Способ получения тетрафторида урана

Изобретение относится к атомной промышленности и химической технологии неорганических веществ и может быть использовано для получения тетрафторида урана сухим методом в производстве гексафторида урана или металлического урана. Способ получения тетрафторида урана заключается в том, что смешивают диоксид урана с бифторидом аммония и карбамидом, проводят термообработку полученной смеси при температуре выше точки кипения карбамида, но ниже температуры точки кипения бифторида аммония с последующей выдержкой при этой температуре до образования двойной соли, и затем осуществляют термообработку при температуре 500-600°C с выдержкой при этой температуре в вакууме или в инертной атмосфере до получения тетрафторида урана. Изобретение обеспечивает получение кондиционного тетрафторида урана с выходом не менее 98%, а также упрощение процесса его получения. 4 з.п. ф-лы, 2 табл.

 

Изобретение относится к атомной промышленности и химической технологии неорганических веществ и может быть использовано для получения тетрафторида урана сухим методом в производстве гексафторида урана или металлического урана.

Способы получения тетрафторида урана можно подразделить на водные и сухие. Водный метод получения UF4 заключается в растворении оксида урана в плавиковой кислоте и последующем осаждении UF4, его фильтрации, промывании и обезвоживании получаемого продукта (Ю.В. Гагаринский, Л.А. Хрипин. «Тетрафторид урана». Атомиздат, 1966 г., стр. 8-14). Сухой метод получения UF4 заключается во фторировании оксида урана газообразным фтористым водородом или другими фторирующими агентами при высоких температурах (Ю.В. Гагаринский, Л.А. Хрипин. «Тетрафторид урана». Атомиздат, 1966 г., стр. 15-16). Сухой метод получения UF4 имеет существенные преимущества перед водным:

1) исключаются операции растворения оксида урана, осаждения ТФУ, его фильтрация и дегидратация;

2) отпадает необходимость в переработке больших количеств маточных растворов и промывных вод;

3) возможность эффективной автоматизации процесса.

Известен способ получения тетрафторида урана противоточным взаимодействием диоксида урана с газообразным фтористым водородом при 150÷415°C (патент RU №2484020, МПК C01G 43/06, опубл. 10.06.2013). Способ включает противоточное движение оксида урана и газообразного фтористого водорода (HF) через низкотемпературную (150÷350°C) и высокотемпературную (350÷415°C) области. Недостаток этого способа - использование дорогостоящего, дефицитного газообразного фтористого водорода и нестандартного шнекового реактора. Кроме того, в тетрафториде, полученном таким способом, могут присутствовать 0,9÷2,3% диоксида урана и 1,1÷3,9% уранилфторида (UO2F2).

Известен способ получения тетрафторида урана (патент RU №2456243, МПК C01G 43/06, опубл. 20.07.2012), заключающийся в том, что в качестве урансодержащего соединения используют октаоксид триурана, который обрабатывают парами разложения фторида аммония при 260÷700°C, взятого в избытке 100÷130 мол. % от стехиометрического количества по реакции:

U3O8+12NH4F=UF4+8H2O+6N2+16Н2

Основной недостаток - сложность аппаратурного оформления. Реактор для фторирования парами фторидами аммония должен содержать испаритель и фильтр для газообразного фтористого аммония, а также конденсатор для улавливания фторида аммония. Кроме того, при 700°C происходит спекание тетрафторида урана, приводящее к снижению выхода продукта.

Известен способ получения тетрафторида урана (Н.П. Галкин, У.Д. Верятин и др. «Технология урана». Москва, Атомиздат, 1964, стр. 276), по которому смесь, состоящую из диоксида урана и бифторида аммония, постепенно нагревают до температуры, несколько превышающей температуру плавления бифторида аммония (125°C), и выдерживают в течение 8 ч. По окончании фторирования получают в основном двойную соль фторида урана и аммония, которую разлагают нагреванием в вакууме при 400°C.

По другому способу, описанному в этом же источнике, смесь из диоксида урана и бифторида аммония нагревают до 150°C, при этом вначале происходит образование двойной соли урана - пентафторураната (NH4UF5) по реакции:

2UO2+5NH4HF2=2NH4UF5+3NH3+4H2O

Полученную двойную соль обрабатывали водой, подкисленной азотной кислотой, промывали водой и спиртом и сушили в вакууме при 110°C. Разложение двойной соли проводили в вакууме при 400°C по реакции:

NH4UF5=NH4F+UF4

Наиболее близким по технической сущности к заявляемому изобретению является способ получения тетрафторида урана (патент DE №949735, МПК C01G 43/06, опубл. 27.09.1956), по которому смесь диоксида урана и бифторида аммония нагревали до 150°C. Полученную двойную соль фторида урана и избыток бифторида аммония обрабатывали водой, подкисленной азотной кислотой, затем промывали дистиллированной водой и спиртом и сушили в вакууме при 110°C, а разложение двойной соли проводили в вакууме при 400°C. К основным недостаткам этого способа можно отнести следующее. Большая длительность и многостадийность процесса (синтез двойной соли, промывка соли водой и спиртом, сушка, пиролиз в вакууме), сложность аппаратурного оформления, использование горючего и взрывоопасного реагента (спирта). Длительность только одной операции синтеза двойной соли может достигать 8 ч.

Задачей изобретения является упрощение процесса, сокращение его стадийности и продолжительности за счет обеспечения интенсивного массообмена между фторирующим агентом и твердой фазой (диоксидом урана). Дополнительной задачей является получение тетрафторида урана с выходом не менее 98%.

Эта задача решается тем, что в способе получения тетрафторида урана, включающем смешивание диоксида урана с бифторидом аммония, термообработку полученной смеси на стадии образования двойной соли урана и термообработку двойной соли на стадии ее разложения до тетрафторида урана, согласно изобретению в смесь диоксида урана и бифторида аммония добавляют карбамид, проводят термообработку полученной смеси при температуре выше точки кипения карбамида, но ниже температуры точки кипения бифторида аммония с последующей выдержкой при этой температуре до образования двойной соли, затем проводят ее термообработку при температуре 500÷600°C с последующей выдержкой при этой температуре в вакууме или в инертной атмосфере до получения тетрафторида урана.

Бифторид аммония берут в избытке 60÷80% от стехиометрического количества, необходимого для получения двойной соли урана. Как показали экспериментальные данные, указанный диапазон является оптимальным с точки зрения полноты прохождения реакции фторирования.

Карбамид добавляют в количестве 1,0÷1,5 от веса бифторида аммония, так как интенсификация теплообмена между фторирующим агентом и диоксидом урана при данном количестве карбамида происходит наиболее активно.

Термообработку смеси диоксида урана, бифторида аммония и карбамида на стадии образования двойной соли урана проводят при температуре 175÷230°C.

Термообработку смеси диоксида урана, бифторида аммония и карбамида на стадии образования двойной соли урана проводят на воздухе или в инертной атмосфере.

Таким образом, в отличие от прототипа получение тетрафторида урана проводят в два этапа или стадии. На первом этапе порошок диоксида урана смешивают с порошком бифторида аммония и карбамида (NH2)2CO, нагревают полученную смесь до температуры выше точки кипения карбамида (174°C), но ниже температуры точки кипения бифторида аммония (238°C), проводят выдержку при этой температуре до образования двойной соли фторида урана и фторида аммония. На втором этапе поднимают температуру до 500+600°C и проводят выдержку при этой температуре в вакууме или в инертной атмосфере.

Бифторид аммония берут в избытке 60÷80% от стехиометрического количества, необходимого для получения двойной соли (NH4)2UF6, а карбамида (NH2)2CO берут в количестве 1,0÷1,5 от веса бифторида аммония. При нагревании смеси до 175÷230°C получают двойную соль фторида урана и аммония, затем температуру повышают до 500÷600°C и делают выдержку для разложения образовавшейся двойной соли до тетрафторида урана и удаления оставшегося избытка бифторида аммония и карбамида. Образование двойной соли (NH4F)2 UF4 проходит по реакции:

UO2+3NH4HF2=(NH4)2UF6+NH3+2H2O

Кроме гексафторураната (NH4)2UF6 на первой стадии способа получения тетрафторида урана при температуре 175÷238°C возможно образование пентафторураната (NH4UF5) и других двойных солей фторида урана и аммония: 7(NH4F)6(UF4) и NH4F3(UF4). Пентафторуранат и гексафторуранат устойчивы на воздухе при температурах до 350°C и 250°C соответственно, а двойные соли - 7(NH4F)6(UF4) и NH4F3(UF4) устойчивы до 450°C. Соли (NH4)2 UF6, NH4UF5, NH4F3(UF4) разлагаются в вакууме с образованием тетрафторида урана при температурах 180, 290 и 400°C соответственно. Порошок UF4 получают разложением указанных выше двойных солей нагреванием их в инертной атмосфере или вакууме до 500÷600°C. Точка кипения карбамида (NH2)2C составляет 174°C.

При фторировании диоксида урана бифторидом аммония при температуре выше точки кипения карбамида, т.е. более 174°C, происходит интенсификация процесса массообмена за счет интенсивного кипения карбамида и, как следствие, активное перемешивание диоксида урана и бифторида аммония. Вместе с тем, температура точки кипения NH4HF2 составляет 238°C, поэтому фторирование необходимо проводить при температурах не выше температуры точки кипения бифторида аммония (238°C). Таким образом, данные условия являются существенными для проведения синтеза двойной соли фторида урана и аммония, а обусловленный ими температурный диапазон 175÷230°C оптимальным с точки зрения достижения технического результата. Продолжительность первой стадии синтеза двойной соли может колебаться от нескольких десятков минут до нескольких часов и в большей мере зависит от величины удельной поверхности (м2/г) порошка диоксида урана, чем от температуры процесса. Продолжительность второй стадии предложенного способа, ответственной за разложение двойной соли до тетрафторида урана, зависит от температуры процесса и среды его протекания (вакуум, инертная среда). Разложение двойной соли до тетрафторида урана проводят в вакууме или инертной среде (например, аргон или азот) при 500÷600°C.

Таким образом, авторами обнаружено, что при фторировании диоксида урана бифторидом аммония с добавкой карбамида вследствие кипения карбамида происходит интенсивное перемешивание реагентов, и при этом наиболее полно используется реакционная поверхность частиц фторируемого продукта - диоксида урана. Вследствие указанного технического результата достигается более высокая производительность и более полное превращение диоксида урана в двойную соль и тетрафторид урана.

Сведения, подтверждающие возможность осуществления изобретения

Порошок диоксида урана смешивали с порошками бифторида аммония и карбамида. Масса ингредиентов и режимы термообработки 1-й - низкотемпературной (175÷230°C) и 2-й - высокотемпературной (500÷600°C) стадий приведены в таблице 1. Рентгенофазовый анализ продуктов, полученных на 1-й стадии термообработки, показал образование двойной соли (NH4)2UF6.

Из данных таблиц 1 и 2 и результатов химического рентгенофазового анализов UF4 видно, что в опытах №1, 2, 5, 6 получили UF4 хорошего качества с выходом более 98%. В опыте №3 наряду с основной фазой UF4 присутствовало около 3,0% (NH4)2UF6, что, по-видимому, обусловлено низкой температурой 2-й стадии (450°). В опыте №4 (при отсутствии карбамида), наряду с основной фазой UF4, было обнаружено 5% не прореагировавшего диоксида урана.

Таким образом, предложенный способ позволяет сократить стадийность и продолжительность процесса, при этом получать кондиционный тетрафторид урана с выходом более 98% по сравнению с другими, известными сухими методами. Кроме того, при проведении фторирования диоксида урана, как и при прохождении большинства других гетерогенных процессов, основная трудность заключается в обеспечении надлежащего массообмена между фторирующим агентом и твердой фазой (диоксидом урана). Это, как правило, достигается следующими приемами: фторирование в противотоке, псевдоожиженном слое и виброслое. Аппаратурное оформление таких процессов зачастую сопряжено с разработкой и созданием дорогостоящего, нестандартного и коррозионно-стойкого оборудования. Предложенный способ позволяет организовать интенсивный процесс массообмена в аппаратах стандартной конструкции (муфелях, трубчатых реакторах и т.п.).

1. Способ получения тетрафторида урана, включающий смешивание диоксида урана с бифторидом аммония, термообработку полученной смеси на стадии образования двойной соли урана и термообработку двойной соли на стадии ее разложения до тетрафторида урана, отличающийся тем, что в смесь диоксида урана и бифторида аммония добавляют карбамид, проводят термообработку полученной смеси при температуре выше точки кипения карбамида, но ниже температуры точки кипения бифторида аммония с последующей выдержкой при этой температуре до образования двойной соли, затем проводят ее термообработку при температуре 500÷600°C с последующей выдержкой при этой температуре в вакууме или в инертной атмосфере до получения тетрафторида урана.

2. Способ по п. 1, отличающийся тем, что бифторид аммония берут в избытке 60÷80% от стехиометрического количества, необходимого для получения двойной соли урана.

3. Способ по п. 1, отличающийся тем, что карбамид добавляют в количестве 1,0÷1,5 от веса бифторида аммония.

4. Способ по п. 1, отличающийся тем, что термообработку смеси диоксида урана, бифторида аммония и карбамида на стадии образования двойной соли урана проводят при температуре 175÷230°C.

5. Способ по п. 1, отличающийся тем, что термообработку смеси диоксида урана, бифторида аммония и карбамида на стадии образования двойной соли урана проводят на воздухе или в инертной атмосфере.



 

Похожие патенты:

Изобретение относится к области разработки технологии конверсии обедненного гексафторида урана с получением тетрафторида урана и, далее, металлического урана для военных целей или оксидов урана для длительного хранения или использования в быстрых реакторах, а также безводного HF.

Изобретение относится к переработке гексафторида урана (ГФУ) и может быть использовано для извлечения гексафторида урана из баллонов различной вместимости. Способ испарения гексафторида урана из баллона, включающий нагрев баллона двухсекционным индуктором, подачу азота в баллон в импульсном режиме.

Изобретение относится к ядерной технике и химической промышленности и может быть использовано для очистки и восстановления металлических поверхностей установок, предназначенных для разделения изотопов урана.

Изобретение относится к технологии урана, применительно к эксплуатации производств по разделению изотопов урана, и может быть использовано для очистки различных металлических поверхностей, работающих в среде гексафторида урана, от нелетучих отложений урана.

Изобретение относится к неорганической химии урана, в частности к технологии получения тетрафторида урана. Способ получения тетрафторида урана заключается в осаждении его из растворов, содержащих хлоридно-фторидный комплекс U+4, фтористоводородной кислотой, при температуре процесса 70-80°C, при этом используют фтористоводородную кислоту, содержащую четырехвалентный уран в количестве, не превышающем его растворимость.

Группа изобретений относится к области металлургии, а именно к способу получению порошка диоксида урана методом пирогидролиза и к установке для его осуществления.
Изобретение относится к области экологии и направлено на предупреждение возможности загрязнения окружающей среды и отравления населения радиоактивными веществами.

Изобретение может быть использовано при получении чистых солей и окислов из гексафторида урана (ГФУ). Аппарат для гидролиза гексафторида урана содержит корпус, в верхней части которого установлены средства для подачи гексафторида урана и орошающего раствора.
Изобретение относится к технологии получения соединений урана и, в частности к очистке тетрафторида урана от соединений углерода, фосфора, азота и других примесей.

Изобретение относится к способам переработки уран-фторсодержащих растворов, полученных от растворения огарков фторирования в производстве гексафторида урана. Способ включает растворение огарков в растворе азотной кислоты, извлечение урана из фторсодержащего азотнокислого раствора путем восстановления его гидразином на платиновом катализаторе, при постоянной очистке поверхности катализатора от осадка тетрафторида урана, отделение катализатора от азотнокислого раствора и осадка тетрафторида урана, обеспечение эквимолярного отношения фторид-ионов к урану (IV) в полученном растворе и разделение осадка тетрафторида урана и азотнокислотного раствора, при этом азотнокислотный раствор повторно используют для растворения огарков фторирования, предварительно доукрепив по азотной кислоте.

Изобретение относится к способам очистки загрязненного вредными изотопами сырья для использования его в дальнейшем для получении восстановленного урана для ядерного топлива. Способ очистки загрязненного сырья для разделительного производства от вредных изотопов заключается в снижении концентрации изотопов 232U, 234U, 236U путем переработки гексафторида урана загрязненного сырья в двойном каскаде газовых центрифуг. Гексафторид урана загрязненного сырья перерабатывают в двойном каскаде газовых центрифуг, предназначенных для получения низкообогащенного гексафторида 235U из чистого гексафторида урана, подаваемого на основное питание первого каскада, загрязненное сырье подают на дополнительное питание первого каскада. Очищенное сырье отбирают из первого или второго каскада. Изобретение позволяет получить качественное сырье с допустимым содержанием лимитирующих вредных изотопов. 5 з.п. ф-лы, 5 ил., 8 табл., 4 пр.

Изобретение относится к атомной промышленности и химической технологии неорганических веществ, а именно к способу получения тетрафторида урана сухим методом в производстве гексафторида урана или металлического урана. Способ заключается в том, что смешивают диоксид урана с бифторидом аммония, размещают смесь порошков в замкнутой емкости с ограниченным доступом воздуха, устанавливают замкнутую емкость в другую емкость с зазором, который заполняют засыпкой из углеграфитового материала в виде гранул таким образом, чтобы гранулы полностью укрывали замкнутую емкость, далее осуществляют термообработку полученной смеси на стадии образования двойной соли урана в воздушной атмосфере при температуре выше точки плавления бифторида аммония, но ниже точки его кипения и термообработку двойной соли на стадии ее разложения до тетрафторида урана при температуре выше начала окисления углеграфитового материала, но ниже температуры плавления тетрафторида урана. Изобретение обеспечивает получение кондиционного тетрафторида урана с низким содержанием кислорода, высокой насыпной плотностью и выходом более 99%, а также упрощение процесса. 9 з.п. ф-лы, 2 табл.

Изобретение относится к способам переработки гексафторида урана гидрометаллургическим методом с получением диоксидифторида урана и оксидов урана и может быть использовано в атомной промышленности для конверсии обогащенного или обедненного (отвального) гексафторида. Способ включает гидролиз гексафторида урана, при этом гексафторид урана предварительно охлаждают до температуры ≤-40°C, а в воду добавляют фторид аммония и лед, количество которого выбирают из условия компенсации тепловыделения при гидролизе гексафторида урана, при этом гексафторид урана постепенно загружают в полученную смесь, а его количество выбирают обратно пропорционально росту температуры раствора продуктов, далее осуществляют обработку продуктов гидролиза аммиачной водой, фильтрацию и термообработку осадка. Изобретение позволяет с высокой эффективностью и производительностью перерабатывать значительное количество гексафторида урана. При этом способ не требует сложной агрегированной системы аппаратов и может быть применен для переработки как высокообогащенного, так и обедненного (отвального) по изотопу U235 гексафторида урана, в том числе после длительного периода его хранения. 6 з.п. ф-лы, 4 пр.

Изобретение относится к производствам атомной промышленности, в частности к процессу выделения гексафторида урана из газов после фторирования урансодержащих соединений на сублиматных заводах. Способ получения гексафторида урана включает охлаждение полых металлических цилиндров, путем подачи хладагента внутрь цилиндров, при накоплении гексафторида урана на внешней поверхности цилиндров, при этом одну часть цилиндров охлаждают до 11 мин, накапливая слой гексафторида урана на внешней поверхности цилиндров толщиной до 1-2 мм, а другую часть цилиндров охлаждают в течение 28-40 мин, накапливая слой гексафторида урана на внешней поверхности цилиндров толщиной до 5 мм, и последующее нагревание цилиндров в течение 1,25-2 мин с тепловым сбросом десублимата с внешней поверхности цилиндров при подаче теплоносителя внутрь цилиндров. Изобретение обеспечивает получение конгломератных частиц десублимата различного размера крупных и мелких фракций, повышение плотности продукта и увеличение степени заполнения транспортных емкостей. 2 з.п. ф-лы, 3 табл., 2 пр.
Изобретение относится к неорганической химии и физике разделения веществ, в частности к технологии производства фторидных соединений урана и разделению его изотопов. Способ разделения изотопов урана включает контактирование гексафторида урана и фторида натрия до получения фтороураната натрия или фтороуранатов натрия с последующим термическим разложением солей при давлении не выше величины равновесного давления паров гексафторида урана над соответствующими солями или их смесями при температуре разложения. Изобретение обеспечивает снижение материалоемкости и упрощение аппаратурного парка для осуществления способа, увеличение коэффициента разделения изотопов урана и увеличение производительности процесса. 7 з.п. ф-лы, 5 пр.
Наверх