Магнитно-резонансный томограф



Магнитно-резонансный томограф
Магнитно-резонансный томограф
Магнитно-резонансный томограф

Владельцы патента RU 2601373:

федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО) (RU)

Изобретение относится к медицинской технике, к устройствам магнитно-резонансной томографии (МРТ). Магнитно-резонансный томограф включает источник постоянного магнитного поля, блок формирования градиентного магнитного поля, генератор радиочастотных импульсов, приемник и усилитель электромагнитного поля из метаматериала, расположенный вблизи приемника. Метаматериал включает набор протяженных изолированных друг от друга преимущественно ориентированных проводников, каждый из которых характеризуется длиной li, среднее значение которой равно L, расположенных на расстояниях si друг от друга, среднее значение которых равно S, имеющих поперечные размеры di, среднее значение которых равно D, а среднее значение длин проводников удовлетворяет условию 0,4λ<L<0,6λ, где λ - длина волны радиочастотного сигнала в метаматериале, среднее значение расстояний между проводниками - 0,001λ<S<0,1λ, среднее значение поперечных размеров проводников - 0,00001λ<D<0,01λ, и проводники выполнены из немагнитного материала. Использование изобретения позволяет минимизировать уровень радиочастотного электрического поля в области пациента и повысить уровень радиочастотного магнитного поля. 4 з.п. ф-лы, 3 ил.

 

Настоящее изобретение относится к области медицинской диагностики и может быть использовано в магнитно-резонансной томографии (МРТ) и магнитно-резонансной спектроскопии (MPC) для повышения качества диагностики внутренних органов человека и животных.

На сегодняшний день МРТ является одним из самых информативных методов исследования внутренних органов человека. Качество MP изображения и размер диагностируемой области пациента зависят от величины индукции магнитного поля, в которое помещают пациента, а также характеризуются величиной отношения сигнал/шум, частично зависящей от параметров радиочастотных (РЧ) катушек, которые используются для облучения диагностируемой области РЧ импульсами и для приема РЧ сигнала в дальнейшем.

Уровень сигнала в МРТ зависит от силы статического магнитного поля системы. В течение двух последних десятилетий в основном использовались низкопольные томографы, работающие со статическим полем 1.5 Тесла и ниже. Недавно сконструированные высокопольные системы со статическим полем 3 Тесла уже успешно используются во многих госпиталях России и мира. Сверхвысокопольные МРТ со статическим полем свыше 3 Тесла разрешены только для научных исследований и на данный момент не допущены для массового сканирования пациентов. Более высокое статическое магнитное поле дает возможность существенно усовершенствовать характеристики томографа, это связано с тем, что чем больше сила статического поля, тем выше рабочая частота и больше отношение сигнал/шум [Е.M. Haacke, R.W. Brown, M.R. Thompson, and R. Venkatesan, Magnetic Resonance Imaging: Principles and Sequence Design (Wiley, 1999)]. Зависимость отношения сигнал/шум от РЧ параметров в МРТ приближенно определяется как:

где γ - гиромагнитное отношение, - частота РЧ сигнала, τ - длительность РЧ импульса, - амплитуда магнитного РЧ поля, созданного источником, отвечающая за угол наклона суммарного вектора намагниченности для заданной последовательности импульсов, - выражает чувствительность принимающей катушки, а Pabs - общая мощность, поглощаемая образцом.

Увеличение критически важного отношения сигнал/шум позволяет получать достаточный уровень сигнала из закодированного объема гораздо меньшего размера (увеличение разрешения изображения) или получать изображения того же качества, но гораздо быстрее, в связи с отсутствием необходимости накапливать сигнал [J.М. Theysohn, О. Kraff, S. Maderwald, М. Schlamann, A. de Greiff М. Forsting, S. Ladd, M. Ladd, and E. Gizewski, Hippocampus 19, 1 (2009)].

Однако существует ряд проблем при использовании высокопольных MPT: 1) из-за малого объема накопленных данных влияние сверхвысокопольных МРТ на организм человека не изучено, и многие неблагоприятные эффекты (например: головокружение и тошнота) проявляются уже при помещении пациента в МРТ с силой поля 3 Тесла [R.J. Stafford, Medical Physics 32, 2077 (2005)]; 2) многим пациентам с различными имплантами разрешено сканирование в томографах с силой 1.5 Тесла, но запрещено сканирование в 3 Тесла томографах [Е. Kanal, А.J. Barkovich, С. Bell, and et al., Journal of Magnetic Resonance Imaging 37, 501 (2013)]. Таким образом, улучшение характеристик низкопольных МРТ (в частности, увеличение отношения сигнал/шум) является критически важной проблемой.

Проблема обеспечения безопасности в МРТ главным образом определяется вычислением удельного коэффициента поглощения, который показывает количество поглощенной электромагнитной энергии и, следовательно, риск нагрева ткани из-за применения РЧ импульсов, необходимых для получения MP сигнала. Удельный коэффициент поглощения пропорционален квадрату амплитуды наведенного электрического поля. В действительности, чрезвычайно важно минимизировать РЧ электрическое поле в области пациента.

Эффективность РЧ катушек можно увеличить, используя диэлектрические пластинки с высокой диэлектрической проницаемостью. В работе [Q.X. Yang, J. Wang, J. Wang, С.M. Collins, С. Wang, and M.В. Smith, Magn. Reson. Med. 65, 358 (2011)] продемонстрировано, что материал с высокой диэлектрической проницаемостью, расположенный между РЧ катушками и объектом, способен увеличить РЧ магнитное поле. Недостатками такого технического решения являются относительно слабая величина общего усиления, что связано с нерезонансным характером пластин, а также усиление электрического поля около пациента.

Возможность перераспределения РЧ магнитного поля описана в работе [M.J. Freire, R. Marques, & L. Jelinek, Appl. Phys. Lett. 93, 231108 (2008)]. Показано, что возможно сконструировать специальные линзы на основе метаматериала, которые обладают отрицательной магнитной проницаемостью µ=-1 на рабочей частоте 1.5 Т MP томографа. Такие линзы способны передавать распределение РЧ поля в плоскости за линзой в любую другую эквивалентную плоскость перед ней без потери сигнала. Кроме того, показано, что линзы на основе метаматериалов могут быть использованы как согласующие устройства между РЧ катушкой и образцом. Недостатками такой линзы на основе метаматериала являются наличие потерь из-за влияния подложки и электронных компонент, поэтому метаматериальная линза может быть использована только на определенных расстояниях между катушкой и образцом. Кроме того, распределение магнитного поля в области исследуемого объекта довольно неоднородно в связи с дискретностью структуры. Более того, в зазорах между элементами линзы образуются локальные максимумы электрического поля.

Наиболее близким техническим решением, принятым за прототип, является магнитно-резонансный томограф с усилителем сигнала (патент CN 102709705, опубл. 03.10.2012), состоящий из источника постоянного магнитного поля, блока формирования градиентного магнитного поля, генератора радиочастотных импульсов, приемника, а также усилителя электромагнитного поля, выполненного в виде метаматериала, располагающегося между исследуемым объектом и РЧ приемной катушкой. Метаматериал включает в себя искусственно созданную структуру, состоящую, по крайней мере, из одного слоя, который состоит из элементарных модулей. Вышеупомянутые модули микроструктуры состоят из металлических проволок, изготовленных из немагнитного металла на диэлектрической подложке. Недостатками данного устройства являются сильно выраженные диссипативные потери, которые сопровождают резонанс в печатном исполнении элементарных модулей, в том числе на материале подложки из полимера FR4, а также фиксированное расположение устройства между исследуемым объектом и приемной катушкой томографа, что ограничивает возможные типы проводимых МРТ исследований. Более того, метаматериал, описанный в этом патенте, а также его модификации, описанные в патентах тех же авторов (патент CN 103296465, опубл. 11.09.2013; патент CN 103296446, опубл. 11.09.2013), не позволяет полностью контролировать распределения РЧ электрического поля, которое может наносить вред исследуемому объекту.

Задачей, на решение которой направлено предлагаемое изобретение, является повышение чувствительности магнитно-резонансных томографов и безопасности для пациента, а также улучшение качества получаемых изображений.

Поставленная задача решается за счет достижения технического результата, заключающегося в перераспределении радиочастотных электрического и магнитного полей, в результате чего происходит минимизация уровня радиочастотного электрического поля в области пациента и повышается уровень радиочастотного магнитного поля.

Указанный технический результат достигается тем, что магнитно-резонансный томограф, включающий, по меньшей мере, источник постоянного магнитного поля, блок формирования градиентного магнитного поля, генератор радиочастотных импульсов, приемник, а также усилитель электромагнитного поля, выполненный в виде метаматериала и расположенный вблизи приемника, отличается тем, что метаматериал включает набор протяженных изолированных друг от друга преимущественно ориентированных проводников, каждый из которых характеризуется длиной li, среднее значение которой равно L, расположенных на расстояниях si друг от друга, среднее значение которых равно S, имеющих поперечные размеры di, среднее значение которых равно D, причем среднее значение длин проводников удовлетворяет условию 0,4λ<L<0,6λ, где λ - длина волны радиочастотного сигнала в метаматериале, среднее значение расстояний между проводниками удовлетворяет условию 0,001λ<S<0,1λ, среднее значение поперечных размеров проводников удовлетворяет условию 0,00001λ<D<0,01λ, а проводники выполнены из немагнитного металла. Усилитель электромагнитного поля может быть выполнен таким образом, что, по меньшей мере, часть метаматериала размещена внутри диэлектрика, концевые участки проводников могут быть выполнены с возможностью охлаждения. Набор проводников может быть расположен на плоской или цилиндрической поверхности.

Выполнение метаматериала в виде набора протяженных изолированных друг от друга преимущественно ориентированных проводников, среднее значение длин которых L лежит в пределах 0,4λ<L<0,6λ, где λ - длина волны радиочастотного сигнала в метаматериале, удовлетворяет условию резонатора, длина которого соответствует условию появления полуволнового резонанса, на частоте работы конкретного MP томографа. В частности, при таком резонансе электромагнитное поле вблизи резонатора распределено в пространстве таким образом, что в центре находится узел (ноль) электрического поля, совпадающий с пучностью (максимумом) магнитного поля. Благодаря такому распределению электромагнитного поля снижается удельный коэффициент поглощения энергии импульсов радиочастотных катушек, таким образом находящийся вблизи центра исследуемый объект практически не испытывает нагрева, а локальное усиление РЧ магнитного поля в этой области позволяет улучшить чувствительность РЧ катушек и таким образом повысить отношение сигнал/шум, снизив уровень облучения пациентов в связи со снижением уровня электрического поля.

Преимущественная ориентация проводников, расстояние между которыми лежит в пределах 0,001λ<S<0,1λ, обеспечивает возможность формирования однородно распределенного РЧ магнитного поля в области пространства исследуемого объекта. Нижний предел этого расстояния определен из практических соображений. Отклонение от неоднородности РЧ магнитного поля приводит к различному уровню сигнала получаемого из различных участков одного и того же материала, что влечет к появлению неоднородностей в изображениях исследуемого объекта.

Соответствие среднего значения поперечных размеров проводников условию 0,00001λ<D<0,01λ позволяет получить большее значение отношения сигнал/шум путем увеличения добротности резонатора. Чем выше добротность резонатора, тем выше амплитуда поля соответствующей моды резонатора и ниже потери. Последнее позволяет добиться большей амплитуды РЧ магнитного поля и тем самым увеличить отношение сигнал/шум.

Для обеспечения безопасности пациента проводники метаматериала выполнены из немагнитного металла, так как в МРТ используется сильное статическое магнитное поле, которое при контакте с рядом металлических соединений может вызывать эффект "втягивания" (быстрое притяжение предметов в центр трубки МРТ). Кроме того, немагнитный металл не модифицирует статическое магнитное поле и тем самым не вызывает искажений получаемых МР-изображений.

Проводники могут быть частично помещены в диэлектрик таким образом, чтобы только концы проводников (регионы пространства, где расположены максимумы электрического поля) находились внутри диэлектрика, что позволяет модифицировать электромагнитное поле таким образом, что РЧ электрическое поле втягивается в материал с большим значением диэлектрической проницаемости вследствие того, что диэлектрик работает как конденсатор и дополнительно перераспределяет ближние поля. Данный факт позволяет дополнительно расширить безопасную зону с минимальным значением электрического поля до любого желаемого размера. Исследования показали, что наилучший результат достигается, если края проводников помещены в диэлектрик так, что средняя длина областей, занятых диэлектриком, Lε, выполненных из материала со средней диэлектрической проницаемостью ε из диапазона 60<ε<100, удовлетворяет условию 0,04L<Lε<0,12L.

Выполнение устройства с частичным или полным охлаждением проводников позволяет избежать нежелательного нагревания метаматериала из-за осциллирующих токов большой амплитуды, вызываемых попаданием РЧ импульсов большой мощности на проводники.

Расположение метаматериала на плоских или цилиндрических поверхностях зависит от того, в какой именно области томографа необходимо выполнить усиление РЧ магнитного поля, вследствие чего увеличивается величина отношения сигнал/шум. При исследовании плоских объектов (например ладонь, стопа) более подходящей будет плоская поверхность для равномерного усиления сигнала этой области. Однако при исследовании неплоских объектов (например голова, туловище) проводники предпочтительно располагать на цилиндрических поверхностях, что позволит равномерно усилить сигнал в исследуемой области.

Сущность заявляемого изобретения поясняется фигурами. На фиг. 1 показана основная схема магнитно-резонансного томографа, на фиг. 2 - один из вариантов конкретного исполнения усилителя на основе метаматериала, на фиг. 3 - измеренное отношение сигнал/шум в томографе без усилителя электромагнитного поля, выполненного в виде метаматериала, (а) и с ним (б).

Магнитно-резонансный томограф (фиг. 1) включает в себя источник постоянного магнитного поля 1, генератор радиочастотных импульсов 2, блок формирования градиентного магнитного поля 3, приемник радиочастотных сигналов 4, а также усилитель электромагнитного поля 5, выполненный в виде метаматериала.

Один из вариантов реализации усилителя электромагнитного поля 5, выполненного в виде метаматериала, показан на фиг. 2. Проводники 6 расположены параллельно на плоской поверхности. Средняя длина проводников 6 равна L=0.5λ, среднее расстояние между проводниками 6 S=0.02λ, а среднее поперечное сечение проводников 6 D=0.004λ. Исследуемый объект 7 располагается на метаматериале и схематично показан прямоугольником.

Устройство работает следующим образом: с помощью источника постоянного магнитного поля 1 создают сильное статическое магнитное поле внутри магнитно-резонансного томографа, после чего внутрь томографа помещают исследуемый объект 7. Магнитные моменты протонов исследуемого объекта 7 выравниваются параллельно статическому магнитному полю, протоны начинают прецессировать с ларморовой частотой, а объект 7 приобретает выраженную намагниченность. С помощью блока формирования градиентного магнитного поля 3 создаются дополнительные магнитные поля, изменяющие величину постоянного магнитного поля относительно значения, создаваемого источником постоянного магнитного поля 1, что позволяет закодировать спектральный и пространственный отклик определенных малых объемов исследуемого объекта 7, характеризующихся собственной фазой и частотой ларморовой прецессии. Затем облучают исследуемый объект 7 РЧ импульсом, создаваемым генератором радиочастотных импульсов 2. При этом протоны исследуемого объекта 7, частота прецессии которых соответствует ларморовой частоте, поглощают энергию излучения. При попадании РЧ сигналов на усилитель электромагнитного поля 5, выполненный в виде метаматериала, происходит локальное перераспределение радиочастотных полей вблизи исследуемого объекта 7 за счет того, что длина каждого проводника 6 удовлетворяет условию появления полуволнового резонанса, на котором РЧ магнитное поле резонансно усиливается в области исследуемого объекта 7, а РЧ электрическое концентрируется вблизи краев проводников 6, вдали от исследуемого объекта 7. Таким образом, происходит усиление амплитуды РЧ магнитного поля генератора 2 в области исследуемого объекта 7, что позволяет уменьшить уровень мощности генератора радиочастотных импульсов 2 и получить необходимую амплитуду РЧ магнитного поля в области исследуемого объекта 7. Более того, за счет того что метаматериал перераспределяет РЧ электрическое поле в область пространства вдали от исследуемого объекта 7, удается избежать нежелательного нагревания исследуемого объекта 7.

После того как РЧ импульс прекращается, протоны исследуемого объекта 7 начинают возвращаться в исходное состояние, передавая избыточную энергию в виде РЧ волн. Эти волны детектируют с помощью приемника радиочастотных сигналов 4 и получают MP изображение. При фиксированных параметрах статического магнитного поля, частоты работы томографа и амплитуды магнитного поля РЧ генератора 2 отношение сигнал/шум определяется чувствительностью приемной РЧ приемника 4. Усилитель электромагнитного поля 5, выполненный в виде метаматериала, усиливает чувствительность РЧ приемника 4 за счет резонансного усиления РЧ магнитного поля, что позволяет повысить отношение сигнал/шум в МРТ.

Фиг. 3 демонстрирует измеренное отношение сигнал/шум без усилителя электромагнитного поля 5, выполненного в виде метаматериала, (а) и с ним (б). Присутствие метаматериала позволяет усилить отношение сигнал/шум в 2.7 раз.

1. Магнитно-резонансный томограф, включающий, по меньшей мере, источник постоянного магнитного поля, блок формирования градиентного магнитного поля, генератор радиочастотных импульсов, приемник, а также усилитель электромагнитного поля, выполненный из метаматериала и расположенный вблизи приемника, отличающийся тем, что метаматериал включает набор протяженных изолированных друг от друга преимущественно ориентированных проводников, каждый из которых характеризуется длиной li, среднее значение которой равно L, расположенных на расстояниях si друг от друга, среднее значение которых равно S, имеющих поперечные размеры di, среднее значение которых равно D, причем среднее значение длин проводников удовлетворяет условию 0,4λ<L<0,6λ, где λ - длина волны радиочастотного сигнала в метаматериале, среднее значение расстояний между проводниками удовлетворяет условию 0,001λ<S<0,1λ, среднее значение поперечных размеров проводников удовлетворяет условию 0,00001λ<D<0,01λ, а проводники выполнены из немагнитного материала.

2. Магнитно-резонансный томограф по п. 1, отличающийся тем, что, по меньшей мере, часть метаматериала размещена внутри диэлектрика.

3. Магнитно-резонансный томограф по п. 1, отличающийся тем, что концевые участки проводников выполнены с возможностью охлаждения.

4. Магнитно-резонансный томограф по п. 1, отличающийся тем, что набор проводников расположен на плоской поверхности.

5. Магнитно-резонансный томограф по п. 1, отличающийся тем, что набор проводников расположен на цилиндрической поверхности.



 

Похожие патенты:

Изобретение относится к радионавигации и может использоваться на внутренних судоходных путях в качестве эффективного и недорогого средства берегового навигационного оборудования в составе линейных створов для обозначения судового хода одновременно в оптическом и радиолокационном диапазонах волн.

Изобретение относится к устройствам для отражения, рефракции и дифракции или поляризации излучаемых антенной волн и может быть использована в фазированной антенной решетке в качестве чувствительного элемента поляризационного переключателя каналов.

Изобретение относится к устройству для перенаправления электромагнитного поля, принимаемого антенной, или пучков, образуемых антенной. Технический результат - возможность перенаправления скомпонованных пучков от фокальной области.

Изобретение относится к области антенной техники и может быть использовано, в частности, в зеркальных антенных системах для приема сигналов спутникового телевидения или в зеркальных антеннах земных станций спутниковой связи.

Изобретение относится к космической технике, в частности к системе изготовления развертываемых (раскрываемых) крупногабаритных двухзеркальных антенн (диаметром раскрыва рефлектора порядка 12 м и более) с высокоточными отражающими поверхностями главного зеркала и контррефлектора.

Изобретение относится к космической технике, в частности к развертываемым (раскрываемым) крупногабаритным двухзеркальным антеннам с высокоточными отражающими поверхностями главного зеркала и контррефлектора.

Изобретение относится к области микроволновой оптики, в частности к квазиоптическим устройствам, волноводам, резонаторам и линиям миллиметрового и субмиллиметрового диапазонов, а также антеннам и радиаторам для возбуждения объемных резонаторов.

Изобретение относится к космической технике, в частности к зеркальным антеннам с развертываемым рефлектором зонтичного типа. .

Изобретение относится к радиотехнической промышленности и может использоваться в волноводной, антенной и СВЧ-измерительной технике и содержит отрезок волновода (1) с короткозамыкателями (4, 5) на торцах и двумя взаимно перпендикулярными прямоугольными отверстиями на входе (2) и выходе (3).

Изобретение относится к медицине, а именно к медицинской диагностической технике и может быть использовано для определения плотности биоткани в патологическом очаге.

Изобретение относится к медицине, а именно к нейрохирургии. Проводят дифференциальную диагностику малого и вегетативного состояния сознания.

Группа изобретений относится к медицинской технике, а именно к дозиметрии облучения. Дозиметр измерения дозы облучения субъекта во время сеанса лучевой терапии под контролем магнитно-резонансной визуализации содержит корпус, наружная поверхность которого выполнена с возможностью размещения субъекта, в котором каждая из отдельных ячеек содержит оболочки, заполненные дозиметром излучения магнитного резонанса.

Группа изобретений относится к медицинской технике, а именно к системам магнитно-резонансной визуализации. Медицинское устройство содержит систему магнитно-резонансной визуализации, которая содержит магнит, клиническое устройство и узел токосъемного кольца, выполненный с возможностью подачи электропитания в клиническое устройство.

Изобретение относится к медицине, лучевой диагностике и может быть использовано для прогноза течения заболеваний, развития патологических состояний в области гиппокампов.

Изобретение относится к медицине, нейрохирургии и нейрорадиологии. Проводят анализ МРТ снимков в режиме T1 c контрастированием поэтапно.

Изобретение относится к медицине, неврологии, дифференциальной диагностике умеренных когнитивных расстройств (УКР) сосудистого и дегенеративного генеза для назначения более активной и патогенетически оправданной терапии на додементной стадии заболевания.

Изобретения относятся к медицинской технике, а именно к области диагностической визуализации. Система диагностической визуализации, обеспечивающая осуществление способа передачи данных безопасности/экстренных данных, содержит первый контроллер, который обнаруживает какие-либо небезопасные или опасные состояния в диагностическом сканере и генерирует данные безопасности/экстренные данные, блок связи, который генерирует сигнал с использованием цифрового протокола и передает через локальную цифровую сеть, выполненный с возможностью получать приоритет перед доставкой пакетов через локальную цифровую сеть и внедрять сигнал в локальную цифровую сеть.
Изобретение относится к медицине, рентгенологии, ортопедии, травматологии, онкологии, нейрохирургии, предназначено для исследования позвоночника при выполнении магнитно-резонансной томографии.

Изобретение относится к неврологии, в частности прогнозированию функционального исхода острого ишемического инсульта. Проводят оценку общего балла по шкале инсульта NIH и осуществляют КТ-перфузию головного мозга в первые сутки острого периода заболевания.

Изобретение относится к средствам извлечения информации из обнаруженного сигнала характеристики. Технический результат заключается в повышении точности извлечения информации. Принимается поток данных (26), извлекаемый из электромагнитного излучения (14), выпущенного или отраженного объектом (12). Поток данных (26) содержит непрерывный или дискретный контролируемый по времени сигнал характеристики (p; 98), содержащий по меньшей мере две основные составляющие (92a, 92b, 92c), связанные с соответствующими дополняющими каналами (90a, 90b, 90c) пространства сигналов (88). Сигнал характеристики (p; 98) отображается в заданное представление составляющей (b, h, s, c; T, c) с учетом по существу линейной алгебраической модели состава сигнала, чтобы задать линейное алгебраическое уравнение. Линейное алгебраическое уравнение по меньшей мере частично решается с учетом по меньшей мере приблизительной оценки заданных частей сигнала (b, h, s). Следовательно, из линейного алгебраического уравнения можно вывести выражение, высокопоказательное по меньшей мере для одного, по меньшей мере частично периодического жизненно важного сигнала (20). 3 н. и 12 з.п. ф-лы, 6 ил.
Наверх