Способ получения пентаоксаспироалканов

Изобретение относится к области органической химии, в частности к способу получения пентаоксаспироалканов общей формулы (1), заключающегося в том, что 1,1-1,1-бис(гидроперокси)циклоалканы (где циклоалкан - циклопентан, или циклогексан, или циклогептан, или циклооктан, или циклододекан) подвергают взаимодействию с формальдегидом в присутствии катализатора Sm(NO3)3·6H2O, и мольном соотношении 1,1-бис(гидроперокси)циклоалкан : формальдегид : Sm(NO3)3·6H2O = 10:20:(0.3-0.7), при комнатной температуре (20°С) и атмосферном давлении в тетрагидрофуране в качестве растворителя в течение 4-6 ч. Эти соединения могут найти применение в качестве препаратов, обладающих противомалярийной активностью. Выход пентаоксаспироалканов (1) составляет 65-97%. 1 табл., 1 пр.

 

Предлагаемое изобретение относится к области органической химии, конкретно к способу получения пентаоксаспироалканов общей формулы (1):

Пентаоксаканы применяются в медицине в качестве препаратов, обладающих противомалярийной активностью (Hye-Sook Kim, Yasuharu Shibata, Yusuke Wataya, Kaoru Tsuchiya, Araki Masuyama, Masatomo Nojima // J. Med. Chem. - 1999. - Vol. 42. - p. 2604-2609).

Известен способ (Hye-Sook Kim, Yasuharu Shibata, Yusuke Wataya, Kaoru Tsuchiya, Araki Masuyama, Masatomo Nojima // J. Med. Chem. - 1999. - Vol.42. - p. 2604-2609) получения 1,2,4,5,7-пентаоксаканов формулы (2) с выходом 12% ацидолизом смеси 1-фенилциклопентена с перекисью водорода и бензальдегидом по схеме:

Известный способ не позволяет получать пентаоксаспироалканы общей формулы (1).

Известен способ (Kevin J. McCullough, Yoshihiro Ushigoe, Shogo Tanaka, Shin-ichi Kawamura, Araki Masuyama, Masatomo Nojiama // J. Chem. Soc., Perkin Trans. - 1998 - Vol. 1. - p. 3059-3064) получения производного 1,2,4,6,8-пентаоксакана формулы (3) с выходами 23-34% взаимодействием α-алкоксигидропероксидов с алифатическими альдегидами в условиях кислотного катализа с последующим добавлением формальдегида по схеме:

Известным способом не могут быть получены пентаоксаспироалканы общей формулы (1).

Известен способ (Hye-Sook Kim, Kaoru Tsuchiya, Yasuharu Shibata, Yusuke Wataya, Yoshihiro Ushigoe, Araki Masuyama, Masatomo Nojima, Kevin J. McCullough // J. Chem. Soc., Perkin Trans. - 1999 - Vol. 1. - p. 1867-1870) получения 1,2,4,5,7-пентаоксакана формулы (3) с выходом 15% озонолизом производного индена с образованием бис-гидропероксида, который превращают в бис-силилидизохроман, последний подвергают взаимодействию с бензальдегидом по схеме:

Таким образом, в литературе отсутствуют сведения о селективном получении пентаоксаспироалканов формулы (1).

Предлагается новый способ селективного получения пентаоксаспироалканов общей формулы (1).

Сущность способа заключается во взаимодействии 1,1-бис(гидроперокси)циклоалканов общей формулы (4) (где циклоалкан - циклопентан, или циклогексан, или циклогептан, или циклооктан, или циклододекан) с формальдегидом (CH2O) в присутствии катализатора Sm(NO3)3·6H2O или мольном соотношении 4:CH2O:Sm(NO3)3·6H2O=10:20:(0.3-0.7), предпочтительно 10:20:0.5 при комнатной температуре (~20°C) и атмосферном давлении в тетрагидрофуране (ТГФ) в качестве растворителя в течение 4-6 ч, предпочтительно 5 ч. Выход пентаоксаспироалканов (1) составляет 65-97%. Реакция протекает по схеме:

Пентаоксаспироалканы (1) образуются только лишь с участием формальдегида и 1,1-бис(гидроперокси)циклоалканов. В присутствии других альдегидов (например, уксусный альдегид, бензальдегид) целевые продукты (1) не образуются. Без катализатора реакция не идет.

Проведение указанной реакции в присутствии катализатора Sm(NO3)3·6H2O больше 7 мол. % не приводит к существенному увеличению выхода целевого продукта (1). Использование катализатора Sm(NO3)3·6H2O менее 3 мол. % снижает выход (1), что связано, возможно, со снижением каталитически активных центров в реакционной массе. Реакции проводили при температуре 20°C. При температуре выше 20°C (например, 60°C) снижается селективность реакции и увеличиваются энергозатраты, а при температуре ниже 20°C (например, -10°C) снижается скорость реакции.

Существенные отличия предлагаемого способа:

В известном способе реакция идет с участием в качестве исходных соединений озонида, перекиси водорода, силильных производных, бензальдегида. Известный способ не позволяет получать пентаоксаспироалканы общей формулы (1).

В предлагаемом способе в качестве исходных реагентов применяются 1,1-бис(гидроперокси)циклоалканы и формальдегид, а Sm(NO3)3·6H2O применяется в каталитических количествах. В отличие от известных способов, предлагаемый способ позволяет синтезировать индивидуальные пентаоксаспироалканы (1).

Способ поясняется следующими примерами

ПРИМЕР 1. В сосуд Шленка, установленный на магнитной мешалке, при температуре ~20°C помещают 5 мл тетрагидрофурана, 1.46 мл (20 ммоль) водного раствора (37%) формальдегида и 1.48 г (10 ммоль) 1,1-бис(гидроперокси)циклогексана, затем добавляют 0.062 г (0.5 ммоль) Sm(NO3)2·6H2O. Реакционную смесь перемешивают при температуре ~20°C в течение 5 ч, выделяют 7,8,10,12,13-пентаоксаспиро[5.7]тридекан с выходом 95%.

Другие примеры, подтверждающие способ, приведены в табл. 1.

Все опыты проводили в ТГФ при комнатной температуре (~20°C).

Спектральные характеристики 6,7,9,11,12-пентаоксаспиро[4.7]додекана: δН (400 MHz, DMSO-d6, 25°C) 1.62-1.66 (m, 4Н, Н2С), 1.86-1.89 (m, 4Н, Н2С), 5.04 (d, 4Н, J 4 Hz, ОН2СО); δС (100 MHz, CDCl3, 25°C) 24.42 (СН2СН2), 34.01 (СН2СН2), 92.31 (OCH2O), 119.90 (С). MALDI TOF, m/z: 175.165 [М-Н]+ (85%).

Спектральные характеристики 7,8,10,12,13-пентаоксаспиро[5.7]тридекана: δН (400 MHz, CDCl3, 25°C) 1.43-1.44 (m, 4Н, Н2С), 1.54-1.55 (m, 2Н, Н2С), 1.76-1.83 m, 4Н, Н2С), 5.17 (d, 4Н, J 12 Hz, ОН2СО); δС (100 MHz, CDCl3, 25°C) 22.35 (СН2СН2), 25.18 (СН2), 29.98 (СН2СН2), 92.30 (OCH2O), 109.98 (С). MALDI TOF, m/z: 212.387 [M+Na-H]+ (55%), m/z: 250.318 [M+Na+K-2H]+ (19%).

Спектральные характеристики 8,9,11,13,14-пентаоксаспиро[6.7]тетрадекана: δН (400 MHz, DMSO-d6, 25°С) 1.50-1.51 (m, 6Н, Н2С), 1.59-1.63 (m, 6Н, Н2С), 5.03 (d, 4Н, J 4 Hz, ОН2СО); δС (100 MHz, DMSO-d6, 25°C) 24.15 (СН2СН2), 30.14 (СН2СН2), 43.75 (СН2СН2), 92.08 (OCH2O), 113.90 (С). MALDI TOF, m/z: 203.758 [М-Н]+ (56%).

Спектральные характеристики 1,2,4,6,7-пентаоксаспиро[7.7]пентадекана: δН (400 MHz, DMSO-d6, 25°C) 1.45-1.51 (m, 4Н, Н2С), 1.77-1.79 (m, 10Н, Н2С), 5.01 (d, 4Н, J 4 Hz, ОН2СО); δС (100 MHz, DMSO-d6, 25°C) 25.57 (СН2СН2), 27.15 (СН2СН2СН2), 41.48 (СН2СН2), 92.25 (OCH2O), 113.05 (С). MALDI TOF, m/z: 217.245 [М-Н]+ (35%).

Спектральные характеристики 1,2,4,6,7-пентаоксаспиро[7.11]нонадекана: δН (400 MHz, DMSO-d6, 25°C) 1.45-1.51 (m, 22Н, Н2С); 5.03 (d, 4Н, J 4 Hz, ОН2СО); δС (100 MHz, DMSO-d6, 25°C) 24.97 (СН2СН2), 28.13 ((СН2СН2)8), 42.08 (СН2СН2), 92.33 (OCH2O), 113.25 (С). MALDI TOF, m/z: 273.357 [М-Н]+ (64%).

Способ получения пентаоксаспироалканов общей формулы (1):

отличающийся тем, что 1,1-1,1-бис(гидроперокси)циклоалканы (где циклоалкан - циклопентан, или циклогексан, или циклогептан, или циклооктан, или циклододекан) подвергают взаимодействию с формальдегидом в присутствии катализатора Sm(NO3)3·6H2O и мольном соотношении 1,1-бис(гидроперокси)циклоалкан : формальдегид : Sm(NO3)3·6H2O = 10:20:(0.3-0.7), при комнатной температуре (20°С) и атмосферном давлении в тетрагидрофуране в качестве растворителя в течение 4-6 ч.



 

Похожие патенты:

Изобретение относится к cоединениям формулы А, В или С, где каждый из R1 и R2 независимо представляет собой метил, этил, пропил или изопропил; или R1 и R2 вместе с атомом N, к которому они присоединены, образуют 3-7-членное кольцо, которые являются промежуточными соединениями для получения икотиниба-ингибитора тирозинкиназы, а также изобретение относится к способам получения икотиниба, гидрохлорида икотиниба и указанных соединений.

Изобретение относится к области химии материалов, а именно к новому типу соединений - симметричным краунсодержащим диенонам общей формулы I, где n=1, 2; m=0, 1, и способу их получения, заключающемуся в том, что циклоалканоны общей формулы II, где n=1, 2; подвергают взаимодействию с формильными производными бензокраун-эфиров общей формулы III, где m=0, 1, и процесс проводят в смеси органического растворителя с водой или в среде органического растворителя.

Изобретение относится к способу получения симметричного и несимметричного дибензо-краун-эфиров, который заключается в том, что взаимодействие эквимолярных количеств бис(2-гидроксифенил)ового эфира олигоэтиленгликоля, дихлорзамещенного олигоэтиленгликоля и гидроксида натрия осуществляют в присутствии катализатора - оксида кремния или оксида металла (амфотерного или основного), преимущественно наноразмерного, при перемешивании в ДМФА, при температуре 100-110°C, который находит применение в качестве селективных экстрагентов катионов металлов, в том числе радиоактивных.

Изобретение относится к новым противоопухолевым соединениям, содержащим их фармацевтическим композициям и их применению в качестве противоопухолевых агентов. .

Изобретение относится к способу получения триоксепана формулы (I) содержащего менее 3,5 мас.% диалкилпероксида относительно общего количества пероксидов, включающий стадии взаимодействия гликоля формулы R3CHOH-CH2 -C(CH3)2OH с пероксидом водорода в присутствии кислоты с образованием гидропероксида гликоля, очистки гидропероксида гликоля, взаимодействия очищенного гидропероксида гликоля с кетоном или альдегидом формулы R1R2CO в присутствии кислоты с образованием триоксепана и очистки триоксепана, где R1, R2 и R3 выбирают, независимо, из водорода и (С1-С20)-алкила, (С3 -С20)-циклоалкила, (С6-С20)-арила, (С7-С20)-аралкила и (С7-С 20)-алкарила, где указанные группы могут включать линейные или разветвленные алкильные группы, в то время как две группы из R1-3 могут соединяться с образованием циклоалкильного кольца; причем необязательные один или несколько заместителей у каждого R1-3 выбирают из группы, состоящей из гидрокси, алкокси, линейного или разветвленного алк(ен)ила, арилокси, галогена, карбоновой кислоты, сложного эфира, карбокси, нитрила и амидо, при условии, что если и R1, и R2, оба представляют собой метильные группы, то R3 не является водородом.

Изобретение относится к составам с циклическими пероксидами кетонов, использующимся в процессах (со)полимеризации и модификации (со)полимеров. .

Изобретение относится к пероксидным композициям, предназначенным для использования в способах полимеризации и модификации (со)полимеров. .

Изобретение относится к области медицины и касается применения циклического эфира (R)-3-гидроксибутирата формулы (1) для лечения болезненных состояний, опосредованных свободными радикалами, токсическими агентами, такими как пептиды и белки, и генетическими дефектами, вредными для метаболизма клетки, устойчивостью к инсулину или другими дефектами обмена глюкозы или состояниями, вызывающими дефект, ишемии, травмы головы, и/или повышения эффективности работы клетки.

Изобретение относится к композиции, содержащей циклический пероксид кетона и флегматизатор, имеющий точку 95% выкипания в пределах 220-265oС, наиболее предпочтительно 235-250oС.

Изобретение относится к органической химии и к области химии материалов, а именно к новому типу соединений - бискраунсодержащим дистирилбензолам общей формулы I, в которой A - бензольный фрагмент формулы II или III: где n=0, 1, а также к способу получения соединений формулы I, заключающемуся в том, что бисфосфонаты общей формулы IV, в которых A имеет вышеуказанные значения, R - низший алкил, подвергают взаимодействию с формильными производными бензокраун-эфиров общей формулы V, где n=0, 1, и процесс проводят в среде органического растворителя или смеси органического растворителя с водой. Соединения формулы I и материалы на их основе могут быть использованы в составе оптических хемосенсоров для флуоресцентного определения катионов щелочных, щелочноземельных металлов и аммония, например для определения микроколичеств указанных ионов в биологических жидкостях, в промышленных водах и стоках. 2 н. и 1 з.п. ф-лы, 2 ил., 4 пр.

Изобретение относится к органической химии, конкретно к способу получения кислородсодержащих макрогетероциклов, которые являются потенциальными биологически активными веществами, например, с противовирусной активностью. Способ заключается в том, что проводят каталитическое взаимодействие этил-2-диазо-3-оксобутирата с 1,3-диоксоланами или 1,3-диоксанами в присутствии трифлата меди (II) Cu(OTf)2 при температуре 80°C в течение 4 часов. Реакцию этил-2-диазо-3-оксобутирата с 1,3-диоксоланом проводят при следующем соотношении компонентов, мас. %: 1,3-диоксолан 1,5-2,3; трифлат меди 0,047; этил-2-диазо-3-оксобутират 1,029-1,057; бензол 96,6-97,4. Реакцию этил-2-диазо-3-оксобутирата с 1,3-диоксаном проводят при следующем соотношении компонентов, мас. %: 1,3-диоксан 1,7-2,5; трифлат меди 0,047; этил-2-диазо-3-оксобутират 1,027-1,035; бензол 96,4-97,2. Технический результат - увеличение выхода целевого продукта. 2 з.п. ф-лы, 1 табл.

Изобретение относится к области органической химии, в частности к способу получения пентаоксаспироалканов общей формулы, заключающегося в том, что 1,1-1,1-бисциклоалканы подвергают взаимодействию с формальдегидом в присутствии катализатора Sm3·6H2O, и мольном соотношении 1,1-бисциклоалкан : формальдегид : Sm3·6H2O 10:20:, при комнатной температуре и атмосферном давлении в тетрагидрофуране в качестве растворителя в течение 4-6 ч. Эти соединения могут найти применение в качестве препаратов, обладающих противомалярийной активностью. Выход пентаоксаспироалканов составляет 65-97. 1 табл., 1 пр.

Наверх