Высокоградиентный магнитный фильтр

Изобретение относится к устройствам для очистки водных сред от содержащихся в них частиц, обладающих ферро-, пара- и диамагнитными свойствами и может быть использовано в энергетике, в том числе атомной, в металлургии, химической и нефтехимической отраслях промышленности. Высокоградиентный магнитный фильтр включает корпус из немагнитного коррозионностойкого материала с входными и выходными штуцерами, расположенную снаружи корпуса магнитную систему, состоящую из кольцевых постоянных магнитов, и размещенные на внутренней стенке корпуса напротив каждого магнита внешней магнитной системы концентраторы магнитного потока, выполненные из магнитно-мягкого коррозионностойкого материала, матрицу из коррозионностойкого магнитно-мягкого материала и расположенную по оси корпуса внутреннюю магнитную систему, состоящую из постоянных магнитов, размещенную в герметичном чехле из немагнитного коррозионностойкого материала, с внешней стороны которого напротив каждого магнита внутренней магнитной системы размещен концентратор в виде кольца из коррозионностойкого магнитно-мягкого материала. Концентраторы внешней и внутренней магнитных систем выполнены в виде колец, трапециевидных или треугольных в сечении. Магниты внешней и внутренней магнитных систем в каждой магнитной системе соединены между собой жесткой немагнитной связью. Технический результат - повышение эффективности очистки водных сред и упрощение процесса регенерации фильтра. 9 з.п. ф-лы, 2 ил.

 

Изобретение относится к устройствам для очистки водных сред от содержащихся в них частиц, обладающих ферро-, пара- и диамагнитными свойствами, и может быть использовано в энергетике, в том числе атомной, в металлургии, химической и нефтехимической отраслях промышленности.

Известен высокоградиентный магнитный фильтр, состоящий из корпуса с входным и выходным патрубками и немагнитной крышкой, внутри которого расположен блок магнитных элементов, состоящих из немагнитной оболочки, постоянных магнитов и ферромагнитных концентраторов, позволяющий извлекать магнитные примеси за счет воздействия неоднородного магнитного поля [Патент US №5043063]. Недостатком данного устройства является низкая эффективность извлечения примесей, поскольку конструкция магнитной системы не позволяет сформировать высокие градиенты напряженности магнитного поля в рабочем объеме фильтра.

Известен также высокоградиентный магнитный фильтр, состоящий из корпуса с входным и выходным штуцерами, магнитной системы на основе постоянных магнитов, расположенной на наружной стороне корпуса, а также пористой фильтрующей матрицы и концентратора магнитного потока, расположенных внутри корпуса [Патент RU №2203124]. Конструкция этого фильтра наиболее близка к предлагаемому по большинству существенных признаков и выбрана в качестве прототипа.

Недостатком такого фильтра является то, что поток очищаемой среды организован нерационально и энергия магнитного поля используется неэффективно, что не позволяет в полной мере реализовать энергию магнитного поля и достичь высокой эффективности очистки.

Задачей предлагаемого изобретения является повышение эффективности очистки водных сред путем создания максимальной напряженности магнитного поля в рабочем объеме фильтра и упрощение процесса регенерации фильтра.

Для достижения заявляемого технического результата в высокоградиентном магнитном фильтре, включающем цилиндрический корпус, выполненный из немагнитного коррозионностойкого материала с входным и выходным штуцерами, заполненный матрицей из коррозионностойкого магнитно-мягкого материла, расположенную снаружи корпуса магнитную систему, состоящую из кольцевых постоянных магнитов, и концентратор магнитного потока, выполненный из магнитно-мягкого коррозионностойкого материала, согласно изобретению на внутренней стенке корпуса напротив каждого магнита внешней магнитной системы размещен концентратор, выполненный в виде кольца, дополнительно внутри корпуса по его оси расположена внутренняя магнитная система, состоящая из постоянных магнитов, размещенная в герметичном чехле, выполненном из немагнитного коррозионностойкого материала, с внешней стороны которого напротив каждого магнита внутренней магнитной системы размещен концентратор, выполненный в виде кольца из магнитно-мягкого коррозионностойкого материала, при этом магниты внешней и внутренней магнитных систем внутри каждой магнитной системы последовательно соединены между собой жесткой немагнитной связью; при этом предпочтительно, чтобы концентраторы внешней и внутренней магнитной систем были выполнены в виде колец, трапециевидных или треугольных в сечении; каждый магнит внутренней магнитной системы расположен по внутренней оси фильтра таким образом, что его полувысота находится напротив точки, расположенной на середине расстояния между двумя ближайшими магнитами внешней магнитной системы, при этом на каждые n магнитов внешней магнитной системы приходится (n+1) или (n-1) магнитов внутренней магнитной системы; магниты внешней и внутренней магнитных систем внутри каждой магнитной системы расположены между собой на расстоянии, равном высоте магнита; высота каждого магнита внешней магнитной системы равна высоте каждого магнита внутренней магнитной системы; магниты внешней и внутренней магнитных систем внутри каждой магнитной системы могут быть расположены противоположными или одноименными полюсами навстречу друг другу; основания концентраторов внешней и внутренней магнитных систем равны высоте магнитов; высота концентраторов внешней магнитной системы равна высоте концентраторов внутренней магнитной системы.

Наличие, как минимум, трех концентраторов магнитного потока, которые создают максимальную напряженность магнитного поля в рабочем объеме фильтра и одновременно выполняют роль направляющих, позволяющих изменять направление движения потока внутри фильтра, тем самым увеличивая время нахождения очищаемой среды внутри фильтра, в комплексе приводит к увеличению эффективности очистки технологических сред от ферро-, пара- и диамагнитных примесей.

Наличие жесткой немагнитной связи магнитов каждой магнитной системы и, как следствие, возможность вывода обеих магнитных систем из фильтра, а также то, что поток очищаемой среды отделен чехлом от внутренней магнитной системы, упрощает процесс регенерации матрицы фильтра или замену корпуса фильтра с матрицей и концентраторами и позволяет снизить трудоемкость обслуживания фильтра.

На чертеже приведены принципиальные схемы предлагаемого высокоградиентного магнитного фильтра с концентраторами в виде колец, трапециевидных в сечении (фиг. 1а), и концентраторами в виде колец, треугольных в сечении (фиг. 1б).

Устройство содержит герметичный корпус 1 цилиндрической формы с крышкой 2 и днищем 3, выполненные из немагнитного коррозионностойкого материала, входной 4 и выходной 5 штуцеры, расположенные, соответственно, на крышке 2 и днище 3. Снаружи корпуса расположены кольцевые постоянные магниты 6 наружной магнитной системы, последовательно соединенные между собой жесткой немагнитной связью 7. На внутренней поверхности корпуса 1 напротив каждого магнита 6 внешней магнитной системы закреплен концентратор 8, выполненный в виде кольца из магнитно-мягкого коррозионно-стойкого материала. Внутри корпуса 1 по всему его объему размещена матрица 9, выполненная из магнитно-мягкого коррозионностойкого материала, а по оси корпуса 1 расположен герметичный (например, цилиндрической формы) чехол 10, из немагнитного коррозионностойкого материала. Внутри чехла 10 расположены постоянные магниты 11 (например, цилиндрической формы) внутренней магнитной системы, также последовательно соединенные между собой жесткой немагнитной связью 7. На внешней поверхности чехла 10 напротив каждого магнита 11 внутренней магнитной системы закреплен концентратор 12, выполненный в виде кольца из магнитно-мягкого коррозионностойкого материала. Каждый магнит 11 внутренней магнитной системы расположен по внутренней оси корпуса 1 таким образом, что его полувысота находится напротив точки, расположенной на середине расстояния между двумя ближайшими магнитами 6 внешней магнитной системы. При этом магниты 6 внешней магнитной системы и магниты 11 внутренней магнитной системы расположены в каждой магнитной системе противоположными полюсами навстречу друг другу на расстоянии, равном высоте магнитов. Магниты 6 и 11 могут быть расположены в каждой магнитной системе одноименными полюсами навстречу друг другу. Высота каждого магнита 6 внешней магнитной системы равна высоте каждого магнита 11 внутренней магнитной системы. Высота основания концентраторов 8 и 12 равна высоте магнитов 6 и 11 соответственно, а высоты концентраторов 8 и 12 равны между собой. Концентраторы внешней и внутренней магнитных систем могут быть выполнены в виде колец, трапециевидных или треугольных в сечении.

Устройство работает следующим образом. Водная среда подается на вход фильтра через штуцер 4 и, проходя через матрицу 9, последовательно обтекает концентраторы 8 и 12, что позволяет наиболее эффективно использовать энергию магнитного потока, при этом ферро-, пара- и диамагнитные частицы примесей удерживаются матрицей фильтра, а очищенная водная среда выводится из фильтра через выходной штуцер 5. При необходимости регенерации матрицы или замены корпуса фильтра с матрицей и концентраторами удаляются магниты внешней и внутренней магнитных систем, объединенные жесткой немагнитной связью 7.

1. Высокоградиентный магнитный фильтр, включающий цилиндрический корпус, выполненный из немагнитного коррозионностойкого материала с входным и выходным штуцерами, заполненный матрицей из коррозионностойкого магнитно-мягкого материла, расположенную снаружи корпуса магнитную систему, состоящую из кольцевых постоянных магнитов, и концентратор магнитного потока, выполненный из магнитно-мягкого коррозионностойкого материала, отличающийся тем, что на внутренней стенке корпуса напротив каждого магнита внешней магнитной системы размещен концентратор, выполненный в виде кольца, дополнительно внутри корпуса по его оси расположена внутренняя магнитная система, состоящая из постоянных магнитов, размещенная в герметичном чехле, выполненном из немагнитного коррозионностойкого материала, с внешней стороны которого напротив каждого магнита внутренней магнитной системы размещен концентратор, выполненный в виде кольца из магнитно-мягкого коррозионностойкого материала, причем магниты внешней и внутренней магнитных систем в каждой магнитной системе последовательно соединены между собой жесткой немагнитной связью.

2. Высокоградиентный магнитный фильтр по п. 1, отличающийся тем, что концентраторы внешней и внутренней магнитных систем выполнены в виде колец, трапециевидных в сечении.

3. Высокоградиентный магнитный фильтр по п. 1, отличающийся тем, что концентраторы внешней и внутренней магнитных систем выполнены в виде колец, треугольных в сечении.

4. Высокоградиентный магнитный фильтр по п. 1, отличающийся тем, что каждый магнит внутренней магнитной системы расположен по внутренней оси фильтра таким образом, что его полувысота находится напротив точки, расположенной на середине расстояния между двумя ближайшими магнитами внешней магнитной системы, при этом на каждые n магнитов внешней магнитной системы приходится (n+1) или (n-1) магнитов внутренней магнитной системы.

5. Высокоградиентный магнитный фильтр по п. 1, отличающийся тем, что магниты внешней и внутренней магнитных систем в каждой магнитной системе расположены между собой на расстоянии, равном высоте магнитов.

6. Высокоградиентный магнитный фильтр по п. 1, отличающийся тем, что высота каждого магнита внешней магнитной системы равна высоте каждого магнита внутренней магнитной системы.

7. Высокоградиентный магнитный фильтр по п. 1, отличающийся тем, что магниты внешней и внутренней магнитных систем в каждой магнитной системе расположены противоположными полюсами навстречу друг другу.

8. Высокоградиентный магнитный фильтр по п. 1, отличающийся тем, что магниты внешней и внутренней магнитных систем в каждой магнитной системе расположены одноименными полюсами навстречу друг другу.

9. Высокоградиентный магнитный фильтр по п. 1, отличающийся тем, что основания концентраторов внешней и внутренней магнитных систем равны высоте магнитов.

10. Высокоградиентный магнитный фильтр по п. 1, отличающийся тем, что высота концентраторов внешней магнитной системы равна высоте концентраторов внутренней магнитной системы.



 

Похожие патенты:

Изобретение относится к магнитному сепаратору, выполненному с возможностью сепарации частиц из потока текучей среды, и может быть использовано для сепарации частиц из воды систем центрального отопления.

Изобретение относится к электрической очистке газов от взвешенных частиц в различных отраслях промышленности, в частности в теплоэнергетике, строительных материалов, металлургии и др.

Изобретение относится к электрической очистке газов от взвешенных частиц в различных отраслях промышленности, в частности в теплоэнергетике, химической промышленности, металлургии и др.

Изобретение относится к пищевой и медицинской промышленности и может быть использовано в качестве устройства для очистки жидких и газообразных веществ. Фильтрующее устройство включает корпус с днищем и крышкой, патрубками подвода неочищенных и выпуска очищенных веществ и фильтрующий материал, расположенный в корпусе.

Изобретение относится к машиностроению, к устройствам для глушения шума и очистки выхлопных газов двигателя внутреннего сгорания. Глушитель-очиститель выхлопных газов двигателя внутреннего сгорания содержит корпус с диффузором и конфузором с входным и выпускным патрубками, фильтрующей вставкой, грязесборником.

Изобретение относится к способам очистки диэлектрических жидкостей и газов от механических примесей. Повышение эффективности электрической очистки диэлектрических жидкостей и газов, использующей электрическое поле для осаждения механических частиц на электроды, осуществляется концентрацией электрических зарядов на электродах-осадителях, усиливающей электрическое поле в межэлектродном пространстве.

Изобретение относится к масложировой промышленности, в частности к оборудованию для очистки пищевых растительных масел от механических примесей, и может быть использовано для получения очищенных растительных масел с длительным сроком хранения.

Изобретение относится к электроочистителю диэлектрических жидкостей и газов с сотовыми электродами, включающему в себя корпус с двумя крышками и штуцерами входа и выхода в них, осадительные электроды, выполненные по форме корпуса в плане, между которыми располагаются плоские перегородки из диэлектрического материала, причем осадительные электроды подключены к источнику высокого напряжения с чередованием знака потенциала.

Изобретение относится к очистке технологических жидкостей на предприятиях металлургии и металлообрабатывающей промышленности, а также для очистки природных вод и касается устройства для очистки жидкости от магнитных частиц.

Изобретение относится к области магнитной очистки технологических жидкостей и особенно эффективно может быть использовано для сепарации амина, применяющегося для очистки природного газа с высоким содержанием сероводорода. Магнитный фильтр содержит резервуар, в крышке которого закреплены цилиндрические магнитные стержни с надетыми на них шламосъемными кольцами, подвижную плиту для перемещения последних вдоль стержней, шламосъемные кольца выполнены разрезными и закаленными из сплава, обладающего пружинными, немагнитными и антикоррозионными свойствами, например, из прецизионного сплава 36НХТЮ, оболочка стержней выполнена из нержавеющей стали с твердым хромированием, фильтр снабжен механизмом доочистки шлама и его удаления за пределы фильтра, механизм выполнен в виде установленных в нижней части резервуара на неподвижной оси двух пар труб, вваренных во втулку, которая может вращаться на неподвижной оси, трубы снабжены отверстиями, в которые подается очистительная среда под давлением, возникающие реактивные силы вытекающих струй создают крутящий момент, вращающий втулку с трубами. Изобретение обеспечивает повышение степени очистки фильтра от шлама. 2 з.п. ф-лы, 4 ил.

Изобретение относится к электрической очистке газов от взвешенных частиц в различных отраслях промышленности, в частности в химической и нефтеперерабатывающей промышленности, металлургии и других отраслях. Вертикальный трубчатый электрофильтр, содержащий корпус, осадительные электроды, коронирующие электроды, источник питания, отличающийся тем, что содержит электропривод, жестко связанный с механической передачей, которая в свою очередь соединена с осадительными электродами, выполненными в виде полых барабанов, с возможностью вращения на горизонтальных осях в изоляторах и подшипниках, причем оси выполнены полыми с расположенными внутри них высоковольтными проводами, одни концы которых закреплены с внутренней стороны осадительных электродов, а другие концы прикреплены к контактным кольцам, насаженным на оси осадительных электродов, имеющим скользящий контакт с щеточными узлами, закрепленными на корпусе и соединенными высоковольтными проводами с источником питания, который также соединен с коронирующими электродами, закрепленными в изоляционных вставках, которые закреплены в корпусе вертикального трубчатого электрофильтра, в нижней части которого расположен катализатор, а с торцов корпуса расположены отводящие рукава, в которых закреплены скребки, при этом рукава соединены с бункером пылесборником. В вертикальном трубчатом электрофильтре по второму варианту осадительные электроды выполнены в виде полых барабанов и установлены с возможностью вращения на вертикальных осях в изоляторах и подшипниках, закрепленных в горизонтальных вставках корпуса, при этом количество осадительных и коронирующих электродов, а также их диаметры подбираются, исходя из необходимости обеспечить требуемую очистку газов продуктов сгорания. Техническим результатом является обеспечение наличия постоянно чистой поверхности осадительного электрода в активной зоне электрофильтра, что способствует повышению эффективности электрофильтра за счет исключения уноса пыли, повторного налипания осевшей пыли при очистке осадительных электродов и исключения прерывистого характера подачи напряжения на осадительные и коронирующие электроды. 2 н.п. ф-лы, 4 ил.

Изобретение относится к способам очистки газов и может быть использовано в энергетике, в черной и цветной металлургии, цементной, атомной и в других отраслях промышленности. Удаление заряженных микрочастиц из газового потока осуществляют электрическим полем электрофильтра. Для захвата микрочастиц используют переменное электрическое поле квадрупольного типа. Переменное поле формирует линейную электродинамическую ловушку, ось которой перпендикулярна направлению скорости газового потока. В ловушке происходит захват заряженных частиц без осаждения их на электроды и удаление захваченных частиц из газового потока вдоль оси ловушки под действием силы тяжести и/или дополнительного постоянного электрического поля. Обеспечивается увеличение степени очистки газа и упрощение системы сбора микрочастиц. 2 ил.

Изобретение относится к устройствам для очистки жидких нефтепродуктов с обеспечением электробезопасности при фильтрации; оно может быть использовано в химической и нефтяной промышленности в технологических процессах производства и эксплуатации. Устройство содержит цилиндрическую полую вставку 8, герметично закрепленную в центре горизонтальной перегородки 6 параллельно входному патрубку 2. Трубопровод 9 подачи очищаемого нефтепродукта подключен через индивидуальные регулирующие дроссели 10, 11 к вставке 8 и патрубку 2, а также к выходному патрубку 3 через обратный клапан 14 и регулирующий дроссель 13. Фильтроэлементы 4, 17, на наружной поверхности имеющие перфорированные токопроводящие кожухи 5 и 18, установлены коаксиально относительно друг друга. Фильтроэлементы 4, 17 закреплены между двух токопроводящих перегородок 6 и 22. Перегородка 22 установлена над фильтроэлементами 4, 17 (и еще два не показаны) и имеет кольцевые проточки для кольцевых вставок 23 из пенометалла со сквозной пористостью, в которых нефтепродукт дополнительно очищается. Корпус 1 заземлен через регистратор 24 статического электричества, который отражает эффективность гашения заряда. Каждая пара коаксиально установленных фильтроэлементов 4, 17 выполнена из материалов, образующих заряды различного знака. Общее количество фильтроэлементов 4, 17 кратно двум. Количество вставок 23 из пенометалла принимают равным n/2, где n - количество коаксиально установленных фильтроэлементов. Технический результат: повышение электробезопасности. 2 з.п. ф-лы, 2 ил.

Изобретение относится к сепараторному устройству для отделения частиц от потока текучей среды, в частности к сепараторному устройству для использования в системе отопления. Сепараторное устройство (10) содержит корпус (12), имеющий первое и второе отверстия (96) для входа и выхода текучей среды в корпус (12) и из него; первую сепараторную камеру (38), расположенную на одном конце корпуса; вторую сепараторную камеру (40), расположенную на другом конце корпуса; центральную камеру, расположенную между первой и второй сепараторными камерами (38, 40). В центральной камере предусмотрен магнит. Первое и второе отверстия соединены с центральной камерой. Первая и вторая сепараторные камеры (38, 40) каждая имеют отверстия для входа и выхода текучей среды в/из центральной камеры. Каждая сепараторная камера содержит заграждающее средство для замедления потока текучей среды в камере. Технический результат: эффективное удаление частиц в текучей среде при любом направлении потока, возможность изменения местами входа и выхода при сохранении эффективности фильтрации, простота монтажа. 25 з.п. ф-лы, 14 ил.

Изобретение относится к способам очистки газов от пыли в электрофильтрах и может быть использовано в металлургической, химической, энергетической и других отраслях промышленности. Электрофильтр содержит корпус, в котором расположены одно или несколько полей, каждое поле содержит несколько каналов (3). Каналы (3) содержат плоскости с газопроницаемыми осадительными электродами (1) из трубчатых элементов. Между ними на равном расстоянии размещена газопроницаемая плоскость коронирующих электродов (2). Заслонки (4) и диафрагмы (5), расположенные в каналах в шахматном порядке, имеют геометрическую форму вогнутой циклоиды и выполнены в виде спаренных интерцепторов. Задние кромки интерцепторов находятся в плоскости коронирующих электродов, передние - в плоскости осадительных электродов и установлены перпендикулярно к ним. Расстояние между двумя соседними диафрагмами (5) в канале (3) равно удвоенному промежутку (2H) между плоскостями осадительных электродов. Пылегазовый поток (7) изменяет направление движения от синусоидального (8) к круговому (9), проходит зону коронного разряда, где частицы пыли получают максимальный электрический заряд, далее поступает в зону квазиоднородного электростатического поля (6), где частицы пыли интенсивно осаждаются. Пылегазовый поток циклично и последовательно изменяет направление своего кругового движения, возвращается к синусоидальному движению, постадийно проходя по всей длине канала электрофильтра. Обеспечивается повышение эффективности очистки газов. 2 н. и 4 з.п. ф-лы, 2 ил.

Изобретение относится к устройствам для очистки водных сред от содержащихся в них частиц, обладающих ферро-, пара- и диамагнитными свойствами и может быть использовано в энергетике, в том числе атомной, в металлургии, химической и нефтехимической отраслях промышленности. Высокоградиентный магнитный фильтр включает корпус из немагнитного коррозионностойкого материала с входными и выходными штуцерами, расположенную снаружи корпуса магнитную систему, состоящую из кольцевых постоянных магнитов, и размещенные на внутренней стенке корпуса напротив каждого магнита внешней магнитной системы концентраторы магнитного потока, выполненные из магнитно-мягкого коррозионностойкого материала, матрицу из коррозионностойкого магнитно-мягкого материала и расположенную по оси корпуса внутреннюю магнитную систему, состоящую из постоянных магнитов, размещенную в герметичном чехле из немагнитного коррозионностойкого материала, с внешней стороны которого напротив каждого магнита внутренней магнитной системы размещен концентратор в виде кольца из коррозионностойкого магнитно-мягкого материала. Концентраторы внешней и внутренней магнитных систем выполнены в виде колец, трапециевидных или треугольных в сечении. Магниты внешней и внутренней магнитных систем в каждой магнитной системе соединены между собой жесткой немагнитной связью. Технический результат - повышение эффективности очистки водных сред и упрощение процесса регенерации фильтра. 9 з.п. ф-лы, 2 ил.

Наверх