последовательностью ATGGGTCGTGGCTTCTTAGGCTTTCCAACTGGCCGTGGTCTGGTGGTGTATCCATGGGGTCGTGGTCTGGTGTGCTATCCGCAAGGTCGTGGCTTCCGTCCACGCATCATGACTCCAGGCCGCGGCTTTCTGGGCTTCCCGACCACTGGTCGTCTCGTTGTGTACCCGTGGACCGGCCGCCTGGTTTGTTACCCACAGACGGGTCGCTTTCGCCCGCGTATTATGACGCCGTAA, кодирующий рекомбинантный белок, культивирование полученного штамма с индукцией экспрессии белка добавлением IPTG, лизирование, включающее обработку клеток ультразвуковым дезинтегратором с получением супернатанта, очистку супернатанта на Q-Sepharose и SP-Sepharose, объединение фракций, содержащих целевой продукт.



 

Похожие патенты:

Группа изобретений относятся к области биохимии. Предложен способ получения полипептида и способ получения сниженного количества гликоформы G(0) и/или повышенного количества гликоформы G(1) полипептида.

Группа изобретений относится к биотехнологии. Предложены способ снижения накопления лактата от 5% до 40% при культивировании клеток млекопитающих и способ получения антитела.

Изобретение относится к биотехнологии и может быть использовано при производстве белковой пищевой добавки. Предложен способ получения белковой биомассы путем глубинного культивирования гриба Pleurotus pulmonarius РР-3.2 на крахмал-аммонийной среде в условиях аэрации при рН 5,5-6,0 и 23-25°C.

Изобретение относится к области биотехнологии и вирусологии. Описан новый штамм вируса ветряной оспы (VZV).

Предложен способ получения рекомбинантного полипептида. Способ включает культивирование клеток CHO в среде с общим содержанием аминокислот от около 40 до примерно 100 мМ при условиях, включающих в себя, по крайней мере, один температурный сдвиг и, по крайней мере, один сдвиг pH, и экспрессирование рекомбинантного полипептида.

Изобретение касается способа получения рекомбинантного белка SAV-RGD, где SAV - мономер стрептавидина, RGD - меланома-адресующий олигопептид, имеющий аминокислотную последовательность Ser-Arg-Ala-Gly-Ala-Asp-Gly-Phe-Pro-Gly-Cys-Arg-Gly-Asp-Cys-Ser-Gln-Glu.

Изобретение относится к области иммунологии. Предложено антитело для использования в качестве биспецифического антитела, которое характеризуется тем, что содержит 4 полипептида.

Изобретение относится к области биотехнологии, конкретно к получению молекулы Фактора VIII с укороченным В-доменом и ковалентно конъюгированной с гидрофильным полимером, имеющей измененное время полужизни в кровотоке, и может быть использовано в медицине для лечения гемофилии.

Изобретение относится к биотехнологии, а именно к способу очистки полипептида, содержащего Сн2/Сн3-область. Способ включает связывание полипептида с белком А и элюирование полипептида с градиентом pH, начинающимся с 5,0 или менее, с использованием элюирующего буфера, причем элюирующий буфер включает буфер с высоким pH и буфер с низким pH, а градиент pH образуется в результате регулирования процентного содержания каждого pH-буфера в элюирующем буфере.

Изобретение относится к биохимии. Обеспечиваются способы получения белков растительного происхождения или супраструктур белков.

Изобретение относится к области биотехнологии, конкретно к получению агониста рецептора паратиреоидного гормона (PTH), и может быть использовано в медицине. Полученный пептид или его фармацевтическую соль используют в составе фармацевтической композиции для лечения заболеваний, характеризующихся дисфункцией РТН или дисбалансом кальция или фосфатов. Изобретение позволяет получить агонист PTH, обладающий активностью более длительного действия, по сравнению с природным гормоном PTH (1-34). 9 н. и 12 з.п. ф-лы., 20 ил., 3 табл., 9 пр.

Настоящее изобретение относится к биотехнологии. Предложен способ получения вируса гриппа с моногликозилированным гемагглютинин-антигеном (НА-антиген). Способ включает наращивание вируса гриппа, содержащего гемагглютинин-антиген, в специфическом беспатогенном (SPF) курином яйце с эмбрионом с эффективным количеством ингибитора маннозидазы, концентрация которого достаточна для ингибирования α-маннозидазы I в пути N-гликозилирования с последующим выделением полученного вируса гриппа. Дальнейший контакт выделенного вируса гриппа с эндогликозидазой (EndoH) приводит к получению вируса гриппа, имеющего моногликозилированный НА-антиген вируса гриппа. Предложенный способ позволяет получить вирус гриппа с моногликозилированным гемагглютинин-антигеном (НА-антиген), с высоким выходом с использованием специфических беспатогенных (SPF) куриных яиц с эмбрионом, и может быть использован для получения моногликозилированного гемагглютинин-антигена при производстве вакцин. 18 з.п. ф-лы, 4 ил., 4 пр.
Изобретение относится к медицине, а именно к иммунологии, и может быть использовано для получения антирабической диагностической сыворотки. Для этого проводят иммунизацию животных-продуцентов антигенным материалом и адъювантом. В качестве адъюванта используют смесь ланолина и полиэтилсилоксановой жидкости, взятых в весовых соотношениях 1:2-9 соответственно, дополнительно используют иммуномодулятор иммунофан из расчета 0,8-1,2 мл на одно животное. Иммунизацию осуществляют 5-кратно, причем вначале трехкратно с интервалом 20-24 часа вводят антиген совместно с адъювантом, взятых в весовых соотношениях 1:0,8-1,0 из расчета 10-14 мл смеси антигена с адъювантом на одно животное и одновременно – иммунофан. Затем через 12-16 суток антиген вводят из расчета 5-7 мл антигена на одно животное и одновременно - иммунофан, затем через 7-8 суток вводят антиген из расчета 5-7 мл антигена на одно животное. Кроме того, в способе получения антирабической диагностической сыворотки в качестве полиэтилсилоксановой жидкости используют полиэтилсилоксановую жидкость марки ПЭС-2 или марки ПЭС-3, а в качестве антигенного материала используют штамм вируса бешенства «овечий» ВГНКИ и референс-штамм CVS. Использование данного способа позволяет повысить качество целевого продукта за счет увеличения специфической активности сыворотки. 3 з.п. ф-лы, 5 пр.
Изобретение относится к медицине, а именно к биотехнологии, и может быть использовано при получении эритроцитарного антигена для диагностики некробактериоза животных. Для этого получают антигенную фракцию путем культивированием производственного штамма Fusobacterium necrophorum "0-1" ВИЭВ с последующим отделением бактериальной массы и ресуспендированием 0,8-1,2% раствором дезмола до концентрации 4-10 млрд/мл микробных тел. Далее прогревают в течение 55-65 мин при температуре 93-98°C и смесь центрифугируют при 1,5-3,0 тыс. g, в течение 20-30 мин. К супернатанту добавляют формалин в конечной концентрации 0,3-0,4% и инкубируют при комнатной температуре в течение 10-15 суток. Затем к реакционной смеси добавляют формализованные эритроциты, взятые в конечной концентрации 9-12%, а целевой продукт получают инкубированием реакционной смеси с формализованными эритроцитами при 40-46°C в течение 1,5-2 час с последующим охлаждением до их комнатной температуры и отмывкой. Использование данного способа - получение эритроцитарного антигена для диагностики некробактериоза животных - позволяет увеличить срок хранения целевого продукта при сохранении его специфической активности. 3 з.п. ф-лы, 7 пр.

Изобретения относятся к области биотехнологии и касаются способа снижения продукции лактата в клетках млекопитающего, способа сайлесинга или снижения в клетке млекопитающего транскрипции лактатдегидрогеназы (LDH) и киназы пируватдегидрогеназы (PDHK), способа получения клетки млекопитающего, которая проявляет пониженное продуцирование лактата в культуре, вектора, содержащего первую гетерологичную нуклеотидную последовательность, кодирующую малую интерферирующую РНК (миРНК), специфичную для лактатдегидрогеназы, и вторую гетерологичную нуклеотидную последовательность, кодирующую миРНК, специфичную для киназы пируватдегидрогеназы, каждая из которых связана со своим промотором. Представленные изобретения позволяют снизить в культивируемых клетках продукцию лактата и повысить продукцию гетерологичного полипептида. 6 н. и 34 з.п. ф-лы, 6 ил.

Настоящее изобретение относится к медицине. Предложен способ получения ботулотоксина. Способ включает обработку культуры штамма - продуцента ботулотоксина кислотой при рН 3,0-4,5, добавление буфера к осажденному ботулотоксину и обработку ингибитором протеазы и нуклеазы. Затем экстрагированный ботулотоксин осаждают серной или соляной кислотой при рН 2,5-4,5, растворяют в буфере и очищают анионообменной хроматографией. Изобретение обеспечивает получение ботулотоксина с чистотой 98% и выше. 12 з.п. ф-лы, 5 ил., 2 табл., 5 пр.

Изобретение относится к области биохимии, генной инженерии и биотехнологии, в частности к способу получения рекомбинантного белка. Данный способ включает культивирование прокариотической клетки-хозяина, продуцирующей рекомбинантный белок, выделение указанного рекомбинантного белка и его очистку до отфильтрованного препарата для хранения (FBS). Этап выделения указанного рекомбинантного белка включает стадию гомогенизации. Настоящий способ отличается тем, что уровень растворенного кислорода при выделении указанного рекомбинантного белка поддерживается на уровне 75% или более до гомогенизации и на уровне 50% или более после гомогенизации. Изобретение также относится к способу получения рекомбинантного белка, включающему культивирование прокариотической клетки-хозяина с делецией гена menE. Способ предусматривает культивирование указанной прокариотической клетки-хозяина, продуцирующей рекомбинантный белок, выделение рекомбинантного белка и его очистку до FBS. Способы по изобретению отличаются тем, что полученный FBS не содержит детектируемых количеств аддукта рекомбинантного белка и 1,4-дигидрокси-2-нафтоата (DHNA) по данным ионообменной хроматографии (IEC) при 310 нм. Изобретение позволяет получать рекомбинантный белок, отфильтрованный препарат которого не содержит коричневый аддукт и соответствует техническим требованиям. 2 н. и 16 з.п. ф-лы, 12 ил., 3 табл., 5 пр.

Изобретение относится к области биотехнологии, конкретно к разработке химерных молекул внешнего поверхностного белка А (OspA), и может быть использовано в медицине. Разработанный химерный полипептид с SEQ ID NO: 173, а также композиции и комбинированные вакцины, которые его содержат, способны вызывать специфический иммунный ответ против бактерий рода Borrelia. Изобретение позволяет эффективно лечить и предотвращать инфекции Borrelia или лаймской болезни. 13 н. и 23 з.п. ф-лы, 24 ил., 9 табл., 22 пр.

Изобретение относится к области биохимии, в частности к способу получения биспецифичного антитела. Также раскрыт способ определения комбинации антигенсвязывающих сайтов. Изобретение позволяет получать биспецифичные антитела. 2 н.п. ф-лы, 2 табл., 4 пр.

Настоящая группа изобретений относится к биотехнологии и иммунологии. Предложены способы получения целевого антитела с модулированным галактозилированием (варианты), способы модулирования галактозилирования целевого антитела (варианты) путем оптимизации культуральной среды. Способы предусматривают повышение осмоляльности раствора для культивирования клеток животных и/или добавление аспарагина в раствор в определенный момент времени процесса культивирования клеток. Изобретения обеспечивают получение желаемой популяции антител. 5н. и 14 з.п. ф-лы, 3 ил., 8 табл., 3 пр.

Изобретение относится к области биотехнологии, в частности к способу получения рекомбинантного биологически активного пептида на основе пептидов, входящих в состав миелопида. Представленный способ включает трансфекцию клеток Escherichia coli BL21 плазмидной ДНК рЕТ30а, несущей ген, представленный последовательностью ATGGGTCGTGGCTTCTTAGGCTTTCCAACTGGCCGTGGTCTGGTGGTGTATCCATGGGGTCGTGGTCTGGTGTGCTATCCGCAAGGTCGTGGCTTCCGTCCACGCATCATGACTCCAGGCCGCGGCTTTCTGGGCTTCCCGACCACTGGTCGTCTCGTTGTGTACCCGTGGACCGGCCGCCTGGTTTGTTACCCACAGACGGGTCGCTTTCGCCCGCGTATTATGACGCCGTAA, кодирующий рекомбинантный белок, культивирование полученного штамма с индукцией экспрессии белка добавлением IPTG, лизирование, включающее обработку клеток ультразвуковым дезинтегратором с получением супернатанта, очистку супернатанта на Q-Sepharose и SP-Sepharose, объединение фракций, содержащих целевой продукт. Предложенный способ может быть использован при производстве и применении лекарственных субстанций на основе смеси биологически активных пептидов. 5 ил., 2 табл., 3 пр.

Наверх