Бесконтактный радиоволновый способ измерения уровня жидкости в емкости



Бесконтактный радиоволновый способ измерения уровня жидкости в емкости
Бесконтактный радиоволновый способ измерения уровня жидкости в емкости
Бесконтактный радиоволновый способ измерения уровня жидкости в емкости
Бесконтактный радиоволновый способ измерения уровня жидкости в емкости

 


Владельцы патента RU 2601283:

Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук (RU)

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости в емкости, в частности оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов, охлаждающей жидкости в ядерных реакторах и др. Предлагается бесконтактный радиоволновый способ измерения уровня жидкости в емкости, заключающийся в том, что сторону поверхности жидкости по нормали к ней излучают частотно-модулированные по линейному закону электромагнитные волны, принимают отраженные электромагнитные волны, затем выделяют сигнал разностной частоты на выходе смесителя между падающими и отраженными электромагнитными волнами, сохраняют эти данные в виде массива выборок за время периода модуляции, аппроксимируют полученные данные синусоидой путем подбора амплитуды, частоты и фазы до максимального совпадения с полученными данными, по частоте полученной синусоиды судят об уровне жидкости в емкости. Технический результат - повышение точности измерения. 2 ил.

 

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов, охлаждающей жидкости в ядерных реакторах и др.

Известны радиоволновые способы измерения, которые используют для бесконтактного измерения уровня жидких сред в емкостях для хранения нефтепродуктов, химически активных, агрессивных и вязких жидкостей (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989, 208 с.). При этом реализуемые на основе этих способов уровнемеры должны обеспечивать достаточно высокую одинаковую точность (до 2 мм) в диапазоне измерения от 0,3 до 20 метров и при этом быть надежными, удобными в эксплуатации и недорогими устройствами. В задачах, связанных с радиоволновым бесконтактным измерением уровня жидкостей, применяются способы с частотной модуляцией электромагнитных колебаний.

Реализацию способа рассмотрим на примере бесконтактного радиоволнового уровнемера, использующего в работе линейную частотную модуляцию несущей волны (ЛЧМ). Эти частотно-модулированные электромагнитные волны излучаются в сторону поверхности жидкости по нормали к ней. Временное запаздывание отраженной от контролируемой поверхности волны относительно падающей приводит к сдвигу частоты между излученными и отраженными волнами. Этот сигнал разностной частоты (СРЧ) выделяется на специальном элементе - смесителе, входящем в состав измерительного устройства. В этом случае частота отраженного от поверхности контролируемой среды сигнала отличается от частоты зондирующего сигнала на величину частоты сигнала СРЧ: fp=2ΔfML/cTM, где L - расстояние до поверхности контролируемой среды, ΔfM - максимальный диапазон перестройки частоты, TM - период линейной модуляции, с - скорость света. Из этой формулы следует

Как и у всех частотных дальномеров, здесь имеется методическая дискретная ошибка определения дальности δ, обусловленная конечным числом периодов сигнала разностной частоты за время периода модуляции, которое может отличаться от целого:

Наличие этой ошибки определяется способом измерения частоты, который основан на подсчете числа нулей сигнала за определенное время. Так как при незначительном изменении расстояния меняется фаза, а следовательно, и форма сигнала на выходе смесителя, то результат подсчета меняется дискретно. В связи с этим используются различные технические решения, направленные на уменьшение этой погрешности (Кагаленко Б.И., Марфин В.П., Мещеряков В.П. Дальномер повышенной точности // Измерительная техника. 1981, №12. С. 68-69.).

Известно также техническое решение - измерение расстояния по максимальному или средневзвешенному значению спектра сигнала разностной частоты в методе с использованием частотной модуляции, которое по технической сущности наиболее близко к предлагаемому способу и принятое в качестве прототипа (Теоретические основы радиолокации / Под ред. Я.Д. Ширмана. - М.: Сов. Радио, 1970, 560 с.). Данный способ-прототип заключается в зондировании поверхности жидкости по нормали к ней частотно-модулированными электромагнитными волнами, приеме отраженных электромагнитных волн, выделении сигнала СРЧ на выходе смесителя между падающими и отраженными электромагнитными волнами и вычислении расстояния по разностной частоте сигнала СРЧ, определяемой по максимальному значению его частотного спектра.

Однако при этом методическая дискретная ошибка (2) сохраняется, поскольку спектральный анализ основан на разложении сигнала по целому числу гармоник, в то время как реальный максимум при измерении расстояния может располагаться и между гармониками. Чтобы измерить частоту СРЧ на минимальном расстоянии 0.3 м надо иметь такую ΔfM, чтобы можно было наблюдать хотя бы один период сигнала СРЧ. Тогда это будет первая гармоника в спектре СРЧ. Из формулы (1) следует, что ΔfM в этом случае равна 500 МГц, а ошибка δ равна 0.15 м при диапазоне измерения свыше 0.3 м. Поэтому, чтобы обеспечить приемлемую точность, приходится увеличивать ΔfM; обычно эта величина для промышленных уровнемеров составляет 1÷2 ГГц, что соответствует δ=7,5÷3,75 см. Дальнейшее увеличение точности достигается путем использования сглаживающих процедур (Езерский В.В., Давыдочкин В.М. Оптимизация спектральной обработки сигнала прецизионного датчика расстояния на основе частотного дальномера // Измерительная техника. 2005, №2. С. 21-25). Однако использование больших значений ΔfM приводит к увеличению дополнительных погрешностей из-за паразитной частотной модуляции от влияния дополнительных элементов в емкостях и стенок, от неравномерности амплитудно-частотной характеристики трактов, нелинейности модуляции задающего генератора и т.п. Все это вкупе с увеличением стоимости широкополосного устройства приводит к снижению функциональных характеристик уровнемера.

Техническим результатом настоящего изобретения является повышение точности измерения.

Технический результат в предлагаемом способе измерения уровня жидкости в емкости достигается тем, что в сторону поверхности жидкости по нормали к ней излучают частотно-модулированные по линейному закону электромагнитные волны, принимают отраженные электромагнитные волны, затем выделяют сигнал разностной частоты на выходе смесителя между падающими и отраженными электромагнитными волнами, сохраняют эти данные в виде массива выборок за время периода модуляции, аппроксимируют полученные данные синусоидой путем подбора амплитуды, частоты и фазы до максимального совпадения с полученными данными, по частоте полученной синусоиды судят об уровне жидкости в емкости.

На фиг. 1 приведена структурная схема устройства для реализации способа. На фиг. 2 - временные диаграммы, поясняющие действие способа.

На фиг. 1 показаны модулятор 1, генератор 2, направленный ответвитель 3, передающая антенна 4, приемная антенна 5, смеситель 6, вычислительное устройство 7.

Способ реализуется следующим образом. Генератор линейно-изменяющегося напряжения 1 модулирует частоту генератора СВЧ 2, с выхода которого электромагнитные колебания проходят через направленный ответвитель 3 на антенну 4 и излучается в сторону контролируемой поверхности 8. Отраженная электромагнитная волна принимается антенной 5 и поступает на смеситель 6, куда также поступает часть мощности падающей волны от направленного ответвителя 3. На выходе смесителя 6 формируется сигнал разностной частоты, который поступает в вычислительное устройство 7, где происходит его запись в массив данных за период частотной модуляции и определение разностной частоты сигнала при помощи аппроксимации записанных данных синусоидой подбором ее амплитуды, частоты и фазы до максимального совпадения. По найденной частоте определяют расстояние L до контролируемой поверхности 8, по которому судят об уровне жидкости в емкости.

На фиг. 2а, б, в приведены графики смоделированного сигнала СРЧ с ΔfM=150 МГц при наличии шумовой составляющей (точки) и результаты аппроксимации синусоидами (сплошная линия) при расстояниях 0.3, 1.5 и 8.5 м при 256 выборках за период линейной модуляции -1 с. Аппроксимирующая синусоида представлена в виде формулы:

S=a1*sin(b1x+c1),

где а1 - амплитуда, b1 - частота, c1 - фаза, х - индекс массива выборок из 256 точек.

При указанных данных согласно формуле (1) расстояние до контролируемой среды в метрах численно равно частоте СРЧ в герцах. Частоту сигнала СРЧ определяем из соотношения:

fp=b1N/2πTM,

а расстояние - по формуле (1). По результатам оптимизационной процедуры имеем для этих примеров соответственно:

а) для расстояния 0.3 м - а1=1.048, b1=0.007128, c1=0.8092, при коэффициенте совпадения R=0.09633 или fp=0.29 Гц, ошибка равна 10 мм;

б) для расстояния 1.5 м - а1=1.013, b1=0.03677, c1=0.7376, при R=0.9936 или fp=1.4981 Гц, ошибка равна 1,9 мм;

в) для расстояния 8.5 м - а1=1.003, b1=0.2086, c1=0.5689, при R=0.9967 или fp=8.4991 Гц, ошибка равна 0.9 мм.

Приведенные примеры наглядно демонстрируют преимущество предлагаемого способа. При указанной ΔfM=150 МГц, согласно формуле (2), дискретная ошибка δ=0.5 м. При этом узкая полоса частот обеспечивает снижение стоимости устройства, уменьшает влияние паразитной модуляции, нелинейности модуляции генератора и его стабильности.

Бесконтактный радиоволновый способ измерения уровня жидкости в емкости, характеризующийся тем, что в сторону поверхности жидкости по нормали к ней излучают частотно-модулированные по линейному закону электромагнитные волны, принимают отраженные электромагнитные волны, затем выделяют сигнал разностной частоты на выходе смесителя между падающими и отраженными электромагнитными волнами, сохраняют эти данные в виде массива выборок за время периода модуляции, отличающийся тем, что аппроксимируют полученные данные синусоидой путем подбора амплитуды, частоты и фазы до максимального совпадения с полученными данными, по частоте полученной синусоиды определяют уровень жидкости в емкости.



 

Похожие патенты:

Изобретение относится к технической области измерения уровня заполнения. В частности, настоящее изобретение относится к устройству измерения уровня заполнения, к способу определения и читаемому компьютером носителю.

Изобретение относится к области беспроводного измерения количества жидкости. Заявлены способ измерения количества жидкости и система для измерения количества жидкости.

Устройство относится к измерителям уровня наполнителя в резервуарах, емкостях и т.д., вВ частности, к радарному детектированию параметров процесса, связанных с расстоянием до поверхности содержимого в резервуаре с помощью электромагнитных волн.

Изобретение относится к радарным уровнемерам. Заявлен способ радарного определения уровня и система для его реализации.

Предложенные два варианта радиолокационного волноводного уровнемера предназначены для измерения уровня в установках, например в резервуарах, котлах с избыточным давлением, силосах.

Изобретение относится к измерительной технике. В заявленном способе определения положения границы раздела двух веществ в емкости, при котором в емкости с веществами, одно над другим, образующими плоскую горизонтальную границу раздела, размещают вертикально отрезок длинной линии длиной l, заполняемый веществами в соответствии с их расположением в емкости, с оконечным горизонтальным участком фиксированной длины z0, скачкообразно заполняемым веществом и опорожняемым при, соответственно, поступлении веществ в емкость и их удалении из емкости, возбуждают в отрезке длинной линии электромагнитные колебания на двух разных резонансных частотах f 1 и f 2, измеряют эти резонансные частоты в зависимости от координаты z положения границы раздела двух веществ в емкости, дополнительно возбуждают в отрезке длинной линии электромагнитные колебания на третьей резонансной частоте f 3, измеряют f 3 и производят совместную функциональную обработку f 1, f 2 и f 3 согласно соотношению , где f 1 0 ,   f 2 0 ,   f 3 0 - начальные, в отсутствие веществ в емкости, значения f 1, f 2 и f 3, соответственно; - напряжение в точке с координатой ξ отрезка длинной линии с оконечным горизонтальным участком, возбуждаемого на резонансных частотах f 1, f 2 и f 3, соответственно.

Изобретение относится к способу и устройству определения уровня, использующему электромагнитные волны для определения расстояния до поверхности продукта, содержащегося в резервуаре.

Изобретение относится к устройству для измерения уровня заполнения наполняемой среды в контейнере, а также к способу измерения и к компьютерно-читаемому носителю, служащему для управления устройством.

Изобретение относится к области радиолокационной измерительной техники и может быть использовано для создания систем контроля и измерения уровня сыпучих продуктов в резервуарах, эксплуатация которых осуществляется на предприятиях строительной, горнодобывающей и нефтехимической отраслей.

Изобретение относится к измерительной технике и может быть использовано для измерения количества (объема) диэлектрической жидкости в металлической емкости произвольной конфигурации независимо от ее электрофизических параметров.
Наверх