Способ каталитического разложения гипохлорит-иона



Способ каталитического разложения гипохлорит-иона

 


Владельцы патента RU 2601450:

Федеральное государственное бюджетное учреждение науки , Институт неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук (ИНХ СО РАН) (RU)

Изобретение относится к химической технологии, а именно к способу очистки промышленных сточных вод от гипохлорит-ионов, образующихся в процессе хлорирования гидрооксидов лития, натрия, кальция. Способ каталитического разложения гипохлорит-иона включает контактирование раствора, содержащего гипохлорит-ионы, с никельсодержащим катализатором в виде частиц, при температуре 32-67°C, с выделением газообразного кислорода. При этом в качестве никельсодержащего катализатора используют основной карбонат никеля, диспергированный на нанопористом композиционном углеродном материале, содержащем в качестве связующего фторопластовую суспензию при соотношении компонентов, мас. %: нанопористый композиционный углеродный материал 49-54, фторопластовая суспензия 5-9, основной карбонат никеля - остальное. Изобретение обеспечивает эффективную очистку от гипохлорит-ионов с высокой скоростью разложения и при более низких температурах. 1 табл., 6 пр.

 

Изобретение относится к химической технологии, а именно к способу очистки промышленных сточных вод от гипохлорит-иона, образующегося в процессе хлорирования гидрооксидов лития, натрия, кальция.

Известны способы очистки от гипохлорит-иона путем разложения гипохлорита с использованием реагентных восстановительных процессов и каталитических способов разложения гипохлорит-иона. Так, например, известен способ обезвреживания водного раствора гипохлорит-иона с использованием технического лигносульфоната - отхода производства целлюлозы, описанный в патенте РФ 2073637, кл. С01В 11/06, опубл. 20.02.97 г. Такие варианты осуществления процесса разложения требуют значительного расхода восстановителей. К недостаткам также можно отнести необходимость обезвреживания сточных вод от вторичных загрязнений.

Этих недостатков лишены каталитические способы разложения гипохлорита. Из каталитических процессов заслуживающим внимания является способ «Calcium aluminate cement based catalyst», Hancock, Frederick Ernest. United States Patent 6,020,285 Hancock February 1, 2000, в котором разложение гипохлорит-иона идет сферическими частицами алюминиевого цемента, на который нанесены оксиды никеля и кобальта. Такой катализатор показал большую активность. Однако определенные трудности представляет изготовление самого катализатора.

Известен способ [авт.св. СССР 311867, кл. С01В 11/06, опубл. 19.08.71], где обезвреживания растворов гипохлорита (гипохлорит-иона) ведут путем пропускания нагретого до температуры 80-100°С раствора через слой сыпучего материала, например кварцевого песка, в который введен катализатор - гидроксид никеля или кобальта. Однако, необходимость регулярной регенерации катализатора вызывает существенные трудности при организации непрерывного процесса.

Известен способ «Способ каталитического разложения гипохлорита» [патент RU 2091296 МПК С01В 11/06, C02F 1/70, 1997 г. ], заключающийся в каталитическом разложении гипохлорит-ионов в потоке жидкости, с выделением кислорода. Жидкость контактирует со слоем катализатора, расположенным в двух последовательно соединенных слоях, которые находятся в каскаде со стояками. Поток жидкости и выделяющийся в процессе разложения гипохлорит-иона кислород находятся в противотоке. Часовая объемная скорость потока жидкости, содержащей гипохлорит-ионы, который течет через слой катализатора, составляет 0,1-10 ч-1, температура процесса 10-90°С. В способе используют катализатор « Экструдат А» по ЕР 0397342. Катализатор содержит глиноземистый цемент и, по меньшей мере, один оксид металла группы VIII, выбранный из никеля и кобальта, в количестве 10 до 70% от массы оксида, при общей пористости от 15 до 35 нм. Использование отечественного никельсодержащего катализатора марки ГИПА-3-6Н сопровождается разрушением катализатора и уносом, что приводит к значительному расходу катализатора, кроме того, катализатор имеет небольшую скорость разложения гипохлорит-иона.

Наиболее близким по ряду технических приемов и достигаемому результату к предлагаемому способу является «Способ каталитического разложения гипохлорита» [патент RU №2203850, МПК С01В 11/06,C02F 1/72, 2001 г.]. Способ включает контактирование потока жидкости, содержащей гипохлорит-ионы, с катализатором в противотоке с выделяющимся в процессе разложения газообразным кислородом, при температуре 20-90°С. При этом поток жидкости после контактирования с катализатором дополнительно контактирует с зернистым фильтром, на котором задерживаются осколки частиц катализатора, образующиеся в ходе процесса. В качестве катализатора используют промышленный катализатор ГИАП-3-6Н или ГИАП-8 - оксид никеля, диспергированный на оксиде алюминия. В качестве зернистого фильтра используют речной песок зернением 0,2-2 мм. Недостатками вышеизложенного изобретения являются низкая скорость процесса разложения (время контактирования раствора с катализатором - до 16 часов), высокая температура (до 90°С) проведения процесса, кроме того, эти катализаторы ГИАП-3-6Н, ГИАП-8 постепенно разрушаются, что ведет к большому расходу катализатора.

Задачей настоящего изобретения является создание эффективного каталитического способа очистки от гипохлорит-ионов с достаточно большой скоростью разложения, при более низких температурах с техническим результатом - сокращение времени контактирования раствора гипохлорит-иона с катализатором, увеличение скорости разложения гипохлорит-ионов и упрощение процесса очистки (без дополнительного контактирования раствора с зернистым фильтром по прототипу) и при более низких температурах.

Поставленная задача достигается тем, что в способе каталитического разложения гипохлорит-иона, включающего контактирование раствора, содержащего гипохлорит-ионы с никельсодержащим катализатором в виде частиц, с выделением газообразного кислорода, при этом в качестве катализатора используют основной карбонат никеля, диспергированный на нанопористом углеродном композиционной материале, содержащем в качестве связующего фторопластовую суспензию при соотношении компонентов, мас. %: нанопористый углеродный композиционный материал 49-54, фторопластовая суспензия 5-9, основной карбонат никеля - остальное, разложение раствора гипохлорита лития ведут при температуре 32-67°С.

Отличительные признаки изобретения: катализатор, температура разложения.

Известный в настоящее время технологический процесс получения хлорида лития предполагает, что протекание процесса идет по реакции взаимодействия (1)

Допустимая концентрация оксихлоридов лития в технологическом растворе LiCl составляет не более 0.5% LiClO и менее 5% LiClO3. Для предотвращения образования LiClO3 в раствор LiCl добавляют катализатор, при котором реакция хлорирования гидроксида лития протекает с образованием LiClO (2) и последующим его разложением с выделением О2 (3).

Периодически, с потерей катализатором активности, возникает необходимость его удаления путем фильтрации. Процесс фильтрации чрезвычайно медленный, если отработанный катализатор представляет собой мелкодисперсный или гелеобразный осадок.

В предлагаемом способе в качестве катализатора используют основной карбонат никеля, диспергированный на гранулированном нанопористом углеродном композиционной материале (НУМС), содержащем в качестве связующего фторопластовую суспензию (Ф4Д). НУМС представляет собой нанопористый углеродный композиционный материал (L.М. Levchenko and V.S. Golovizin Investigation of texture characteristics of the Technosorb carbon material in the oxidation process // Journal of Structural Chemistry, 2010, V. 51, Suppl. S. 92-95) [6], который характеризуется тем, что состоит из частиц размера 1-16 мм, с удельной поверхностью по адсорбции азота 300-600 м2/г, содержанием углерода 99.5%, имеющего характерное распределение пор с максимумом, приходящимся на поры с размером 4 нм. Развитая поверхность углеродного материала, преобладание нанопор, позволяет использовать НУМС в качестве матрицы для диспергирования основного карбоната никеля на развитой углеродной поверхности в каталитически достаточном количестве. Использование фторопластовой суспензии (Ф4Д) способствует обволакиванию частиц НУМС, защищая их от разрушения в процессе разложения гипохлорит-иона и прилипания частиц основного карбоната никеля на поверхность закрытых суспензией (обволоченных) частиц НУМС. Основной карбонат никеля не растворяется в среде гипохлорит-иона, что позволяет избегать попадания Ni2+ в раствор. Катализатор при этом хорошо фильтруется, так как состоит из гранулированных частиц, что важно при его фильтрации и его регенерации (восстановлении каталитической активности). Заявленное соотношение компонентов является оптимальным. Количество основного карбоната никеля ((NiOH)2СО3) определяется характеристикой НУМС, взятого в качестве основы, для диспергирования основного карбоната никеля и прилипанием его частиц на поверхности НУМС. Экспериментальные данные показали, что оптимальная температура процесса разложения гипохлорит-иона составляет 32-67°С (в прототипе 80-90°С и скорость разложения меньше).

Способ осуществляют следующим образом. Для исследований берут нанопористый углеродный композиционный материал (НУМС), имеющий фракцию 0,7-1,5 мм с диаметром пор 4 нм, удельной поверхностью 350 м2/г, пикнометрической плотностью 2,08 г/см3, объемом свободных пор 63,9 об.%. НУМС пропитывают фторопластовой разбавленной суспензией (Ф4Д), после полного поглощения материалом фторопластовой суспензии, материал сушат, затем вводят порошок основного карбоната никеля (сухой), перемешивают с массой углеродного материала НУМС, пропитанного фторопластовой суспензией (Ф4Д) до полного прилипания, так чтобы не было остатков неприлипшего основного карбоната никеля, и подсушивают в сушильном шкафу. В реактор с обогреваемой рубашкой заливают водно-щелочной раствор гипохлорита (гипохлорит-иона) вводят катализатор и разложение ведут при 32-67°С. Процесс контролируют по объему выделенного кислорода (по окончании его выделения). При этом процесс разложения можно вести в реакторе без противотока, так и в реакторе, обеспечивающем противоток раствора гипохлорит-иона потоку выделяющегося кислорода. Затем раствор фильтруют, катализатор хорошо фильтруется, т.к. катализатор находится в виде частиц и карбонат никеля не растворим в щелочной среде. Определяют титрованием тиосульфатом натрия концентрацию гипохлорит-иона в растворе на выходе из реактора.

Экспериментальные данные по заявленному способу каталитического разложения гипохлорит-иона приведены в таблице, из которых видно, что каталитическая активность используемого катализатора при варьировании содержания (NiOH)2СО3 и Ф4Д в заявляемом интервале температур дает эффективную очистку от гипохлорит-ионов. Показано, что остаточная концентрация гипохлорит-иона в растворе после разложения катализатором составляет 0,1-0,3 г/л, что соответствует требованиям, предъявляемым химическим производством к процессу получения хлоридов щелочных металлов. Были проведены эксперименты по эффективности работы катализатора в циклах. Показано, что эффективность работы катализатора не изменилась при проведении 3-х циклов испытаний по разложению гипохлорит-иона в растворе.

Пример 1.

Берут 50 мл водно-щелочного раствора с содержанием 47 г/л гипохлорита лития заливают в химический реактор с обогреваемой рубашкой, вводят 1 г, приготовленного катализатора при соотношении, мас. %: НУМС - 53%, Ф4Д - 5%, основной карбонат никеля = 42% (по никелю = 11,7%). Разложение гипохлорит-иона проводят при температуре 67°С в течение 12 мин с выделением кислорода, который замеряют по объему в мл. Затем раствор фильтруют со скоростью 20,6*10-3 мл/мин*см2. Концентрацию гипохлорита лития в растворе на выходе из реактора определяют титрованием тиосульфатом натрия. Концентрация гипохлорита лития на выходе составляет 0,3 г/л, степень разложения гипохлорита составляет 99,4%.

Пример 2.

Берут 50 мл водно-щелочного раствора с содержанием 47 г/л гипохлорита лития заливают в химический реактор с обогреваемой рубашкой, вводят 1 г приготовленного катализатора при соотношении, мас. %: НУМС - 49%, Ф4Д - 7%, основной карбонат никеля = 44%. Разложение гипохлорит-иона проводят при температуре 40°С в течение 85 мин с выделением кислорода, который замеряют по объему в мл. Затем раствор фильтруют со скоростью 20,6*10-3 мл/мин*см2. Концентрацию гипохлорита лития в растворе на выходе из реактора определяют титрованием тиосульфатом натрия. Концентрация гипохлорита лития на выходе составляет 0,1 г/л, степень разложения гипохлорита составляет 99,8%.

Пример 3.

Берут 50 мл водно-щелочного раствора с содержанием 45 г/л гипохлорита лития заливают в химический реактор с обогреваемой рубашкой, вводят 1 г приготовленного катализатора при соотношении, мас. %: НУМС - 53%, Ф4Д - 5%, основной карбонат никеля = 42% (по никелю = 11,7%). Разложение гипохлорит-иона проводят при температуре 32°С в течение 180 мин с выделением кислорода, который замеряют по объему в мл. Концентрация гипохлорита лития на выходе составляет 0,2 г/л, степень разложения гипохлорита составляет 99,6%.

Пример 4.

Водно-щелочной раствор, содержанием 47 г/л гипохлорита лития. Берут 50 мл раствора, заливают в химический реактор с обогреваемой рубашкой, добавляют 1 г катализатора при соотношении, мас. %: НУМС=51%, Ф4Д=9%, основной карбонат никеля = 40%. Разложение гипохлорита проводят при температуре 52°С в течение 35 мин с выделением кислорода, который замеряется по объему в мл. Концентрация гипохлорита лития в растворе на выходе из реактора определялась титрованием тиосульфатом натрия и составила 0,3 г/л. Степень разложения гипохлорита 99,4%.

Пример 5.

Водно-щелочной раствор, содержанием 45 г/л гипохлорита натрия. Берут 50 мл раствора, заливают в химический реактор с обогреваемой рубашкой, добавляют 1 г катализатора при соотношении, мас. %: НУМС - 51%, Ф4Д - 9%, (NiOH)2CO3 - 40%. Разложение гипохлорита натрия проводят при температуре 52°С в течение 35 мин. Концентрация гипохлорита натрия в растворе на выходе из реактора определялась титрованием тиосульфатом натрия и составила 0,3 г/л. Степень разложения гипохлорита 99,4%.

Пример 6.

50 мл водно-щелочного раствора, содержащего 47 г/л гипохлорита кальция, заливают в химический реактор с обогреваемой рубашкой, добавляют 1,5 г катализатора при соотношении, мас. %: НУМС - 51%, Ф4Д - 9%, (NiOH)2CO3 - 40%. Разложение гипохлорита натрия проводят при температуре 52°С в течение 35 мин. Концентрация гипохлорита натрия в растворе на выходе из реактора определялась титрованием тиосульфатом натрия и составила 0,3 г/л. Степень разложения гипохлорита 99,4%.

Таким образом, в сравнении с прототипом при такой же концентрации гипохлорит-иона в заявляемом изобретении скорость разложение гипохлорит-иона выше, чем в прототипе в 1,5 раза при меньшем количестве катализатора (в 10 раз) и температуре разложения (в прототипе разложение при 80°С).

Способ каталитического разложения гипохлорит-иона, включающий контактирование раствора, содержащего гипохлорит-ионы, с никельсодержащим катализатором в виде частиц, с выделением газообразного кислорода, отличающийся тем, что в качестве катализатора используют основной карбонат никеля, диспергированный на нанопористом композиционном углеродном материале, содержащем в качестве связующего фторопластовую суспензию при соотношении компонентов, мас. %: нанопористый композиционный углеродный материал 49-54, фторопластовая суспензия 5-9, основной карбонат никеля - остальное, разложение раствора гипохлорит-иона ведут при температуре 32-67°C.



 

Похожие патенты:

Изобретение может быть использовано на предприятиях цветной металлургии для нейтрализации кислых техногенных растворов. Способ включает обработку растворов и/или стоков комплексным реагентом-осадителем, включающим карбонат кальция, железо, оксиды кремния и магния в массовом соотношении CaCO3:Fобщ.:SiO2:MgO=100:0,7-9.5:1,3-4,8:2,5-6,5, при активном перемешивании с получением в пульпе pH 5,0-5,5, и последующие выдержку пульпы при активном перемешивании 0,5-2 часа, фильтрацию и промывку осадка.

Изобретение относится к сельскому хозяйству, в частности к оборудованию для опреснения и очистки воды, и может быть использовано на сельскохозяйственных объектах в пищевой промышленности, медицине, в быту сельского населения, на кораблях и морских платформах и других областях народного хозяйства.

Способ очистки и обезвреживания сточных вод с применением трехкамерной установки относится к области защиты окружающей среды и биотехнологии и направлен на осуществление контролируемого сорбционно-микробиологического непрерывного процесса очистки промышленных сточных вод.

Изобретение относится к обработке воды и водных растворов для одновременного умягчения, снижения минерализации, опреснения, обеззараживания и может быть использовано в химической, пищевой, фармацевтической, нефтегазодобывающей отраслях промышленности, а также в сельском хозяйстве и медицине.

Изобретение относится к комбинированным устройствам для разделения неоднородных жидких сред и может быть использовано в сельскохозяйственной мелиорации, в частности в системах капельного полива, микроорошения и дождевания, а также при водоочистке или водоподготовке.
Изобретение может быть использовано для ускорения процессов сгущения и фильтрации суспензий путем образования рыхлых хлопьевидных агрегатов из мелких частиц дисперсной фазы.

Изобретение относится к системам обработки текучей среды от накипи и может быть использовано для предотвращения формирования накипи в содержащей текучую среду системе и/или для предотвращения роста бактерий внутри такой системы.

Акустическое устройство для сбора нефти и нефтепродуктов с поверхности воды содержит корпус с впускным отверстием и коллектором, систему обеспечивающих плавучесть поплавков, прикрепленных к корпусу кронштейнами, циркуляционный насос с патрубком, резервуар для сбора нефтепродуктов, соединенный гибким шлангом с патрубком циркуляционного насоса, источник питания, соединенный с циркуляционным насосом и ультразвуковым генератором, подключенным к источнику ультразвука, погруженному под поверхность воды и направленному на границу слоя нефти с водой.

Изобретение относится к способу получения селективно связывающих переходный металл частиц на основе фосфина, применению макропористых частиц в качестве реакционноспособного агента, к связывающему металл частицам на основе фосфина, применению связывающих металл частиц для связывания атомов переходного металла и к способу захвата атомов переходного металла с использованием частиц на основе фосфина.

Изобретение относится к устройству и способу контролирования и управления установками дезинфекции воды, в которых применяют широкополосные УФ-излучатели. Устройство содержит по меньшей мере один широкополосный УФ-излучатель (101), расположенный в водотоке (100), причем устройство включает, по меньшей мере, первый сенсорный УФ-датчик (103), расположенный в массе воды на расстоянии от широкополосного УФ-излучателя (101), причем первый сенсорный УФ-датчик соединен с блоком (105) регулирования, предназначенным для регулирования мощности широкополосного УФ-излучателя (101) или объемного расхода воды через водоток (100).

Изобретение может быть использовано в химической промышленности. Для получения концентрированного раствора гипохлорита щелочного металла в нижнюю часть вертикального резервуара вводят хлор и раствор гидроксида щелочного металла.

Изобретение может быть использовано в химической промышленности. Способ комплексной переработки природных рассолов хлоридного кальциево-магниевого типа включает получение кристаллогидрата хлорида кальция с примесью хлорида магния и обогащение рассола по литию с дальнейшей переработкой литиевого концентрата на соединения лития.
Изобретение относится к технологии концентрирования слабых растворов гипохлоритов щелочных металлов из водных растворов и может быть использовано для обеззараживания сточных вод, отбеливания целлюлозы, бумаги и ткани, дезинфекционной обработки помещений животноводческих комплексов и др.

Изобретение относится к области очистки сточных вод. .

Изобретение относится к неорганической химии и может найти применение при дезинфекции и очистке воды, а также при отбеливании текстильных материалов, бумаги, при производстве чистящих, моющих и дезинфицирующих средств.

Изобретение относится к технологии производства хлорной извести и может быть использовано в производстве стабильной хлорной извести и гипохлорита кальция. .

Изобретение относится к технологии разрушения гипохлорита натрия в водных растворах и может быть использовано для очистки промышленных сточных вод, содержащих гипохлорит натрия.
Изобретение относится к технологии получения солей хлорноватистой кислоты, в частности концентрированного водного раствора гипохлорита калия, и может найти применение в производстве обеззараживающих средств, используемых для обработки питьевой воды, очистки воды плавательных бассейнов, обеззараживания сточных вод, в медицине и других отраслях.

Изобретение относится к области физики наноразмерных структур, а именно способу получения тонких металлических пленок, которые могут быть использованы в качестве тест объектов оптических приборов.
Наверх