Способ получения наноразмерного порошка диборида циркония

Изобретение относится к технологии производства высокотвердых жаростойких материалов на основе циркония, а именно к способам получения диборида циркония. Способ получения наноразмерного порошка диборида циркония включает приготовление шихты из порошков диоксида циркония, борной кислоты и углерода в соотношении компонентов, вес. %: диоксид циркония 10-40, борная кислота 40-80, углерод 10-20, механическую обработку полученной смеси, формование прессовки и термическую обработку-синтез по трехступенчатому температурному режиму нагрева. Изобретение обеспечивает получение наноразмерного порошка диборида циркония с высокой селективностью. 3 з.п. ф-лы, 1 ил., 4 пр.

 

Изобретение относится к технологии производства высокотвердых жаростойких материалов на основе циркония, а именно к способам получения диборида циркония.

Применение диборида циркония в разных областях техники, а именно в приборостроении, металлургии, химическом машиностроении, ракетостроении и ядерной энергетике обусловлено его высокими физико-механическими свойствами.

Известен двухстадийный способ получения боридов тугоплавких тяжелых металлов, в том числе диборида циркония (US 3328127, опубл. 27.06.1967). На первой стадии готовят смесь, состоящую из оксида металла, углерода и соединения бора, выбранного из группы: борный ангидрид, карбид бора и борная кислота; смесь нагревают до температуры 1100-1500°C и получают сырой (технический, черновой) продукт первой стадии, содержащий борид металла и примеси. Продукт первой стадии измельчают, при необходимости анализируют и смешивают с углеродом и одним из следующих соединений: оксид металла, борный ангидрид, карбид бора или карбид металла, выбор которого обусловлен стехиометрией реакции получения на второй стадии чистого борида металла; подготовленную смесь нагревают. Температура второй стадии 1600-1850°C. На 2-й стадии используют инертный газ, подаваемый противотоком твердой фазе, для этого пригодны аргон, гелий. Особенно эффективна продувка водородом. Вторая стадия может проводиться в вакууме, т.к. протекает с небольшим газовыделением.

В результате получают продукт чистотой более 99%, содержание кислорода в нем менее 0,2%.

Недостатком известного способа является корректировка состава промежуточного продукта перед стадией получения целевого продукта. Такой сложный технологический процесс приводит к удорожанию конечного продукта.

Известен способ получения тонкодисперсного монокристаллического порошка диборида металла (RU 2087262, B22F 9/16, С01В 35/04, опубл. 20.08.1997). Сущность изобретения заключается в том, что порошок металла IV группы смешивают с бором, смесь брикетируют, воспламеняют и осуществляют синтез в режиме горения. Используют соединение, регулирующее дисперсность, в качестве которого берут фторид лития, калия, натрия или их смесь в количестве 0,81-1,96 молей на моль целевого продукта.

Недостатком известного способа является то, что использование фторида лития в качестве модификатора приводит к загрязнению конечного продукта.

Ближайшим аналогом, принятым за прототип, является способ получения диборида циркония (RU 2316470, С01В 25/00, С01В 35/04, опубл. 10.02.2008), включающий приготовление смеси диоксида циркония, борной кислоты и углерода, термическую обработку реакционной смеси в интервале температур 1100-1500°C с получением чернового продукта, его измельчение и перемешивание и термическую обработку при температуре 1600-1850°C с получением целевого продукта. Приготовленную смесь диоксида циркония, борной кислоты и углерода выдерживают при температуре 250-280°C не менее 3 часов при остаточном давлении не выше 750 Па, после чего поднимают температуру до температуры получения чернового продукта. При этом используют диоксид циркония, полученный термическим разложением распыленного водного раствора оксинитрата циркония в потоке воздуха, нагретого до состояния плазмы в высокочастотном индукционном электрическом разряде. Изобретение позволяет получить целевой продукт чистотой не менее 99,6% без корректировки состава чернового продукта.

Недостатком известного способа является то, что при его осуществлении получают порошок диборида циркония с низкой селективностью (широкое распределение частиц порошка по размерам).

Задачей заявляемого технического решения является разработка способа получения наноразмерного порошка диборида циркония.

Техническим результатом предлагаемого изобретения является получение наноразмерного порошка диборида циркония с высокой селективностью.

Изделия, полученные с использованием предлагаемого наноразмерного порошка диборида циркония обладают высокими физико-механическими свойствами: прочностью, твердостью, износостойкостью.

Указанный технический результат достигается тем, что способ получения наноразмерного порошка диборида циркония (ZrB2) включает приготовление шихты из порошков диоксида циркония, борной кислоты и углерода, формование прессовки и термическую обработку-синтез, при этом шихта содержит указанные компоненты в следующем соотношении, вес. %:

диоксид циркония 10-40
борная кислота 40-80
углерод 10-20

при этом шихту дополнительно подвергают механической обработке, а термическую обработку-синтез прессовки проводят по трехступенчатому температурному режиму нагрева:

- до температуры 235-250°C в течение 1.0 часа с выдержкой 1.5 часа,

- до температуры 1280-1300°C в течение 3.5 часа с выдержкой 4.0 часа,

- до температуры 1500±5°C в течение 2.0 часов с выдержкой 1.0 час,

затем проводят охлаждение конечного продукта вместе с печью.

Для приготовления шихты используют порошок диоксида циркония, полученного разложением водных растворов солей в плазме высокочастотного разряда.

Шихту подвергают механической обработке путем перемешивания всухую в мешалке барабанного типа в течение суток, при этом соотношение смеси порошков и мелющих тел составляет 1:2. Формования прессовки проводят при давлении 2.0-2.5 т/см.

В настоящее время существует большое количество как методов получения, так и реакций синтеза диборида циркония, которые существенно влияют на фазовый и гранулометрический состав конечного продукта.

В предлагаемом изобретении синтез диборида циркония (ZrB2) осуществляют посредством реакции восстановления смеси порошков двуокиси циркония с борной кислотой и углеродом.

Использование ультрадисперсного нанокристаллического порошка диоксида циркония, полученного разложением водных растворов солей в плазме высокочастотного разряда, в реакциях синтеза позволит получить наноразмерный порошок диборида циркония, что обеспечит его высокие технологические свойства.

Использование в качестве исходного компонента порошка борной кислоты позволит более равномерно распределить диоксид циркония в смеси путем их тщательного перемешивания на начальной стадии нагрева смеси непосредственно перед реакцией синтеза.

Синтез диборида циркония основан на восстановлении углеродом смеси двуокиси циркония с борной кислотой по химической реакции:

ZrO2+2H3BO3+5C=ZrB2+3H2O+5СО.

Количество исходных компонентов для протекания синтеза рассчитывают на основании молекулярной массы каждого химического элемента.

Приготовленную порошковую шихту перемешивают всухую в мешалке барабанного типа в течение 24 часов. Для перемешивания используют барабанную мельницу с корундовым барабаном и корундовыми мелющими телами. Соотношение смеси порошков и мелющих тел составляет 1:2.

Механическую обработку успешно используют на стадии предварительной подготовки порошков перед нагревом, проведением синтеза. Общеизвестно, что механическая обработка позволяет проводить гомогенизацию, измельчение компонентов смеси вплоть до наноразмеров, способствует появлению новых, свободных от кислорода, поверхностей, уменьшению расстояния между частицами (снижению диффузионного расстояния), накоплению дефектов и активации реагентов.

Для более эффективного протекания реакции синтеза, полученную после механической обработки порошковую смесь подвергают формованию с получением прессовки. Получение прессовки проводят на гидравлическом прессе ДА-1224 в стальной пресс-форме.

Эксперименты показали, что оптимальным давлением формования прессовки для синтеза диборида циркония является давление 2.0-2.5 т/см2.

Спекание-синтез прессовок проводят в вакуумной печи СВШ-1.25/2500 по режиму, представленному на фигуре. Нагрев до температуры 235-250°C осуществлялся в течение одного часа. Затем проводят выдержку полтора часа при этой температуре. Введение выдержки при данной температуре определялось разложением борной кислоты на борный ангидрид и воду.

В процессе такой реакции наблюдалось падение вакуума с 1×10-4 до 1×10-2 мм рт.ст., что связано с интенсивным испарением воды. Далее повышают температуру до 1280-1300°C и выдерживают 4.0 часа при этой температуре для протекания реакции синтеза диборида циркония. Известно, что температурный интервал образования диборида циркония варьируется в пределах 1273-1500°C. Дальнейший подъем температуры до 1500±5°C и выдержку при этой температуре в течение 1 часа осуществляют для полного прохождения синтеза наноразмерного порошка диборида циркония.

Исследование фазового состава полученного наноразмерного порошка диборида циркония проводилось методом рентгенофазового анализа на рентгеновском дифрактометре.

В результате синтеза, помимо наноразмерного диборида циркония, в составе конечного продукта присутствуют фазы диоксида циркония тетрагональной и моноклинной модификации, а также карбид циркония.

Пример 1

В качестве исходных материалов для получения наноразмерного порошка диборида циркония были использованы: диоксид циркония (ZrO2), полученный методом плазмохимического синтеза, углерод (вакуумная сажа), а также порошок борной кислоты. Все исходные материалы представляли собой готовые порошки.

Готовят смесь из порошков диоксида циркония 40 г, вакуумной сажи (углерод) 20 г и борной кислоты 40 г. Полученную смесь перемешивают всухую в мешалке барабанного типа в течение 24 часов. Для перемешивания используют барабанную мельницу с корундовым барабаном и корундовыми мелющими телами. Соотношение смеси порошков и мелющих тел составляло 1:2. После механической обработки смесь подвергают формованию с получением прессовки. Формование прессовки проводят на гидравлическом прессе ДА-1224 в стальной пресс-форме при давлении прессования 2.5 т/см2.

Термическую обработку спекание-синтез прессовки проводят в вакуумной печи СВШ-1.25/2500 по режиму, представленному на фигуре, а именно, нагревают прессовку до температуры 235°C в течение 1.0 часа, проводят выдержку 1.5 часа, затем нагревают до температуры 1290°C в течение 3.5 часа, проводят выдержку 4.0 часа, затем снова нагревают до температуры 1500°C в течение 2.0 часов, проводят выдержку 1.0 час и проводят охлаждение диборида циркония вместе с печью. Фазовый состав после синтеза, %: ZrB2 - 96, ZrO2(м.) - 2, ZrO2(т.) - 1, ZrC - 1.

Пример 2.

Готовят смесь из порошков диоксида циркония 20 г, вакуумной сажи (углерод) 15 г и борной кислоты 65 г. Полученную смесь перемешивают всухую в мешалке барабанного типа в течение 24 часов, аналогично примеру 1. Формование прессовки проводят на гидравлическом прессе ДА-1224 в стальной пресс-форме при давлении прессования 2,0 т/см2.

Термическую обработку спекание-синтез прессовки проводят в вакуумной печи СВШ-1.25/2500 по режиму, представленному на фигуре, а именно, нагревают прессовку до температуры 250°C в течение 1.0 часа, проводят выдержку 1.5 часа, затем нагревают до температуры 1300°C в течение 3.5 часа, проводят выдержку 4.0 часа, затем снова нагревают до температуры 1500°C в течение 2.0 часов, проводят выдержку 1.0 час и проводят охлаждение диборида циркония вместе с печью. Фазовый состав после синтеза, %: ZrB2 - 98, ZrO2(м.) - 1.5, ZrC - 0.5.

Пример 3.

Готовят смесь из порошков диоксида циркония 14 г, вакуумной сажи (углерод) 12 г и борной кислоты 74 г. Полученную смесь перемешивают всухую в мешалке барабанного типа в течение 24 часов, аналогично примеру 1. Формование прессовки проводят на гидравлическом прессе ДА-1224 в стальной пресс-форме при давлении прессования 2,5 т/см2.

Термическую обработку спекание-синтез прессовки проводят в вакуумной печи СВШ-1.25/2500 по режиму, представленному на фигуре, а именно, нагревают прессовку до температуры 240°C в течение 1.0 часа, проводят выдержку 1.5 часа, затем нагревают до температуры 1280°C в течение 3.5 часа, проводят выдержку 4.0 часа, затем снова нагревают до температуры 1500°C в течение 2.0 часов, проводят выдержку 1.0 час и проводят охлаждение диборида циркония вместе с печью. Фазовый состав после синтеза, %: ZrB2 - 96, ZrO2(м.) - 3, ZrC - 1.

Пример 4.

Готовят смесь из порошков диоксида циркония 10 г, вакуумной сажи (углерод) 10 г и борной кислоты 80 г. Полученную смесь перемешивют всухую в мешалке барабанного типа в течение 24 часов, аналогично примеру 1. Формование прессовки проводят на гидравлическом прессе ДА-1224 в стальной пресс-форме при давлении прессования 2,0 т/см2.

Термическую обработку спекание-синтез прессовки проводят в вакуумной печи СВШ-1.25/2500 по режиму, представленному на фигуре, а именно, нагревают прессовку до температуры 235°C в течение 1.0 часа, проводят выдержку 1.5 часа, затем нагревают до температуры 1290°C в течение 3.5 часа, проводят выдержку 4.0 часа, затем снова нагревают до температуры 1500°C в течение 2.0 часов, проводят выдержку 1.0 час и проводят охлаждение диборида циркония вместе с печью. Фазовый состав после синтеза, %: ZrB2 - 97, ZrO2(м.) - 2, ZrC - 1.

В результате получают диборид циркония, содержащий не более 5% примесей и состоящий из наноразмерных частиц порошка со средним размером не более 50 нм, со среднеквадратичным отклонением не более 20 нм.

1. Способ получения наноразмерного порошка диборида циркония (ZrB2), включающий приготовление шихты из порошков диоксида циркония, борной кислоты и углерода, формование прессовки и термическую обработку-синтез, отличающийся тем, что шихта содержит указанные компоненты в следующем соотношении, вес. %:

диоксид циркония 10-40
борная кислота 40-80
углерод 10-20

при этом шихту дополнительно подвергают механической обработке, а термическую обработку-синтез прессовки проводят по трехступенчатому температурному режиму нагрева:
- до температуры 235-250°C в течение 1.0 часа с выдержкой 1.5 часа,
- до температуры 1280-1300°C в течение 3.5 часа с выдержкой 4.0 часа,
- до температуры 1500±5°C в течение 2.0 часов с выдержкой 1.0 час,
затем проводят охлаждение конечного продукта вместе с печью.

2. Способ по п. 1, отличающийся тем, что для приготовления шихты используют порошок диоксида циркония, полученного разложением водных растворов солей в плазме высокочастотного разряда.

3. Способ по п. 1, отличающийся тем, что шихту подвергают механической обработке путем перемешивания всухую в мешалке барабанного типа в течение суток, при этом соотношение смеси порошков и мелющих тел составляет 1:2.

4. Способ по п. 1, отличающийся тем, что формования прессовки проводят при давлении 2.0-2.5 т/см.



 

Похожие патенты:

Изобретение может быть использовано в химической промышленности. Реактор для карботермического получения диборида титана (10) содержит нижнюю камеру (26), образованную сосудом и перфорированной сепараторной пластиной (12) и имеющую впуск инертного газа (16), причем нижняя камера (26) содержит нереакционноспособную среду, удерживаемую в ней, верхнюю камеру (28), образованную сосудом и перфорированной сепараторной пластиной (12).

Изобретения могут быть использованы в химической отрасли. Композиция боридов алюминия в качестве энергетической добавки к смесевым ракетным топливам имеет формульный состав бор:алюминий, равный 2-33:1, и следующие характеристики: средний размер частиц (d50) 1,5-4,5 мкм; насыпную плотность (ρнас) 0,6-0,8 г/см3; температуру горения (Tmax) 690-830°C.
Изобретение относится к порошковой металлургии, в частности к синтезу диборида циркония, и может быть использовано для изготовления чехлов высокотемпературных термопар, нагревателей высокотемпературных электропечей сопротивления, испарителей и лодочек для вакуумной металлизации, тиглей для прецизионной металлургии, труб для перекачивания расплавленных металлов.
Изобретение относится к порошковой металлургии, в частности к синтезу диборида титана, и может быть использовано для производства керамической брони, изготовления нагревателей высокотемпературных электропечей сопротивления, ванн и тиглей - испарителей металлов, деталей металлопроводов и электромагнитных насосов для перекачивания расплавленных металлов, узлов химической аппаратуры.
Изобретение относится к способу получения диборида хрома, состоящему в нагреве шихты из смеси окиси хрома, карбида бора и высокодисперсного углеродного материала.

Изобретение относится к электролитическому способу получения наноразмерного порошка гексаборида церия, включающему синтез гексаборида церия из расплавленных сред в атмосфере очищенного и осушенного аргона.

Изобретение относится к электрохимическому способу получения порошка гексаборида кальция, включающему электролиз солевого расплава, содержащего кальций- и борсодержащие компоненты.

Изобретение относится к области получения нанодисперсных порошков неорганических материалов и соединений. Плазмохимические реакции инициируют импульсным микроволновым разрядом, воздействующим на исходные реагенты, в качестве которых используют смесь порошков титана и бора в атмосфере азота, при этом в качестве исходных реагентов используют порошок аморфного бора с размером частиц 1 мкм-100 мкм и порошок титана с размером частиц 1 мкм-100 мкм, причем используется микроволновой разряд мощностью от 50 кВт до 500 кВт и длительностью импульса от 100·10-6 с до 100·10-3 с, а рабочее давление азота составляет от 0,1 до 1 атмосферы.

Изобретение может быть использовано в химической технологии. Способ синтеза додекаборида алюминия включает смешение паров субхлорида алюминия и паров хлорида или фторида бора.

Изобретение может быть использовано в химической промышленности. Для получения диборида титана выбирают целевой средний размер частиц для продукта диборида титана и количество серы исходя из целевого среднего размера частиц.

Изобретение относится к нанотехнологии и может быть использовано для изготовления автоэлектронных эмиттеров. Углеродные нанотрубки осаждают на металлические подложки в дуговом реакторе в рабочей атмосфере на основе инертного газа, содержащей водород 8-10 об.% и гелий - остальное.

Изобретение относится к синтезу островковых металлических катализаторов и углеродных нанообъектов и может быть использовано в промышленности для производства нанообъектов и наноструктурированных пленок.

Изобретение может быть использовано в оптоэлектронике и медицине при получении источников излучения и флуоресцентных меток. Способ получения водного коллоидного раствора наночастиц сульфида серебра включает получение смеси водных растворов нитрата серебра, сульфида натрия и стабилизатора.

Изобретение относится к способу нанесения покрытия на полимерные пористые конструкции и может быть использовано для формирования композиционных полимерных пористых конструкций на основе полилактида медицинского назначения с размером пор от 300 мкм, отличающихся повышенной биоактивностью и гидрофильностью.

Изобретение относится к технологии неорганических материалов, в частности к способам получения нанокристаллического порошка диоксида циркония, стабилизированного добавками редкоземельных элементов (РЗЭ), и может быть использовано для изготовления катализаторов и сорбентов, технической керамики различного назначения (теплозащитных материалов, твердых электролитов для твердооксидных топливных элементов и т.д.).

Изобретение относится к сублимационному выращиванию эпитаксиальных массивов самоорганизованных монокристаллических наноостровков кремния на сапфировых подложках и может быть использовано в качестве нанотехнологического процесса, характеризующегося повышенной стабильностью формирования однородных по размерам наноостровков кремния с пониженной степью дефектности их структуры.

Изобретение относится к способу переработки природного битума в бензиновые и дизельные фракции путем каталитического крекинга в среде ацетилена в присутствии мезопористого алюмосиликата с диаметром пор 50 Ǻ, взятого в количестве 5-10 мас.%, модифицированного наноразмерным порошком никеля со средним размером частиц 20 нм, полученного методом газофазного синтеза, в количестве 0,5-2,0% к массе цеолита.

Изобретение относится к промышленности строительных материалов, а именно к составам для производства теплоизоляционного автоклавного газобетона и изделий на его основе, которые могут применяться для теплоизоляции промышленных установок и ограждающих конструкций зданий и сооружений.

Изобретение относится к способу получения композиционного материала на основе сверхвысокомолекулярного полиэтилена (СВМПЭ), обладающего теплопроводящими электроизоляционными свойствами, методом полимеризационного наполнения.

Настоящее изобретение относится к способу получения полимерных микросфер, содержащих квантовые точки. Описан способ получения полимерных микросфер, содержащих квантовые точки, включающий приготовление раствора квантовых точек в органическом растворителе, содержащем катионактивное ПАВ, представляющее собой алкилдиметилэтилбензиламмоний хлорид в количестве 1-2 мас.%, с концентрацией квантовых точек в растворе 0,1-1,0 г/л, с последующим добавлением к раствору квантовых точек полимерных микросфер полистирола или полиметилметакрилата, при соотношении полимер:раствор квантовых точек, равном 1:1, полученную смесь подвергают ультразвуковой обработке, затем выдерживают в течение 2-6 часов при комнатной температуре и диспергируют в С2-С4-алифатическом спирте с катионактивным ПАВ, представляющим собой алкилдиметилэтилбензиламмоний хлорид, взятый в количестве 1-2 мас.%, выдерживают в течение 5-15 минут, затем центрифугируют для выделения образовавшегося осадка, состоящего из полимерных микросфер, содержащих квантовые точки.

Изобретение относится к порошковой металлургии. Способ получения порошка квазикристаллического материала системы Al-Cu-Fe включает перемешивание порошков алюминия, меди и железа при соотношении компонентов, соответствующем области существования квазикристаллической фазы сплава системы Al-Cu-Fe, нагрев полученной смеси в камере в бескислородной атмосфере с последующим измельчением спека до получения порошка заданной дисперсности.

Изобретение относится к технологии производства высокотвердых жаростойких материалов на основе циркония, а именно к способам получения диборида циркония. Способ получения наноразмерного порошка диборида циркония включает приготовление шихты из порошков диоксида циркония, борной кислоты и углерода в соотношении компонентов, вес. : диоксид циркония 10-40, борная кислота 40-80, углерод 10-20, механическую обработку полученной смеси, формование прессовки и термическую обработку-синтез по трехступенчатому температурному режиму нагрева. Изобретение обеспечивает получение наноразмерного порошка диборида циркония с высокой селективностью. 3 з.п. ф-лы, 1 ил., 4 пр.

Наверх