Способ изготовления деталей из слюды методом лазерной резки



Способ изготовления деталей из слюды методом лазерной резки
Способ изготовления деталей из слюды методом лазерной резки
Способ изготовления деталей из слюды методом лазерной резки
Способ изготовления деталей из слюды методом лазерной резки

 


Владельцы патента RU 2601362:

Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (RU)
Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" - ФГУП "РФЯЦ-ВНИИЭФ" (RU)

Изобретение относится к способу изготовления деталей из слюды методом лазерной резки. Подготавливают и жестко фиксируют плоскую заготовку из слюды на неподвижном основании, выполненном составным из съемной металлической сетки, опирающейся на прямоугольный выступ, выполненный по периметру окна в основании, закрепленном на предметном столе, к которому подводят вытяжную магистраль для поджатия упомянутой заготовки к съемной металлической сетке. Подают сфокусированное лазерное излучение (ЛИ) регулируемой мощности посредством портальной оптической отклоняющей системы на поверхность плоской заготовки. Формируют пятно в заданной точке поверхности плоской заготовки и осуществляют рез с управлением процессом реза упомянутой заготовки путем подачи управляющих сигналов от персонального компьютера на подвижный портал, содержащий направляющие и подвижную каретку, на которой закреплена оптическая лазерная головка с обеспечением продольно-поперечных перемещений по соответствующим координатам контура реза. Изобретение позволяет упростить способ и обеспечить условия для точной резки без деформирования расслаивающихся заготовок. 6 ил., 1 пр.

 

Предлагаемое изобретение относится к области технологий и систем лазерной обработки и может быть использовано для раскроя или резания хрупких слоистых материалов, таких как прессованное стекловолокно, ситаллы, слюда, и других подобных им материалов, применяемых преимущественно при изготовлении точных элементов миниатюрных химических источников тока.

Известны системы и методы резания различных твердых материалов с использованием энергии лазерного луча (патент РФ №2076794, МПК B23K 26/38, публ. 10.04.1997 г.), в которых на опорной поверхности, выполненной в виде поворотной платформы, размещают обрабатываемое изделие, на поверхность которого направляют лазерный луч от источника лазерного излучения, регулируемый оптической системой зеркал, при этом изменение положения поворотной платформы для проведения процесса резки обеспечивается приводными устройствами.

Известен в качестве прототипа заявляемого способ изготовления деталей сложной формы методом лазерной резки (патент РФ №2322334, МПК B23K 26/02, публ. 20.04.2008 г.), в котором на опорной поверхности располагают объекты, подлежащие резке, путем подачи их к месту позиционирования с помощью специального устройства, к указанным объектам направляют от источника лазерного излучения сфокусированный системой оптических линз и зеркал лазерный луч, управляемый ПК по заложенной в него программе контроля и распознавания формы изготовляемого изделия, что обеспечивает точность изготовления и чистоту обработки изделий.

К недостаткам известных решений относятся сложность процесса и используемого оборудования и отсутствие условий для обработки пакета из расслаивающихся заготовок, таких как прессованные волокна или слюда.

Задачей авторов изобретения является разработка простого и эффективного способа изготовления тонких деталей из расслаивающихся материалов методом лазерной резки без повреждения обрабатываемых изделий, обеспечивающего высокую точность и чистоту обработки их.

Новый технический результат, обеспечиваемый при использовании предлагаемого способа, заключается в упрощении способа и обеспечении условий для точной резки без деформирования расслаивающихся заготовок, таких как слюда.

Указанные задача и новый технический результат обеспечивается тем, что в отличие от известного способа изготовления деталей из слюды лазерной резкой, включающего подготовку и жесткую фиксацию плоской заготовки из слюды на неподвижном основании, подачу сфокусированного лазерного излучения (ЛИ) регулируемой мощности посредством оптической отклоняющей системы на поверхность плоской заготовки, формирование пятна в заданной точке поверхности плоской заготовки и осуществление реза плоской заготовки по заданному контуру посредством сфокусированного луча ЛИ, согласно изобретению используют неподвижное основание, выполненное составным из съемной металлической сетки, опирающейся на прямоугольный выступ, выполненный по периметру окна в основании, закрепленном на предметном столе, к которому подводят вытяжную магистраль для поджатия упомянутой заготовки к съемной металлической сетке, при этом для подачи сфокусированного луча ЛИ на упомянутую заготовку используют портальную оптическую отклоняющую систему, содержащую комплект приемно-отражающих плоских оптических зеркал, установленных неподвижно под заданными углами относительно друг друга и оптической оси излучающего ЛИ устройства, и осуществляют управление процессом реза упомянутой заготовки путем подачи управляющих сигналов от персонального компьютера на подвижный портал, содержащий направляющие и подвижную каретку, на которой закреплена оптическая лазерная головка с обеспечением продольно-поперечных перемещений по соответствующим координатам контура реза.

Предлагаемый способ поясняется следующим образом.

На фиг. 1 представлены схематически этапы и устройство для осуществления предлагаемого способа, где 1 - источник ЛИ, 2 - туннель, 3 - 1-е зеркало, 4 - 2-е зеркало, 5 - подвижный портал, 5.1 - каретка подвижного портала, 5.2 и 5.3 - направляющие подвижного портала, 6 - верхняя часть лазерной головки, 7 - 3-е неподвижное зеркало, 8 - пылезащитная гофра, 9 - нижняя часть лазерной головки, 10 - фокусирующий объектив, 11 - сопло, 12 - патрубок, 13 - сервопривод, 14 - слюдяная заготовка, 15 - съемная металлическая сетка, 16 - основание с прямоугольным выступом, 17 - короб с фланцем для подключения вытяжной магистрали, 18 - вытяжная магистраль и крепления магистрали (гибкого рукава), 19 - предметный стол, 20 - основание (гранит).

На фиг. 2 представлен пакет из слоев слюды, предназначенный для резки, где 21 - заклепки, 22 - стальные пластины-спутники, 23 - собственно слюдяные заготовки.

На фиг. 3 представлена схема прохождения маломощного импульса ЛИ через пакет из слоев слюды, где 23 - слюдяная заготовка, 24 - включения (дефекты материала), 25 - луч ЛИ.

На фиг. 4 представлен схематически процесс разрушения слюды, где 23 - слюдяная заготовка, 25 - луч ЛИ, 26 - зона взрывного разрушения.

На фиг. 5 представлен процесс «заплавления» зоны реза и расплавления пакета слоев слюды, где 23 - слюдяные заготовки, 25 - луч ЛИ, 27 - продукты расплавления материала слюды, 28 - слой адгезива.

На фиг. 6 представлен процесс послойного разрушения слоев слюды под действием избыточного давления, где 25 - луч ЛИ, 29 - «поддув» сжатым воздухом высокого давления (≈6 атм).

Предлагаемый способ осуществляется следующим образом.

На опорной неподвижной поверхности 20 закрепляют составное основание 16, выполненное из съемной металлической сетки 15, которая укладывается на ограничительный поддреживающий ее периметрический выступ в имеющемся окне основания 16. На съемную металлическую сетку помещают слюдяную заготовку 14 (или пакет из слюды).

К нижней части предметного стола 19 подведена вытяжная магистраль 18 с возможностью поджатия заготовки из слюды 14 при ее срабатывании к съемной металлической сетке 15.

Импульс ЛИ генерируется источником 1. От источника 1 ЛИ вдоль его центральной оси направляют луч ЛИ на оптическую портальную отклонящую систему из 3 зеркал, которая обеспечивает трансляцию лазерного луча до поверхности обрабатываемой слюдяной заготовки 14. Выходя из аппертурного отверстия источника ЛИ 1, по туннелю 2, соединяющему корпус 1-го зеркала 3 портальной оптической системы с источником 1 ЛИ, луч ЛИ подается на 1-е зеркало, жестко закрепленное на своем основании под углом 45° к оси лазерного луча. Луч ЛИ по ходу следования отражается под прямым углом и попадает на 2-е зеркало 4, которое расположено под углом 45° к оси падающего на него лазерного луча. Корпус 2-го зеркала кинематически соединен с подвижным порталом 5, который передвигается по направляющим 5.2 и 5.3 благодаря линейному приводу. Далее лазерный луч со 2-го зеркала 4 попадает в 3-е неподвижное зеркало 7, расположенное 45° к оси лазерного луча в подвижной части 6 лазерной головки, состоящей из 2-х частей, и отражается вниз перпендикулярно обрабатываемой поверхности слюдяного пакета 14. Луч ЛИ, проходя через фокусирующий объектив 10, расположенный во 2-й подвижной части 9 лазерной головки, преобразуется из параллельного пучка в конусообразный и направляется через сопло 11, закрывающее нижнюю часть лазерной головки 9, на обрабатываемую поверхность слюдяной заготовки. Пылезащитная гофра 8 закрывает свободное пространство между частями 6 и 9 лазерной головки и защищает его от пыли. Верхняя часть лазерной головки 6 жестко закреплена на каретке 5.1, которая передвигается по направляющим вдоль оси портала 5. Нижняя часть лазерной головки 9 подвижна благодаря сервоприводу 13, с которым она кинематически связана, и может передвигаться по вертикальной оси, изменяя фокусное расстояние от объектива до фокальной плосколсти слюдяной заготовки. Через патрубок 12 подается сжатый воздух от цеховой магистрали для защиты объектива и уноса продуктов расплавления материала слюды и пыли из зоны резки. Сфокусированный луч ЛИ попадает на слюдяную заготовку (пакет) 14, уложенную на металлическую сетку 15, находящуюся внутри приспособления 16. К нижней части опорной плоскости приспособления присоединен короб 17 с фланцем, предназначенный для крепления гибкого рукава 18 штатной магистрали цеховой системы вытяжной вентиляции. Под давлением потока воздуха («400 м /час), всасываемого вытяжной вентиляционной системой, слюдяная заготовка плотно прижимается к съемной металлической сетке 15 и надежно фиксируется на ней. Одновременно происходит удаление продуктов горения и пыли, сопровождаюих процесс лазерной резки. Опорной плоскостью приспособление опирается на предметный стол 19, установленный на гранитном основании 20.

Следует отметить, что слюда характеризуется высокими диэлектрическими свойствами, высокой стойкостью к высоким температурам и с трудом поддается механической обработке (штамповке, резке, скрайбированию), что роднит ее с группой силикатов, обработка которых, как это известно, ввиду повышенной хрупкости и малых толщин (до 0,5 мм) единичных изделий также проблематична. При резке пакета из указанных материалов возникает необходимость применения внешних стальных пластин (спутников), что делает возможным проведение требуемых операций. В момент фиксации пакета из слоев таких материалов в зажимных приспособлениях на станках (токарном патроне, фрезерных тисках) возникают сильные многократные нагрузки типа «разжим-сжатие», приводящие к повреждению слоистой структуры материала и высокому проценту брака в слоях пакета, находящихся ближе к металлическим слоям «спутников», а традиционно применяемый режущий инструмент, даже изготовленный из твердых сплавов, быстро теряет заточку режущей кромки, т.к. слоистые структуры слюд и ситаллов выступают в роли абразива. Это приводит к тому, что инструмент не режет, а давит заготовки из указанных материалов. Возникают мощные напряжения и нагрев на обрабатываемой кромке, что приводит к расслоениям в зоне обработки. Трещины и расслоения при механической обработке имеют значительные размеры в длину, измеряемые от нескольких десятых долей миллиметра до нескольких миллиметров. В силу сложности готовой формы и миниатюрности обрабатываемых деталей это является недопустимым, особенно при изготовлении прецезионных изделий, эксплуатируемых в качестве диэлектрических элементов электронных приборов, посколку нарушается основополагающее свойство слюд - диэлектрическое сопротивление, что влечет за собой опасность «пробоя» и отказ в работе подобных устройств.

Вышеперечисленные трудности механообработки и привели к необходимости использования для резки слюды и подобных материалов с использованием ЛИ, при этом установлено, что применение твердотельных лазеров, обеспечивающих излучение с длиной волны 1,064 мкм, плохо поглощается кристаллическими телами, а слюда сочетает в себе свойства и непрозрачной керамики, и прозрачных тел. Экспериментально было показано, что оптимальными для этого являются лазерные устройства, генерирующие маломощный лазерный импульс, который проходит через слюду, не вызывая опасных последствий (фиг. 3). Увеличение мощности импульса ЛИ возможно до момента, когда вся энергия его приходится на какой-либо дефект в структуре либо на включения. С этого момента начинается стадия резки, одновременно происходит разрушение слюды в месте прохождения лазерного луча. Как следствие этого происходит рост локальных напряжений и локальное взрывное разрушение слюды (фиг. 4).

Усугубляет ситуацию необходимость набора нужной толщины заготовки из нескольких слоев меньшей толщины путем склейки, тем самым увеличивая количество слабо соединенных слоев. Слой клея и воздушная прослойка дополнительно преломляют лазерный луч. Применение газового лазера с длиной волны 10,6 мкм, которое хорошо поглощается кристаллическими материалами и обеспечивает оптимальный режим резки слюдяных заготовок. Слоистая структура слюды сложна для лазерной обработки в связи с тем, что между собой слои имеют слабую связь. Если выбрать режим, при котором происходит прохождение лазерного луча без поддува (подаваемого через сопло под давлением сжатого воздуха), то не обеспечивается унос продуктов плавления и пыли. При этом происходит заплавление зоны реза и перегрев материала (фиг. 5).

Высокое давление (около 6 атм и выше) воздуха обеспечивает лучшее охлаждение зоны резки не только в фокальной плоскоти, но и в средних и нижних слоях реза. Это снижает термическую нагрузку на материал и способствует более полному удалению продуктов горения из зоны реза.

С другой стороны, избыточное давление может привести к послойному разрушению слюды на отдельные фрагменты, что является негативным для проведения точного реза пакета заготовок (фиг. 6).

Экспериментально были подобраны режимы оптимальной резки в несколько проходов, за каждый из которых прорезается небольшой слой материала, но давление воздуха не вызывает его разрушения. Данные режимы были подобраны с учетом факторов, позволяющих минимизировать термическую нагрузку и применить поддув, что обеспечивает качественный рез и минимальный дефектный слой (фиг. 7).

В связи с тем что слюда является весьма хрупким материалом, исключается применение жесткой механической фиксации листовой заготовки стандартными методами, например прижимами. При лазерной обработке происходит локальный нагрев изделия. В силу малой пластичности слюда не обладает способностью гибко деформироваться, как металл, а следовательно, будет ломаться. Сопутствующим негативным фактором при резке слюды является мелкодисперсная пыль, которая вредна для здоровья работающего персонала и оседает на оптические элементы лазерной установки, что диктует необходимость оснащения рабочих мест вытяжной вентиляцией. Эти проблемы и решает использование в предлагаемом способе вытяжной магистрали, обеспечивающей как фиксацию подвергаемой резке слюдяной заготовки, так и унос сопроводающих процесс резки продуктов.

Таким образом, при использовании предлагаемого способа достигается заявленный технический результат, заключающийся в упрощении способа при одновременном обеспечении условий для более точной резки без деформирования расслаивающихся заготовок, таких как слюда, по сравнению с прототипом.

Возможность промышленной реализации предлагаемого способа изготовления деталей из слюды методом лазерной резки подтверждается следующим примером.

Пример 1. В лабораторных условиях был опробован опытный образец установки (фиг. 1) для лазерной резки пакета из слюдяных заготовок (фиг. 2).

Перед запуском процесса обработки пакета заготовок из слюды производились следующие действия:

- оператор выбирает и загружает необходимый файл в обслуживающий портальную оптическую систему ПК, содержащий в себе контур детали;

- задает необходимые параметры по мощности лазера и скорости перемещения оптической системы;

- выставляет зазор между соплом и обрабатываемой поверхностью;

- регулирует давление сжатого воздуха.

При режимах, на которых происходит резка слюды, газовый лазер (в условиях примера использован газовый лазер «Rofin», длина волны ЛИ 10,6 мкм) не способен резать металл, таким образом, съемная металлическая сетка не подвергается износу. Условия и режимы реализации предлагаемого способа приведены ниже.

Режимы контурной размерной обработки пакета слоев слюды ССП и СПМ толщиной соответственно 0,3 мм и 0,5 следующие:

Для заготовок из слюды толщиной 0,3 мм

количество проходов 2
скорость перемещения режущей лазерной головки над столом 2,6 мм/с
частота следования импульсов 8 кГц
длительность импульса 40 мкс
количество импульсов в паузе 60
количество импульсов в пачке 1
давление воздуха 1,5-2 атм

Для заготовок из слюды толщиной 0,5 мм

количество проходов 2
скорость перемещения режущей лазерной головки над столом 2,6 мм/с
частота следования импульсов 20 кГц
длительность импульса 48 мкс
количество импульсов в паузе 60
количество импульсов в пачке 1
давление воздуха 1,5-2 атм

На фиг. 3 показано, что получаемый срез пакета заготовок из слюды получен без искажений и без деформирования изделия.

Как показали эксперименты, при реализации предлагаемого способа достигается технический результат, заключающийся в упрощении способа и обеспечении условий для точной резки без деформирования расслаивающихся заготовок, таких как слюда.

Способ изготовления деталей из слюды лазерной резкой, включающий подготовку и жесткую фиксацию плоской заготовки из слюды на неподвижном основании, подачу сфокусированного лазерного излучения (ЛИ) регулируемой мощности посредством оптической отклоняющей системы на поверхность плоской заготовки, формирование пятна в заданной точке поверхности плоской заготовки и осуществление реза плоской заготовки по заданному контуру посредством сфокусированного луча ЛИ, отличающийся тем, что используют неподвижное основание, выполненное составным из съемной металлической сетки, опирающейся на прямоугольный выступ, выполненный по периметру окна в основании, закрепленном на предметном столе, к которому подводят вытяжную магистраль для поджатия упомянутой заготовки к съемной металлической сетке, при этом для подачи сфокусированного луча ЛИ на упомянутую заготовку используют портальную оптическую отклоняющую систему, содержащую комплект приемно-отражающих плоских оптических зеркал, установленных неподвижно под заданными углами относительно друг друга и оптической оси излучающего ЛИ устройства, и осуществляют управление процессом реза упомянутой заготовки путем подачи управляющих сигналов от персонального компьютера на подвижный портал, содержащий направляющие и подвижную каретку, на которой закреплена оптическая лазерная головка с обеспечением продольно-поперечных перемещений по соответствующим координатам контура реза.



 

Похожие патенты:

Изобретение относится к лазерной обрабатывающей головке для лазерной обрабатывающей установки (варианты) и лазерной обрабатывающей установке. Лазерная головка содержит держатель (2) для узла (3) датчика, сформированный из электропроводящего материала, внешний изоляционный узел (4), изготовленный из электроизоляционного материала, такого как пластик, для электрического экранирования и внутренний изоляционный узел (5), вставленный во внешний изоляционный узел (4) в качестве экрана для излучения.

Изобретение относится к устройству управления технологическим процессом лазерного термоупрочнения. Для повышения качества обработки обеспечен контроль с последующей корректировкой параметров упрочняемого слоя детали в реальном масштабе времени.

Изобретение относится к способу эпитаксиального нанесения ремонтного материала на поверхность (38) подложки, полученной направленной кристаллизацией, и может быть использовано для ремонта деталей газотурбинного двигателя.

Изобретение относится к инструменту для удерживания конструктивного элемента турбомашины при креплении металлического элемента (32, 34) на данном конструктивном элементе и способу крепления металлического элемента (32, 34) на упомянутом конструктивном элементе.

Группа изобретений относится к лазерному спеканию металлического порошка. Устройство лазерного спекания для наплавки металлической детали из металлического порошка содержит генератор лазерного луча, средство отклонения лазерного луча для сканирования поверхности детали, емкость для спекания, содержащую металлический порошок для утолщения детали посредством расплавления металлического порошка лазерным лучом, и по меньшей мере одно средство индукционного нагрева металлического порошка, содержащегося в зоне упомянутой емкости для спекания.
Изобретение относится к области оптического приборостроения и касается способа изготовления многофункциональных оптических прицельных сеток. Способ включает в себя чистку подложки, нанесение на подложку элементов топологии оптической шкалы в световой зоне сетки методом лазерной абляции с использованием инфракрасного фемтосекундного импульсного лазера, запуск, поправку, чистку органическим растворителем, нанесение металлического покрытия из алюминия или серебра.
Изобретение относится к способу гибридной лазерно-дуговой сварки, осуществляемому с помощью электрической дуги и лазерного луча, сочетающихся друг с другом в единой сварочной ванне, в которую расплавленный металл подается посредством плавления расходуемой проволоки.
Изобретение относится к способу гибридной лазерно-дуговой сварки стальных деталей, содержащих поверхностное покрытие на основе алюминия. Осуществляют сварку с помощью электрической дуги и лазерного луча, сочетающихся друг с другом в единой сварочной ванне, в которую расплавленный металл вносят в результате плавления расходуемой проволоки, сварку ведут с защитным газом.

Изобретение относится к устройству для лучевой обработки, которое способно быстро и точно обрабатывать поверхность заготовки. Устройство (10) для обработки поверхности заготовки (W) лучом (LB) содержит источник (32) для генерирования луча (LB), средство (12) перемещения луча (LB) и несколько отражателей (14), расположенных на оптическом пути луча (LB) между средством (12) перемещения луча и обрабатываемой поверхностью.

Изобретение относится к способу лазерной пробивки сквозного отверстия в неметаллической пластине и может найти применение изготовления пластин из полупроводниковых, керамических и стеклообразных материалов с отверстиями.
Изобретение относится к области оптического приборостроения и касается способа изготовления многофункциональных оптических прицельных сеток. Способ включает в себя чистку подложки, нанесение на подложку элементов топологии оптической шкалы в световой зоне сетки методом лазерной абляции с использованием инфракрасного фемтосекундного импульсного лазера, запуск, поправку, чистку органическим растворителем, нанесение металлического покрытия из алюминия или серебра.

Изобретение относится к способу лазерной пробивки сквозного отверстия в неметаллической пластине и может найти применение изготовления пластин из полупроводниковых, керамических и стеклообразных материалов с отверстиями.

Изобретение относится к способу обработки поверхности для повышения степени ее черноты перед нанесением основного покрытия и может быть использовано при производстве светопоглащающих элементов объективов, гелиотермических преобразователей.

Изобретение относится к способу и устройству для структурирования поверхности (9) твердого материала, нанесенного на твердое тело, и упаковочной фольге с тиснением, которое нанесено штампами для тиснения или валами для тиснения.

Изобретение относится к способу и устройству структурирования поверхности твердого тела с покрытием из твердого материала и полученной при этом упаковочной фольге.

Изобретение относится к способу лазерной обработки неметаллических материалов и может быть использовано для скрайбирования полупроводниковых, керамических и стеклообразных материалов.

Способ может быть использован при удалении различного рода загрязнений с поверхности промышленных и технологических объектов. Проводят сканирование в многоимпульсном режиме сформированным пучком лазерного излучения по корродированной поверхности объекта в несколько проходов.

Изобретение относится к обработке трансформаторных листов с направленной структурой в виде полосы (26) в направлении продольного движения лазерным скрайбированием.

Изобретение относится к способу и устройству изготовления форм для глубокой печати, предназначенных для производства ценных бумаг, в котором используют лазерный луч (2) для гравирования рисунка (3, 3.1, 3.2, 3.3) глубокой печати непосредственно на поверхности формного материала (1), в частности металлического, выполненного с возможностью гравирования лазером.

Изобретение относится к лазерной технике, конкретно к способам лазерной нейтрализации взрывоопасных объектов, и может быть использовано для бездетонационного обезвреживания мин, неразорвавшихся боеприпасов, других взрывоопасных предметов, далее - взрывоопасных объектов.

Изобретение относится к изготовлению металлических порошков. Способ включает нагрев металла донора порошка до температуры его плавления, формирование из него капель металла и их охлаждение в среде нейтрального газа и сбор порошка. Поверхность образца металла донора порошка нагревают излучением лазера, которое перемещают в пределах площади поверхности образца металла донора со скоростью, достаточной для формирования на ней ванны расплава с объемом от 10-5 до 10 мм3. Объем расплавленного металла из ванны расплава дробят и выдувают струей сжатого нейтрального газа с обеспечением свободного полета капель металла до их охлаждения ниже температуры плавления. Частицы порошка собирают в объеме уловителя порошка. Обеспечивается стабильность формы и фракционного состава порошка, возможность регулирования среднего размера частиц и изготовления порошка с диаметром меньше 50 мкм. 1 з.п. ф-лы, 3 ил.
Наверх