Резонансный генератор импульсов



Резонансный генератор импульсов

 

H03K3/53 - Импульсная техника (измерение импульсных характеристик G01R; механические счетчики с электрическим входом G06M; устройства для накопления /хранения/ информации вообще G11; устройства хранения и выборки информации в электрических аналоговых запоминающих устройствах G11C 27/02; конструкция переключателей для генерации импульсов путем замыкания и размыкания контактов, например с использованием подвижных магнитов, H01H; статическое преобразование электрической энергии H02M;генерирование колебаний с помощью схем, содержащих активные элементы, работающие в некоммутационном режиме, H03B; импульсная модуляция колебаний синусоидальной формы H03C;H04L ; схемы дискриминаторов с подсчетом импульсов H03D;

Владельцы патента RU 2601510:

Федеральное государственное унитарное предприятие "Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" (ФГУП "РФЯЦ-ВНИИЭФ") (RU)
Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") (RU)

Использование: для питания импульсных источников света, искровых камер, лазеров и ускорителей. Сущность изобретения заключается в том, что первая ступень умножения состоит из первого накопительного конденсатора, первого дросселя, общего коммутатора и внешнего накопительного конденсатора, соединенных последовательно, при этом один вывод внешнего накопительного конденсатора соединен с общей шиной, а другой подсоединен к выводу дополнительного источника зарядного напряжения с полярностью, противоположной полярности основного источника зарядного напряжения. Технический результат: увеличение максимума выходного напряжения генератора и энергии без увеличения числа ступеней умножения. 2 ил.

 

Изобретение относится к области электротехнической промышленности, в частности к импульсной технике, и может быть использовано для питания импульсных источников света, искровых камер, лазеров и ускорителей.

Известна электрическая схема импульсного генератора с инверсией напряжения на конденсаторах [Fitch R.A., Howell V.T.S.// Proc. IEEE, 1964, V 111, №4, p. 849], содержащая цепочку n последовательно соединенных конденсаторов, которые через зарядное и разделительные сопротивления заряжаются до начального напряжения U0. К каждому нечетному конденсатору цепочки через коммутирующий элемент подсоединена индуктивность, образующая с конденсатором LC-контур. Если число конденсаторов четное, то из-за разной полярности напряжений на соседних конденсаторах суммарное напряжение на них равно нулю. При одновременном замыкании n/2 коммутирующих элементов в LC-контурах начинается колебательный процесс и через время нечетные конденсаторы перезаряжаются, вследствие чего напряжение на всей цепочке конденсаторов составляет величину nU0. Если в этот момент времени замкнуть разрядник-обостритель, то все напряжение nU0 прикладывается к нагрузке.

Однако данная схема имеет n/2 коммутаторов, которые должны срабатывать в течение времени t < < L C , и величина выходного напряжения генератора равна не более чем nU0.

Известен генератор высоковольтных импульсов, выполненный по схеме n-ступенчатого умножения [Авт. свид. СССР №1131438, МКИ Η03K 3/53, Генератор высоковольтных импульсов / А.Ф. Запольский // БИ 31, 1998 г., с. 368], содержащий источник высокого напряжения и нагрузку, соединенные с общей шиной накопительные конденсаторы и раздельные цепочки из дросселей, при этом один вывод первого накопительного конденсатора соединен с общей шиной, а другой через зарядное сопротивление подсоединен к высоковольтному выводу источника высокого напряжения, причем первая ступень умножения состоит из последовательно соединенных первого накопительного конденсатора, дросселя и общего коммутатора, накопительные конденсаторы всех ступеней умножения соединены последовательно, при этом все ступени умножения, кроме первой, образуют резонансные LC-контуры, состоящие из двух смежных накопительных конденсаторов, один из которых присоединен к своему и предыдущему контуру, и присоединенного параллельного им дросселя, а нагрузка подключена через дополнительно введенный разрядник-обостритель к точке соединения n-накопительного конденсатора с n-дросселем, где n=2, 3, 4, …

Недостатком данного генератора является то, что для увеличения его выходного напряжения и, соответственно, мощности передаваемой в нагрузку необходимо увеличивать число резонансных ступеней умножения генератора и подбирать заново значения конденсаторов и индуктивностей. При этом увеличивается число резонансных частот ωi (i=1, 2, … n) и возрастает время формирования максимума выходного напряжения генератора. Это приводит к дополнительному увеличению потерь электрической энергии, запасаемой в конденсаторах, как в коммутаторе, так и на омических сопротивлениях дросселей.

Наиболее близким по технической сущности к заявляемому техническому решению и выбранном в качестве прототипа является генератор высоковольтных импульсов [Патент РФ №2352056, МКИ Η03K 3/53, Генератор высоковольтных импульсов / А.Ф. Запольский, Г.А. Запольский // БИ 10, 2009 г.].

Генератор высоковольтных импульсов, выполненный по схеме ступенчатого умножения, содержит источник высокого напряжения, нагрузку, соединенные последовательно накопительные конденсаторы всех ступеней умножения, раздельные цепочки из дросселей, одна из которых через зарядное сопротивление подсоединена к высоковольтному выводу источника высокого напряжения, а другая соединена с общей шиной. Один вывод первого накопительного конденсатора соединен с общей шиной, а другой через зарядное сопротивление подсоединен к высоковольтному выводу источника высокого напряжения. Первая ступень умножения состоит из первого накопительного конденсатора, дросселя и общего коммутатора, соединенных последовательно, ступени умножения, кроме первой, образуют резонансные LC-контуры, состоящие из двух смежных накопительных конденсаторов, один из которых присоединен к своему и к предыдущему контурам, и подсоединенного параллельно им дросселя, при этом нагрузка подключена к общей шине и выводу разрядника-обострителя, а к общей точке последнего накопительного конденсатора и дросселя, входящего в его LC-контур, подключен дополнительный накопительный конденсатор, второй вывод которого через разделительный элемент подсоединен к средней точке между конденсаторами последнего резонансного LC-контура и другому выводу разрядника-обострителя

Недостатком данного генератора является то, что для увеличения его выходного напряжения или запасаемой электрической энергии, с целью повышения мощности, передаваемой в нагрузку, необходимо, как и в аналоге, увеличивать число ступеней умножения генератора и подбирать заново значения конденсаторов и индуктивностей, или пропорционально увеличивать емкость конденсаторов. И в том и в другом случае возрастает время формирования максимума выходного напряжения генератора. Это приводит к увеличению потерь электрической энергии, запасаемой в конденсаторах, как в коммутаторе, так и на омических сопротивлениях дросселей.

Задачей изобретения является увеличение мощности генератора и КПД передачи электрической энергии от конденсаторов генератора в нагрузку.

Техническим результатом в заявляемом резонансном генераторе импульсов является увеличение максимума выходного напряжения генератора и энергии, запасаемой в накопительных конденсаторах без увеличения числа ступеней умножения.

Технический результат в заявляемом резонансном генераторе импульсов достигается тем, что в отличие от известного резонансного генератора импульсов, выполненного по схеме ступенчатого умножения, содержащего основной источник зарядного напряжения, нагрузку, соединенные последовательно накопительные конденсаторы всех ступеней умножения, раздельные цепочки из дросселей, одна из которых подсоединена к выводу основного источника зарядного напряжения, а другая соединена с общей шиной, причем первая ступень умножения содержит первый накопительный конденсатор, первый дроссель и общий коммутатор, при этом один вывод первого накопительного конденсатора соединен с общей шиной, а другой подсоединен к выводу основного источника зарядного напряжения, ступени умножения, кроме первой, образуют резонансные LC-контуры, состоящие из двух смежных накопительных конденсаторов, один из которых присоединен к своему и к предыдущему контурам, и подсоединенного параллельно им дросселя, при этом нагрузка подключена к общей шине и выводу разрядника-обострителя, а к общей точке последнего накопительного конденсатора и дросселя, входящего в его LC-контур, подключен дополнительный накопительный конденсатор, второй вывод которого через разделительный элемент подсоединен к средней точке между конденсаторами последнего резонансного LC- контура и другому выводу разрядника-обострителя, в предложенном генераторе первая ступень умножения состоит из первого накопительного конденсатора, первого дросселя, общего коммутатора и внешнего накопительного конденсатора, соединенных последовательно, при этом один вывод внешнего накопительного конденсатора соединен с общей шиной, а другой подсоединен к выводу дополнительного источника зарядного напряжения с полярностью, противоположной полярности основного источника зарядного напряжения.

То есть, следствием введения предложенных отличий является то, что в заявляемом генераторе подсоединение заявляемым образом в первую ступень умножения внешнего накопительного конденсатора увеличивает запасаемую электрическую энергию и повышает коэффициент умножения генератора по напряжению за счет частичной или полной передачи электрической энергии от внешнего накопительного конденсатора в цепочку последовательно соединенных конденсаторов генератора, разряжаемых на нагрузку.

Более того, так как внешний накопительный конденсатор включается в первую ступень умножения генератора последовательно с первым накопительным конденсатором, дросселем и общим коммутатором, то при сохранении числа ступеней умножения и значений емкости первого накопительного конденсатора и индуктивности дросселя первой ступени, время формирования максимума амплитуды выходного напряжения генератора уменьшается, так как уменьшается период резонансных колебаний на основной частоте схемы генератора. Это приводит к уменьшению потерь электрической энергии, запасаемой в конденсаторах генератора, и, соответственно, к увеличению мощности генератора и КПД передачи электрической энергии от конденсаторов генератора в нагрузку.

Емкость внешнего конденсатора и параметры элементов генератора подбираются так, чтобы в момент формирования максимума выходного напряжения генератора напряжение на внешнем конденсаторе было близким к нулю, то есть электрическая энергия, запасенная в нем, должна перейти в цепочку последовательно соединенных конденсаторов генератора. Этому способствует подключение внешнего конденсатора к выводу дополнительного источника зарядного напряжения с полярностью, противоположной полярности основного источника зарядного напряжения.

На Фиг. 1 приведена схема заявляемого резонансного генератора импульсов, где: 1 - основной источник зарядного напряжения, 2 - нагрузка, 3 - дроссели генератора, 4 - накопительные конденсаторы, 5 - коммутирующий элемент (общий коммутатор), 6 - разрядник-обостритель, 7 - дополнительный накопительный конденсатор, 8 - разделительный элемент, 9 - внешний накопительный конденсатор, 10 - дополнительный источник зарядного напряжения.

На Фиг. 2 приведена форма импульсов напряжения на конденсаторах генератора, поясняющих его работу, и выходное напряжение генератора для 3-х резонансных LC-контуров схемы и для зарядного напряжения дополнительного источника зарядного напряжения, равного -U0.

Заявляемый резонансный генератор импульсов работает следующим образом: каждый из последовательно соединенных конденсаторов 4 через соответствующие дроссели 3 заряжается от основного источника зарядного напряжения 1 до начального напряжения U01. Дополнительный накопительный конденсатор 7 заряжается через дроссели 3 и разделительный элемент 8. Внешний накопительный конденсатор 9 заряжается от дополнительного источника зарядного напряжения 10 до напряжения U02. Разделительный элемент 8 выбирается таким, чтобы при замыкании коммутатора 5 конденсатор 7 не принимал участия в резонансных колебаниях связанных между собой LC-контурах схемы генератора, то есть величина и полярность напряжения на конденсаторе 7 не должны изменяться за время формирования максимума амплитуды напряжения на цепочке конденсаторов 4. При этом значения емкостей конденсаторов 4 и индуктивностей дросселей 3 подбираются такими, чтобы на момент формирования максимума напряжения t1 на последнем конденсаторе 4 полярность напряжения изменилась на противоположную, а напряжение на внешнем накопительном конденсаторе было близким к нулю. Кроме этого, заряды на каждом конденсаторе 4 и конденсаторе 7 должны быть равны по абсолютной величине, но у каждого из двух соседних конденсаторов, соединенных последовательно в цепочку, заряды должны быть разными по знаку. Тогда выходное напряжение генератора перед разрядником-обострителем 6 будет равно - Uвых=U1-U2+U3-… Если в момент времени t1 замкнуть разрядник-обостритель, то выходное напряжение генератора Uвых будет приложено к нагрузке 2.

Для выполнения вышеперечисленных условий возможны различные комбинации емкостей конденсаторов и индуктивностей дросселей, величины которых зависят от числа резонансных частот схемы генератора и их соотношения.

На Фиг. 2 приведены расчетные графики напряжений на конденсаторах генератора с 3-мя резонансными LC-контурами при отношении резонансных частот ω123=1:2:3 и зарядном напряжении внешнего конденсатора, равном -U0,

где U1 - напряжение на внешнем конденсаторе 9, U2 - напряжение на 1-ом накопительном конденсаторе 4, U3 - напряжение на 2-ом накопительном конденсаторе 4, U4 - напряжение на 3-ем накопительном конденсаторе 4, U5 - напряжение на дополнительном накопительном конденсаторе 7, Uвых - напряжение на выходе генератора перед разрядником-обострителем 6.

Проведено экспериментальное подтверждение работоспособности заявляемого резонансного генератора импульсов, когда зарядное напряжение внешнего накопительного конденсатора равнялось -U0.

Был изготовлен и испытан генератор с 3-мя резонансными LC-контурами при отношении емкостей накопительных конденсаторов 4 - C123=1:0,74:0,44 и отношении индуктивностей дросселей 3 L1:L2:L3=1:2,28:7,8.

Суммарная емкость конденсаторов равнялась ~250 нФ. Величина емкости дополнительного накопительного конденсатора 7 была равна С≈C1, а в качестве разделительного элемента применялся дроссель с индуктивностью в ~100 раз больше индуктивности дросселя последнего резонансного LC-контура генератора. Емкость внешнего накопительного конденсатора 9 равнялась 2,2·С1. Получен коэффициент умножения генератора по напряжению K≈5,2, что на ≈12% больше, чем у прототипа с тем же числом резонансных LC-контуров. Осуществлен импульсно-периодический режим работы генератора с частотой до ~100 Гц.

Резонансный генератор импульсов, выполненный по схеме ступенчатого умножения, содержащий основной источник зарядного напряжения, нагрузку, соединенные последовательно накопительные конденсаторы всех ступеней умножения, раздельные цепочки из дросселей, одна из которых подсоединена к выводу основного источника зарядного напряжения, а другая соединена с общей шиной, причем первая ступень умножения содержит первый накопительный конденсатор, первый дроссель и общий коммутатор, при этом один вывод первого накопительного конденсатора соединен с общей шиной, а другой подсоединен к выводу основного источника зарядного напряжения, ступени умножения, кроме первой, образуют резонансные LC-контуры, состоящие из двух смежных накопительных конденсаторов, один из которых присоединен к своему и к предыдущему контурам, и подсоединенного параллельно им дросселя, при этом нагрузка подключена к общей шине и выводу разрядника-обострителя, а к общей точке последнего накопительного конденсатора и дросселя, входящего в его LC-контур, подключен дополнительный накопительный конденсатор, второй вывод которого через разделительный элемент подсоединен к средней точке между конденсаторами последнего резонансного LC-контура и другому выводу разрядника-обострителя, отличающийся тем, что первая ступень умножения состоит из первого накопительного конденсатора, первого дросселя, общего коммутатора и внешнего накопительного конденсатора, соединенных последовательно, при этом один вывод внешнего накопительного конденсатора соединен с общей шиной, а другой подсоединен к выводу дополнительного источника зарядного напряжения с полярностью, противоположной полярности основного источника зарядного напряжения.



 

Похожие патенты:

Изобретение относится к зарядным устройствам емкостных накопителей энергии и может быть использовано в высоковольтных электрофизических установках большой мощности с высоким уровнем накапливаемой энергии.

Изобретение относится к электронной технике. Технический результат - уменьшение и подавление на выходе паразитного сигнала, значительное увеличение уровня изоляции переключателя в выключенном состоянии при сохранении малых потерь во включенном состоянии за счет вариантов подключения коммутирующих и компенсирующих МОП транзисторов.

Изобретение относится к области цифровой техники и может быть использовано для формирования широтно-импульсной последовательности с заданной скважностью с высокой точностью и не зависящей от изменения частоты информационного сигнала. В основу изобретения поставлена задача получения широтно-импульсной последовательности с заданной скважностью с высокой точностью при изменении частоты информационного сигнала.

Изобретение относится к импульсной технике и может быть использовано в импульсных схемах различного назначения, питаемых от низковольтных источников. Достигаемый технический результат - обеспечение самозапуска генератора и возможность использования низковольтных источников питания.

Изобретение относится к области электротехники и может быть использовано в электронных устройствах для формирования импульсов напряжения. Достигаемый технический результат - возможность получения импульсов напряжения с заданными параметрами в широком диапазоне по амплитуде от нуля до максимума амплитуды питающего напряжения и заданной длительности импульса.

Использование: для формирования высоковольтных импульсов. Сущность изобретения заключается в том, что в генератор импульсов введено, по крайней мере, одно LC-звено, состоящее из индуктивного накопителя и конденсатора, при этом индуктивный накопитель LC-звена одним выводом соединен с нагрузкой и к точке их соединения подключен диод, а другим выводом индуктивный накопитель LC-звена соединен со второй индуктивностью и к точке их соединения одним выводом подключен конденсатор LC-звена, соединенный другим выводом с землей.

Изобретение относится к импульсной технике и может использоваться для подачи высоковольтных импульсов на различные приборы и устройства. Техническим результатом является увеличение надежности блока электронных ключей за счет равномерного распределения напряжения, прикладываемого между отдельными ключевыми элементами.

Изобретение относится к управлению энергопотреблением в электронной схеме, в частности к управлению рабочими точками тактовой частоты и источника напряжения в электронной схеме.

Изобретение относится к высоковольтной импульсной технике и может быть использовано для создания наносекундных компактных генераторов. Достигаемый технический результат - уменьшение искажений выходного импульса генератора путем подавления высокочастотных колебаний переходного процесса.

Группа изобретений относится к импульсной технике и может быть использована для систем питания мощных лазеров. Техническим результатом является формирование импульсов напряжения с высокой частотой повторения импульсов.
Наверх