Способ и система подготовки жидкости для гидроразрывов

Авторы патента:


Способ и система подготовки жидкости для гидроразрывов
Способ и система подготовки жидкости для гидроразрывов
Способ и система подготовки жидкости для гидроразрывов
Способ и система подготовки жидкости для гидроразрывов
Способ и система подготовки жидкости для гидроразрывов
Способ и система подготовки жидкости для гидроразрывов
Способ и система подготовки жидкости для гидроразрывов
Способ и система подготовки жидкости для гидроразрывов
Способ и система подготовки жидкости для гидроразрывов

 


Владельцы патента RU 2601632:

ЭмБиДжей ВОТЭР ПАРТНЕРС (US)

Настоящее изобретение относится к получению расклинивающего агента, используемого при добыче углеводородов. Способ создания расклинивающего агента с частицами требуемых размеров, получаемого из шлама, извлеченного из скважины для добычи углеводородов, подвергнутой гидроразрыву, содержащий стадии: отделение воды от шлама с образованием потока мокрых твердых частиц и потока жидкости, смешивание потока мокрых твердых частиц с твердыми частицами с образованием загружаемого материала, расплавление загружаемого материала с получением материала расплавленного расклинивающего агента, резкое охлаждение расплавленного материала, измельчение охлажденного материала расклинивающего агента, сортировка частиц измельченного материала по размерам и смешивание частиц измельченного материала, не соответствующих установленным размерам, с загружаемым материалом. Система создания расклинивающего агента с частицами требуемого размера, получаемого из шлама, извлеченного из скважины для добычи углеводородов, подвергнутой гидроразрыву, содержащая элементы: средства отделения воды от шлама, средства для смешивания потока мокрых твердых частиц с твердыми частицами, средства для расплавления загружаемого материала, средства для резкого охлаждения расплавленного материала, средства для измельчения охлажденного материала, средства сортировки измельченного материала до получения частиц требуемого размера и средства для смешивания измельченного материала, размеры частиц которого не соответствуют установленным, с загружаемым материалом. Система для использования при выполнении операций по гидроразрыву, содержащая: первый сепаратор, содержащий патрубок для забора шлама и патрубок для выпуска шлама с первым содержанием воды, второй сепаратор, содержащий патрубок для забора шлама, расположенный так, чтобы в него мог поступать шлам из патрубка для выпуска шлама из первого сепаратора, и патрубок для выпуска потока мокрых твердых частиц со вторым - более низким - содержанием воды, печь для получения расплавленного расклинивающего агента, расположенная так, чтобы в нее мог поступать шлам из патрубка для выпуска потока мокрых твердых частиц из второго сепаратора, и снабженная выпускным отверстием, охладитель, расположенный так, чтобы в него мог поступать расплавленный расклинивающий агент из печи, дробилка, расположенная так, чтобы в нее мог поступать охлажденный расклинивающий агент из охладителя, мельница, расположенная так, чтобы в нее мог поступать дробленый расклинивающий агент из дробилки, первое сито, расположенное так, чтобы на него мог поступать размолотый материал из мельницы, и второе сито, расположенное так, чтобы на него мог поступать материал, пропущенный первым ситом. Изобретение развито в зависимых пунктах. Технический результат - обеспечение общественной безопасности при гидроразрыве пластов. 3 н. и 26 з.п. ф-лы, 10 ил.

 

Предшествующий уровень техники настоящего изобретения

Настоящее изобретение относится к устройству и технологическим стадиям обработки промывочной и пластовой воды, вытекающей из скважины в процессе ее отработки, и иных компонентов, которые используются для создания каналов или разрывов или трещин гидравлическим методом в скважинах для добычи углеводородов (например, на глубоко залегающих сланцевых месторождениях).

На протяжении многих веков люди пытаются найти применение свойствам, присущим углеводородным соединениям природного происхождения, и эффективно использовать их для повышения своего жизненного уровня и решения многочисленных жизненных задач. В течение более двухсот лет «Горючие пески» Киркука обеспечивают теплом курдские племена Ирака. Для этого надо просто поджечь метан, который по сей день непрерывно выходит на поверхность земли из глубоко залегающих геологических образований. Кроме того, нефтепроявления на поверхности земли в Пенсильвании и Калифорнии использовались местными индейцами для просмаливания каноэ, на которых они путешествовали по водным артериям Северной Америки. Это только два примера раннего использования человеком природного газа и сырой нефти для совершенствования своего образа жизни.

Успешное бурение неглубокой нефтяной скважины в Пенсильвании, которое в конце 19-ого века выполнил Эдвин Дрейк, ознаменовало собой начало эпохи самого масштабного экономического роста в истории человечества, локомотивом которого - в значительной мере - стали успехи в разведке, добыче и переработке газообразных и жидких углеводородных соединений природного происхождения. В настоящее время они используются для производства различных видов топлива для транспортных средств, электроэнергии, горюче-смазочных материалов, продукции нефтехимии и многих тысяч других продуктов, которые мы используем в повседневной жизни. Зарождение и развитие нефтяной промышленности стало движущей силой и одним из основных факторов, способствующих формированию и небывалому росту мировой экономики. Этот период экономического развития известен как «Промышленная революция».

В этот период было открыто множество новых нефтяных месторождений в самых разных частях света; при этом наблюдались фантастические темпы роста спроса на сырую нефть и нефтепродукты за счет множества новых сфер применения продукции, получаемой из нефти, которые продолжают появляться и в двадцать первом веке. На протяжении всего этого периода в нефтяной промышленности было открыто множество новых месторождений и крупных пластов или залежей смесей жидких и газообразных углеводородных соединений традиционного состава (как на наземных, так и на морских нефтяных промыслах в самых разных точках мирового океана по всему миру). Вместе с тем, в нефтяной промышленности были также разведаны огромные запасы смесей тяжелых и легких углеводородных соединений, обладающих нестандартной структурой, которые так переплетены в матрицах материалов сложного строения, что извлечение содержащихся в них углеводородных молекулярных соединений становится нерентабельным.

Источники этих нестандартных углеводородных соединений подразделяются на две разные категории. Во-первых, существуют «тяжелые» или длинноцепочечные углеводородные молекулярные соединения, такие как нефть марки «майя» (Мексика) или соединения, добываемые на нефтеносных песках в Канаде и на месторождениях тяжелой нефти в нефтедобывающих полях Керн Ривер и Бэлридж (Калифорния) или в нефтеносном поясе в дельте реки Ориноко (Венесуэла). Добываемая в этих местах тяжелая нефть характеризовалась чрезвычайно высокой вязкостью и студенистым состоянием при температуре окружающей среды. В этих случаях первостепенное значение придавалось уменьшению температуры застывания нефти или вязкости. Во-вторых, существуют «легкие» или короткоцепочечные углеводородные молекулярные соединения, содержащиеся в залежах сланцев по всей территории Соединенных Штатов, а также во многих других регионах мира.

В некоторых странах, а именно в Испании, Эстонии и Бразилии, имеются крупные, но не глубоко залегающие, месторождения сланцевой нефти; при этом в указанных странах нет крупных запасов или залежей обычной сырой нефти. Здесь для извлечения сланцевой нефти или керогена использовался способ «грубой силы», заключающийся в нагреве сланцевой породы в герметичных высокотемпературных ретортах. Такая практика получила распространение еще в двадцатых годах прошлого века. Топливо на основе извлеченного керогена или горючих сланцев затем сжигалось в печах для обогрева или использовалось в транспортных средствах с дизельными двигателями или двигателями внутреннего сгорания других типов. Топливо на основе извлеченного керогена характеризовалось почти такой же калорийностью в британских тепловых единицах и схожими характеристиками горения, что и бензин стандартного качества, полученный из обычной сырой нефти на нефтеперегонных заводах. Указанные страны испытывали также дефицит твердой валюты или долларов США, что препятствовало приобретению природной сырой нефти на международных сырьевых рынках, но зато они обладали большими запасами сланцевых пород (хотя объемы керогена или битуминозных сланцев, добываемых на этих сланцевых месторождениях, составляли менее четырех весовых процентов от всего объема сланцевых пород, т.е. около девяноста пяти процентов сланцевых пород уходило в отходы). Горячие конденсируемые углеводородные соединения сжижались в обычных конденсирующих теплообменниках, превращаясь в топливо на основе керогена. Неконденсируемые углеводороды, главным образом метан, просто сжигались или выбрасывались в атмосферу. Все эти короткоцепочечные или легкие углеводородные соединения заключены в матричную структуру битуминозных сланцев, и при нагреве под давлением они высвобождаются из указанной матрицы в виде газа.

В Соединенных Штатах Америки существует множество районов, где можно обнаружить сланцевые породы, но большинство таких месторождений залегает на глубине от пяти до десяти тысяч футов. Еще до двадцатых годов прошлого века предпринимались попытки извлечения керогена из пластовых сланцевых формаций. Хотя сланцевое масло доказало свою пригодность для использования в качестве углеводородного продукта, расходы на его извлечение намного превосходили рыночную стоимость аналогичных продуктов; таким образом, добыча горючих сланцев оказалась нерентабельной. На то время дополнительные меры по развитию и капиталовложения не оправдались.

В течение последних нескольких лет все эти факторы и условия резко изменились, что обусловлено, главным образом, стремительным развитием и внедрением двух новых технологий. Первая из них предусматривает методы точно регулируемого и управляемого наклонно-направленного бурения, которые позволяют буровым установкам сначала осуществлять вертикальное бурение, а затем выполнять регулируемый или управляемый поворот в горизонтальное положение с бурением до заданной глубины. После этого можно продолжать бурение ствола скважины в горизонтальной плоскости, пробуривая сланцевую формацию на значительное расстояние. Второе наиболее значимое технологическое новшество заключается в применении старой технологии, а именно гидравлического разрыва старых вертикальных нефтяных скважин для повышения их дебита, а также для стимулирования дальнейшей разработки старых скважин с целью продления экономичного срока службы истощающихся нефтяных месторождений.

За долгие годы было разработано и внедрено множество способов продления жизненного цикла старых нефтяных месторождений и месторождений поздней стадии разработки. Один из приемов, который был использован для поддержания энергии пласта на истощающихся нефтяных месторождениях, предусматривал затопление. Кроме того, аналогичный результат давала закачка метана под давлением (при его наличии и при условии, что он не горит). Другой испробованный способ предусматривал использование «кумулятивных зарядов» взрывчатки, которая закладывалась в колонну обсадных труб таким образом, чтобы сдетонировать в стволе скважины в области продуктивной зоны, и чтобы сила взрыва могла пробить стенку колонны обсадных труб и открыть разрывы или трещины.

Применение таких способов добычи нефти вторичными методами (ДНВМ) было нормой на протяжении многих лет. Однако некоторые нефтяные компании были обеспокоены опасностью использования взрывчатых веществ для продления жизненного цикла истощающихся нефтяных месторождений; и в конце сороковых годов двадцатого века для создания разрывов или трещин в продуктивных зонах получила распространение практика применения песчано-водяных смесей под большим давлением. Эта технология была разработана в попытках добиться повышения дебита нефтяных скважин, а также продления жизненного цикла старых и истощающихся нефтяных месторождений без использования взрывчатки. Открытие новых каналов гидравлическим способом в старых продуктивных пластах облегчало выход газообразных и жидких углеводородов под забойным давлением на поверхность, где они собирались в виде сырой нефти или газообразных продуктов.

Кроме того, в этот период была широко распространена практика использования установок для капитального ремонта скважин с целью очистки колонн обсадных труб старых нефтяных скважин от наслоений парафинистых и битуминозных соединений, которые ограничивали выход углеводородов.

Применение всех этих способов интенсификации притока на нефтяных скважинах, а также использование других способов добычи нефти вторичными методами продолжалось в течение долгих лет, на протяжении которых было разработано множество усовершенствований. Одним из таких усовершенствований стала разработка более мощных грязевых насосов повышенной производительности для выкачивания барита, которые были необходимы для бурения все более глубоких нефтяных скважин, как на прибрежных, так и на морских месторождениях. Некоторые из этих нефтяных скважин были пробурены на морских глубинах, превышающих восемь тысяч футов; а дальнейшее бурение может добавить к указанным глубинам еще более двадцати тысяч футов, вследствие чего появилась необходимость в увеличении производительности и повышении максимального давления на выходе насосов, используемых в процессе гидравлического разрыва.

Открытие ряда крупных месторождений горючих сланцев вкупе со вновь разработанными технологиями управляемого наклонно-направленного бурения, а также возможность использования оборудования для выполнения гидравлических разрывов под высоким давлением позволили нефтяной промышленности продвинуться в разработке новых способов гидроразрыва. Они дали возможность осуществлять наклонно-направленное бурение в глубоко залегающих сланцевых формациях, как в вертикальных, так и в горизонтальных плоскостях, а затем выполнять гидравлический разрыв формации для высвобождения газообразных и жидких углеводородов, содержащихся в сланцевых матрицах. Эти новые технологии привели к кардинальным изменениям в оценке жидких и газообразных углеводородов на мировом рынке энергоресурсов.

Однако в тот период времени, когда применение метода гидравлического разрыва получало все более широкое распространение, его развитие - как в технологическом плане, так и с точки зрения применения на практике - осуществлялось неупорядоченно, бессистемно и спонтанно. Многие их внесенных усовершенствований явились результатом попыток повышения дебита нефтяных скважин и продления жизненного цикла действующих нефтяных месторождений с использованием ненаучных подходов, т.е. методом проб и ошибок. Все это делалось без должного всестороннего анализа или понимания обоснованных научных причин необходимости внесения таких усовершенствований. Лучшим примером такого ненаучного подхода в попытках найти решения конкретных задач по обработке воды служит то, что происходит при выборе и использовании различных типов расклинивающих агентов в процессе гидроразрыва пласта.

После завершения первоначального разрыва водой под давлением в разрывах или трещинах, образованных за счет применения метода воды под давлением, должны остаться прочные расклинивающие агенты или проппанты, если необходимо повысить дебит добываемых углеводородов до требуемого уровня. Расклинивающие агенты представляют собой средства «расклинивания» новых отверстий или трещин в формациях, специально подобранные для того, чтобы они могли поддерживать новые разрывы или трещины в открытом состоянии, а также позволять углеводородным соединениям свободно проходить по стволу скважины; и поэтому они могут нагнетаться с помощью контрольно-измерительного оборудования устья скважины.

Без тщательно подобранных расклинивающих агентов, характеризующихся достаточной прочностью и правильными размерами для непрерывного поддержания трещин в открытом состоянии, дебит скважины будет быстро уменьшаться по мере измельчения расклинивающего агента и заполнения трещин частицами более мягкого материала. Это все приведет к сокращению дебита и, в итоге, заблокирует приток углеводородов в ствол скважины. Было протестировано множество типов песка разного состава, формы и размеров, а также множество других типов расклинивающих агентов, таких как оксиды алюминия и пр.

Основная проблема в этом случае состоит в том, что правильно подобранный расклинивающий агент, который должен быть использован в процессе гидроразрыва пласта, является единственным значимым фактором, влияющим на достижение и сохранение коэффициента пористости, который необходим для того, чтобы каналы, образованные в результате разрыва водой под давлением, могли реализовать все преимущества процесса гидроразрыва.

Хотя эти аспекты важны при гидроразрыве в вертикально пробуренных нефтяных скважинах с выделенными продуктивными пластами, они имеют гораздо большее значение при применении гидроразрыва в горизонтально-слоистых формациях нефтеносных сланцев. Благодаря «Сланцевой революции» во всем ее масштабе мы только начинаем познавать и понимать природу и характеристики многочисленных видов сланцевых формаций.

Нефтеносные сланцы представляют собой вид осадочных отложений, сформированных миллиарды лет тому назад преимущественно в виде карбонатов кальция, карбонатов натрия, гидрокарбонатов кальция и кварца, а также почвенных материалов и прочих соединений, которые заключались в матрицу материалов по мере формирования этих сланцев, и в итоге были отложены в известных на сегодняшний день сланцевых формациях. Многие сланцевые формации пересекают линии тектонических разломов в земной коре, и поэтому они могут характеризоваться не сплошной формой. Некоторые сланцевые формации немного наклонены, как в вертикальных, так и в горизонтальных плоскостях. Вследствие этого важнейшей составной частью процесса разведочных работ и освоения месторождений сланцевого газа становится локализация с помощью каротажных кабелей, а также трехмерный сейсмический анализ.

Оглядываясь назад, важно понять и акцентировать свое внимание на том важнейшем факте, что надлежащим образом структурированные расклинивающие агенты с частицами правильных размеров способствуют обеспечению оптимальной добычи газообразных и жидких углеводородных соединений, которые являются продуктом, полученным в результате гидроразрыва залежей горючих сланцев. В нефтяной промышленности этот факт не был до конца понят и осмыслен вплоть до начала двадцать первого века. К концу двадцатого столетия нефтяная промышленность уже более пятидесяти лет использовала технологию гидроразрыва для добычи нефти вторичными методами и интенсификации притока в добывающие нефтяные скважины. Все операции по гидроразрыву пластов, которые проводились до начала двадцать первого века, были нацелены на то, чтобы продлить жизненный цикл уже действующих вертикально пробуренных нефтяных скважин или повысить величину добычи углеводородов на вновь освоенных скважинах. Все эти операции по гидроразрыву выполнялись на вертикально пробуренных нефтяных скважинах и приводили к разрыву продуктивных пластов, состоящих в основном из песка, в результате чего жидкие или газообразные углеводороды могли выходить наружу в условиях забойного давления и температуры. Все это выполнялось в песчаных пластах, характеризующихся относительно высокими фильтрационно-емкостными показателями или коэффициентами пористости.

С внедрением оборудования для управляемого вертикально-горизонтального бурения вместе с насосными установками сверхвысокого давления для гидроразрывов (называемыми также «напорными насосными установками») нефтяная промышленность стала использовать те же методы гидроразрыва, что были успешно разработаны и опробованы в ходе выполнения операций по гидроразрыву на вертикально пробуренных нефтяных скважинах, а также выполнять такие же операции применительно к стволам скважин, пробуренных в горизонтальной плоскости в глубоко залегающих сланцевых формациях, но с гораздо менее удовлетворительными результатами. Некоторые сланцевые формации характеризовались большей продуктивностью в сравнении с другими отложениями, и было испробовано множество подходов в попытках увеличить объем инкапсулированных углеводородов, высвобожденных в результате гидроразрыва пластов. Для регулирования роста водных микроорганизмов, препятствующих выходу углеводородов, пробовали добавлять химикаты. Химикаты также добавляли для регулирования уровня коррозии и коркообразования. Кроме того, в попытках повысить способность воды для гидроразрывов проникать в трещины, образованные водой под высоким давлением, добавлялись химикаты, уменьшающие поверхностное натяжение. Некоторые комбинации операций оказывались более результативными в отношении определенных сланцевых образований в сравнении с теми же действиями, предпринимаемыми в отношении других сланцевых формаций, что проявлялось, в частности, в разных процентных долях или объемах углеводородного продукта, получаемого в итоге из определенного количества углеводородов, содержащихся в данной залежи сланцев.

Это продолжалось до тех пор, пока в нефтяной промышленности не начали приходить к понимаю того, что традиционные технологические принципы не могут быть в полной мере применены ко вновь разработанным методикам извлечения жидких и газообразных углеводородов, содержащихся в пластах минерализованных пород, которые позволяют без труда выводить эти углеводороды на поверхность даже из глубоко залегающих пластов, характеризующихся высокой температурой и давлением. В поисках понятных решений этих задач и их комплексного анализа инженеры-нефтяники обратились к принципам применения критериев геологии минералов в рамках механики скальных пород. Результаты недавно проведенных научно-исследовательских работ показали, что все сланцевые формации можно классифицировать и условно разбить на две легко измеряемые и идентифицируемые группы, а именно на «мягкие сланцы» и «твердые сланцы» (смотрите, например: Denney Dennis, Fracturing-Fluid Effects on Shale and Proppant Embedment, журнал JPT, c. 59-61, (март 2012 года)). Критерии тестирования основаны на принципе измерения напряжения/деформации или величины модуля нормальной упругости заданного материала, как до, так и после гидроразрыва. В ходе тестирования измеряется наноинденторная твердость минерала после приложения напряжения определенного уровня. Протестированные твердые сланцы показали низкие значения наноинденторной твердости, тогда как мягкие сланцы продемонстрировали более высокие показатели наноинденторной твердости. Твердые сланцы содержали, главным образом, карбонаты кальция, кремнезем, кальциты и кварц в их сочетании с коллоидными глинами; при этом мягкие сланцы содержали гидрокарбонаты натрия, нахколиты и компоненты коллоидных глин.

Способность точно определять истинные характеристики минералов горючих сланцев чрезвычайно важна при выборе наиболее подходящих нефтедобывающих технологий, необходимых для оптимизации или максимального увеличения суммарной добычи углеводородных компонентов из конкретной залежи или месторождения сланцев. Реакция пластов мягких сланцев отличается от реакции пластов твердых сланцев, когда и те и другие подвергаются воздействию давления гидравлической воды одинаковой величины в течение одного и того же времени выдержки. В твердых сланцах под высоким гидравлическим давлением образуются трещины или каналы с относительно короткой длиной проникновения и небольшим диаметром в поперечном сечении. С другой стороны, в мягких сланцах под таким же высоким гидравлическим давлением в течение того же времени выдержки образуются трещины, характеризующиеся большей длиной проникновения и большим диаметром поперечного сечения, чем при гидроразрыве материалов в формациях твердых сланцев.

Помимо регулирования роста количества микроорганизмов, предотвращения коркообразования и предоставления реагента на водной основе для снижения поверхностного натяжения, важнейшим фактором, влияющим на возможность извлечения максимального или оптимального объема углеводородов из конкретной сланцевой формации, является правильный выбор размеров частиц и типа расклинивающего агента, который подается в продуктивный пласт вместе с жидкостью для гидроразрыва. Если гидроразрыву подлежат твердые сланцы, то частицы расклинивающего агента или проппанта должны обладать достаточно небольшими размерами с тем, чтобы они могли без труда заходить в трещины малого диаметра, образованные в результате гидроразрыва твердых сланцев, и достаточно прочными с тем, чтобы они могли поддерживать трещины или каналы в открытом состоянии в течение достаточно длительного периода времени, позволяя содержащемуся в них жидкому или газообразному углеводородному продукту свободно перемещаться по стволу скважины в вертикальных и горизонтальных направлениях для того, чтобы его можно было извлечь после выхода на поверхность и поступления в наземное оборудование. Если размеры частиц используемого расклинивающего агента слишком велики для трещин малого диаметра, то этот расклинивающий агент не сможет проникнуть в трещины и остаться там для поддержания каналов в открытом состоянии, вследствие чего объем извлекаемых углеводородов резко сократится. В альтернативном варианте, если операция по гидроразрыву проводится на формации мягких сланцев, то частицы правильно подобранного расклинивающего агента должны быть больше в диаметре, чем частицы расклинивающего агента, пригодного для использования в пластах твердых сланцев. Это позволит частицам расклинивающего агента зайти в трещины большего диаметра, которые были образованы в результате гидроразрыва пласта мягких сланцев. Расклинивающий агент с частицами меньшего размера не будет таким эффективным, и это приведет к существенному уменьшению объемов добываемого углеводородного продукта.

Теперь мы вооружены научными данными в отношении разницы между различными типами сланцевых формаций, которыми может оперировать нефтяная промышленность, в частности, в отношении экономической важности правильного выбора расклинивающего агента или проппанта для гидроразрыва пластов горючих сланцев разного типа. Теперь мы знаем, что наилучший расклинивающий агент для гидроразрыва мягких сланцев отличается от наилучшего расклинивающего агента, который может быть использован для гидроразрыва твердых сланцев. Таким образом, для каждого конкретного сланца требуется свой расклинивающий агент.

Соответственно, цель примеров осуществления настоящего изобретения состоит в том, чтобы предложить широкий спектр расклинивающих агентов или проппантов с частицами надлежащих размеров с использованием практически всех шламоподобных материалов, выходящих на поверхность и содержащихся в потоке жидкости, вытекающей из скважины в результате гидроразрыва газовых или нефтяных пластов.

Вследствие стремительного увеличения масштабов и роста интенсивности применения гидроразрывов на сланцевых месторождениях, разрабатываемых в разных частях Соединенных Штатов, возник ряд вопросов экологического характера, на которые следует найти ответы, если эта отрасль собирается успешно развиваться. Например, для уничтожения, регулирования или устранения водных микроорганизмов, находящихся в жидкости, используемой в процессе гидроразрыва пластов, используются токсичные химикаты (такие как глютаральдегид). Существуют серьезные опасения в отношении того, что такая жидкость для гидроразрывов с токсичными химикатами может проникать в водоносные слои питьевой воды. Кроме того, определенную озабоченность вызывает возможность проникновения химикатов, уменьшающих трение (например, полиакриламида), или ингибиторов образования отложений (например, солей фосфиновой кислоты) в водоносный горизонт и его загрязнение. Очищающие мыльные растворы, а также химикаты, такие как хлористый калий, широко применяются в качестве поверхностно-активных веществ, снижающих поверхностное натяжение, что также может представлять угрозу для здоровья людей. Общественность озабочена также существующей практикой закачки насыщенной солями жидкости, вытекающей из скважины в процессе ее отработки, в ликвидируемые скважины.

В некоторых примерах стандартных операций по гидроразрыву водяная смесь после взрывного пробития горизонтальной обсадной колонны поэтапно закачивается под высоким давлением во множество отдельных зон разломов, каждая из которых закупоривается пакерными втулками. Это позволяет водяной смеси оставаться под давлением в сланцевой формации в течение нескольких дней, образуя каналы, разломы или трещины, которые после сброса гидравлического давления в результате бурения гибкой трубой обеспечивают проходы для газообразных или жидких углеводородов, позволяющие им выходить на поверхность. Для каждой отдельной зоны разлома давление в водяной смеси уменьшается поочередно с тем, чтобы вода, не находящаяся под давлением, могла перетекать обратно в горизонтальной плоскости в ствол скважины, а затем идти вверх по вертикальному сечению зацементированной скважины до отметки поверхности земли. Большой объем расклинивающего агента остается в этих каналах, но значительное его количество выходит наружу вместе с водой, вытекающей из скважины.

Объем воды, вытекающей из скважины после гидроразрыва, составляет менее пятидесяти процентов от общего объема воды, закачанной для проведения гидроразрыва. Поток воды, вытекающей из скважины, также содержит материалы, выщелачивающиеся из пласта сланцев, такие как гидрокарбонаты (например, нахколиты). Водяная смесь, вытекающая из скважины, также несет в себе множество летучих органических соединений, а также останки микроорганизмов, растворенные соли или солевые растворы и значительный объем первоначально закаченного расклинивающего агента с его мелкими частицами. Обработка и/или утилизация этого обратного потока представляет серьезную проблему для отрасли. Смотрите, например, следующие материалы: Smyth Julie Can, Ohio quakes put pressure on use of fracturing, издательство Associated Press, c. D1 и D6 (2012 год); Lowry Jeff с соавторами, Haynesville trial well applies environmentally focused shale technologies, журнал World Oil, c. 39-40 и 42 (декабрь 2011 года); Beckwith Robin, Hydraulic Fracturing The Fuss, The Facts, The Future, журнал JPT, c. 34-35 и 38-41 (декабрь 2010 года); Ditoro Lori К, The Haynesville Shale. Upstream Pumping Solutions, c. 31-33 (2011 год); Walser Doug, Hydraulic Fracturing in the Haynesville Shale: What's Different? Upstream Pumping Solutions, c. 34-36 (2011 год); Bybee Karen, In-Line-Water-Separation Prototype Development and Testing, журнал JPT, c. 84-85 (март 2011 года); Bybee Karen, Produced-Water-Volume Estimates and Management Practices, журнал JPT, c. 77-79 (март 2011 года); Katz Jonathan, Report: Fracking to Grow U.S. Water-Treatment Market Nine-Fold by 2020, журнал Industry Week (май 2012 года); заявка на патент США №2012/0012307 А1; заявка на патент США №2012/0024525 А1; заявка на патент США №2012/0070339 А1; заявка на патент США №2012/0085236 А1; и заявка на патент США №2012/0097614 А1. Каждый из указанных выше документов включен в настоящую заявку посредством ссылки для использования в любых целях.

В настоящее время распространена практика уничтожения микроорганизмов, находящихся в водной смести (или изначально, или на месте), с помощью химикатов или различных биоцидов с тем, чтобы газообразные или жидкие углеводороды, содержащиеся в сланцевой формации, могли свободно перемещаться по каналам и трещинам, освобожденным водяной смесью, вытекающей из скважины в процессе ее отработки. Кроме того, каналы, образованные в процессе гидроразрыва, должны поддерживаться в открытом состоянии с помощью расклинивающих агентов или проппантов, которые были внесены в трещины продуктивных пластов путем закачки водяной смеси на начальной стадии. Если микроорганизмы не уничтожить, то они начнут быстро размножаться; и если эти микроорганизмы останутся в трещинах, их количество будет увеличиваться, и в итоге они уменьшат или полностью заблокируют выход углеводородов из этих трещин. Еще одна существенная проблема, связанная с микроорганизмами, заключается в возможном присутствии штаммов микробов, которые обладают свойством поглощать серу в свободном состоянии или любые серосодержащие соединения и вырабатывать сероводород, который в обязательном порядке должен удаляться из потока газообразного углеводородного продукта, поскольку он является чрезвычайно опасным канцерогенным веществом. Во избежание обозначенной проблемы должны быть уничтожены все типы микроорганизмов.

Помимо возможности размножения микроорганизмов и блокирования ими потока углеводородного продукта, проблемой при закачке водяной смеси может также стать наличие растворенных примесей в водном растворе, которые могут откладываться в виде осадка или корки в тех же каналах или трещинах. Если допустить коркообразование в этих каналах, то это сократит или даже заблокирует выход углеводородов на поверхность. Во избежание такой ситуации в практике нефтяной отрасли, существующей на сегодняшний день, предпринимаются попытки связывания растворенных примесей и их прикрепление к взвешенным или иным коллоидным частицам, присутствующим в водной смеси, которые удаляются перед закачкой в скважину; впрочем, эти усилия пока еще не продемонстрировали достаточную эффективность. Смотрите, например, следующие материалы: Denney Dennis, Fracturing-Fluid Effects on Shale and Proppant Embedment, журнал JPT, c. 59-61 (март 2012 года); Kealser Vic., Real-Time Field Monitoring to Optimize Microbe Control, журнал JPT, c. 30, 32-33 (апрель 2012 года); Lowry Jeff с соавторами, Haynesville trial well applies environmentally focused shale technologies, журнал World Oil, c. 39-40 и 42 (декабрь 2011 года); Rassenfoss Stephen, Companies Strive to Better Understand Shale Wells, журнал JPT, c. 44-48 (апрель 2012 года); Ditoro Lori K, The Haynesville Shale. Upstream Pumping Solutions, c. 31-33 (2011 год); Walser Doug, Hydraulic Fracturing in the Haynesville Shale: What's Different? Upstream Pumping Solutions, c. 34-36 (2011 год); Denney Dennis, Stimulation Influence on Production in the Haynesville Shale: A Playwide Examination, журнал JPT, c. 62-66 (март 2012 года); Denney Dennis, Technology Applications, журнал JPT, c. 20, 22 и 26 (январь 2011 года). Все указанные работы включены в настоящую заявку посредством ссылки для использования в любых целях.

В последние годы в нефтяной промышленности предпринимаются попытки выработать ряд мер по решению этих проблем. Использование ультрафиолета вместе с небольшим количеством химических биоцидов оказалось недостаточно эффективным способом уничтожения водных микроорганизмов. Такую же ограниченную эффективность в плане уничтожения микроорганизмов показало использование ультразвука высокой частоты. Обеим этим системам недостает интенсивности и мощности для эффективного уничтожения всех водных микроорганизмов только с помощью одного слабого кратковременного воздействия и практически без какой-либо остаточной эффективности. Для действенного уничтожения всех микроорганизмов, присутствующих в воде, обеим системам требуется некоторое количество химических биоцидов. Кроме того, в качестве биоцидов/коагуляторов некоторые компании используют генераторы электромагнитных волн низкой частоты или интенсивности; однако этот способ также демонстрирует минимальную эффективность.

Таким образом, цель некоторых из представленных ниже примеров заключается в том, чтобы представить экономичные и удовлетворительные решения некоторых основных экологических вопросов, имеющих общеотраслевое значение. Цели других примеров состоят в том, чтобы устранить необходимость в скважинах для закачки в пласт соленой воды, прекратить использование токсичных химикатов в качестве биоцидов для уничтожения микроорганизмов или предотвращения коркообразования и восстановления обратной или пластовой воды с целью ее повторного использования при проведении последующих операций по гидроразрыву пластов. Примеры осуществления настоящего изобретения дают технически обоснованные и экономически жизнеспособные решения многих вопросов, связанных с обеспечением общественной безопасности при гидроразрыве пластов, которыми обеспокоены в отрасли.

Краткое раскрытие настоящего изобретения

К преимуществам различных примеров осуществления настоящего изобретения относится уменьшенная потребность в использовании соленой воды или полное отсутствие такой потребности, поскольку практически все растворенные твердые частицы связываются и преобразуются во взвешенные частицы, которые выделяются и смешиваются с извлекаемым расклинивающим агентом для последующего включения в состав материала, подаваемого на разложение методом пиролиза во вращающейся печи. Подобным же образом в примерах реализации заявленного изобретения устранена потребность в химических биоцидах за счет применения генератора электромагнитных волн высокой интенсивности и сверхвысокой переменной частоты, предназначенного для уничтожения микроорганизмов, присутствующих в воде до ее закачки в формацию. Электромагнитные волны также предотвращают коркообразование, вследствие чего устраняется необходимость в добавлении ингибиторов образования отложений в водяную смесь для гидроразрыва. В результате практически вся промывочная вода, вытекающая из скважины после выполнения гидроразрыва, может быть повторно использована; при этом все оставшиеся твердые вещества могут быть переработаны и повторно растворены в расклинивающем агенте, подготовленном надлежащим образом и содержащим частицы требуемого размера, для последующего использования в операциях по гидроразрыву. Кроме того, поскольку летучие органические соединения сжигаются и испаряются, существует потребность в установках по удалению осадков или иных видов твердых отходов.

Согласно одному из аспектов настоящего изобретения предложена система, предназначенная для использования при операциях по гидроразрыву пластов, которая включает в себя следующие элементы: первый сепаратор, содержащий патрубок для забора шлама и патрубок для выпуска шлама с первым содержанием воды; второй сепаратор, содержащий патрубок для забора шлама, расположенный таким образом, чтобы в него мог поступать шлам из патрубка для выпуска шлама из первого сепаратора, и патрубок для выпуска шлама со вторым - более низким - содержанием воды; печь, расположенная таким образом, чтобы в нее мог поступать шлам из патрубка для выпуска шлама из второго сепаратора, и снабженная выпускным отверстием; охладитель, расположенный таким образом, чтобы в него мог поступать шлак из печи; дробилка, расположенная таким образом, чтобы в нее могу поступать охлажденный шлак из охладителя; мельница, расположенная таким образом, чтобы в нее мог поступать дробленый шлак из дробилки; первое сито, расположенное таким образом, чтобы на него мог поступать размолотый материал из мельницы (при этом размер ячеек первого сита задает верхний предел размера частиц расклинивающего агента); и второе сито, расположенное таким образом, чтобы на него мог поступать материал, пропущенный первым ситом (при этом размер ячеек второго сита задает нижний предел размера частиц расклинивающего агента). По меньшей мере, в одном из примеров осуществления настоящего изобретения система также включает в себя бункер для хранения расклинивающего агента, расположенный таким образом, чтобы в него мог поступать расклинивающий агент, скапливающийся между первым и вторым ситом. В еще одном из примеров реализации заявленного изобретения система также включает в себя блендер, расположенный в таком месте, чтобы в него мог поступать расклинивающий агент из указанного бункера. В одном из частных примеров осуществления настоящего изобретения первый сепаратор содержит водовыпускное отверстие, а сама система включает в себя следующие элементы: бак для хранения воды, расположенный в таком месте, чтобы в него могла поступать вода из первого сепаратора; коагулятор биоцидов, расположенный в таком месте, чтобы в него могла поступать вода из указанного бака, и снабженный выпускным отверстием, через которое загружается блендер; и, по меньшей мере, один насос для гидроразрывов, на который подается, по меньшей мере, расклинивающий агент и вода из блендера; при этом насос для гидроразрывов создает поток жидкости для выполнения операций по гидроразрыву пластов.

Согласно еще одному из примеров осуществления настоящего изобретения предложен способ создания расклинивающего агента с частицами соответствующего размера из шлама, извлеченного из скважины, подвергнутой гидроразрыву; при этом указанный способ включает в себя следующие стадии: отделение воды от шлама, в результате чего образуется поток шлама и поток воды; смешивание потока шлама с твердыми частицами, в результате чего образуется загружаемый материал; расплавление расклинивающего материала в загружаемом материале; резкое охлаждение расплавленного расклинивающего материала; измельчение расплавленного расклинивающего материала; доведение частиц измельченного материала до требуемых размеров; и смешивание измельченного материала, размеры частиц которого не соответствуют установленным требованиям, с загружаемым материалом. В некоторых примерах осуществления настоящего изобретения указанный способ также включает в себя извлечение шлама из потока пластовой жидкости, вытекающей из скважины для добычи углеводородов; при этом пластовая жидкость содержит воду и шлам; при этом отделение шлама приводит к образованию, по меньшей мере, двух потоков; при этом один из, по меньшей мере, двух потоков представляет собой практически жидкий поток воды, а другой поток из, по меньшей мере, двух потоков содержит шлам. К примерам приемлемых устройств отделения шлама от потока пластовой жидкости, вытекающей из скважины для добычи углеводородов, относится стандартный трехфазный сепаратор.

По меньшей мере, в одном из примеров реализации заявленного изобретения процесс смешивания включает в себя закачку в печь потока шлама, а также введение в печь твердых частиц, в результате чего изменяется вязкость шлакообразующего материала; при этом шлакообразующий материал включает в себя поток шлама с включенными твердыми частицами. В еще одном из примеров объем вводимых в печь твердых частиц зависит от вязкости шлакообразующего материала в печи; при этом объем вводимых твердых частиц увеличивается при слишком высокой вязкости шлакообразующего материала для обеспечения равномерного потока смеси в печи. В некоторых примерах объем вводимых твердых частиц уменьшается, когда вязкость шлакообразующего материала становится настолько низкой, что поток проходит через печь слишком быстро для расплавления расклинивающего материала.

В еще одном из примеров осуществления настоящего изобретения процесс резкого охлаждения предусматривает орошение расплавленного расклинивающего материала потоком жидкости, а процесс измельчения состоит из дробления резко охлажденного расклинивающего материала и размола дробленого расклинивающего материала.

В еще одном из примеров сортировка по размерам представляет собой просеивание и/или разделение по массе.

В некоторых примерах осуществления настоящего изобретения расплавление предусматривает нагрев шлакообразующего материала; при этом летучие соединения, содержащиеся в шлакообразующем материале, высвобождаются в газовой фазе, а расклинивающий материал, содержащийся в шлакообразующем материале, подвергается расплавлению. В некоторых таких примерах измеряется расход расплавленного материала, выходящего из печи, и по результатам этого измерения осуществляется регулировка нагрева печи.

В еще одном из примеров реализации заявленного изобретения указанный способ также включает в себя отделение шлама от потока пластовой жидкости, выливаемой из скважины для добычи углеводородов; при этом пластовая жидкость содержит воду и твердые частицы; при этом указанное отделение шлама приводит к образованию, по меньшей мере, двух потоков; при этом один из, по меньшей мере, двух потоков представляет собой практически жидкий поток воды, а другой из, по меньшей мере, двух потоков содержит шлам. По меньшей мере, в одном таком примере реализации заявленного изобретения указанный способ также включает в себя подачу электромагнитного импульса в практически жидкий поток воды; при этом расклинивающий агент смешивается с практически жидким потоком воды до или после подачи указанного импульса.

Согласно еще одному из аспектов настоящего изобретения предложена система создания ряда расклинивающих агентов с частицами соответствующих размеров из шлама, извлеченного из скважины, подвергнутой гидроразрыву; при этом указанная система отличается тем, что она включает в себя следующие элементы: средства отделения воды от шлама, в результате которого образуется поток шлама и поток жидкости; средства для смешивания потока шлама с твердыми частицами, вследствие чего образуется загружаемый материал; средства для расплавления расклинивающего материала в загружаемом материале; средства для резкого охлаждения расплавленного расклинивающего материала; средства для измельчения расплавленного расклинивающего материала до образования частиц требуемого размера; и средства для смешивания измельченного материала, размеры частиц которого не соответствуют установленным требованиям, с загружаемым материалом. По меньшей мере, в одном из примеров реализации заявленного изобретения средства для смешивания измельченного материала, размеры частиц которого не соответствуют установленным требованиям, включают в себя устройство для расплавления.

Примером сепарационного устройства служит двухфазный сепаратор с воронкообразным раструбом на нижнем конце и каналом, подведенным к входу шнека. Двухфазный сепаратор использует принцип осаждения под действием силы тяжести (с использованием соответствующего блока с переливными перегородками/без переливных перегородок), Альтернативой блоку осаждения под действием силы тяжести служит бак под давлением системы Hydrocone, нагнетающий шлам в подающий бункер с помощью шнека.

В еще одном из примеров осуществления настоящего изобретения к средствам смешивания потока шлама с твердыми частицами относятся: устройство введения в печь потока шлама и устройство введения в печь твердых частиц; при этом введение твердых частиц изменяет вязкость шлакообразующего материала; при этом шлакообразующий материал состоит из потока шлама с включенными твердыми частицами. Одним из примеров приемлемых средств введения потока шлама в печь служит шнек между сепарационной системой и подающим бункером на входе в печь. Чем больше шлама подает шнек в бункер, тем больше воды вытесняется. В альтернативных вариантах используется лента цепного панцирного конвейера, ковшовый транспортер и прочие средства, хорошо известные специалистам в данной области техники. К конкретным примерам приемлемых средств загрузки песка в печь относится ковшовый подъемник, снабженный регулируемым приводом, который подает твердые частицы (например, песка) из бункера, где хранится указанный песок. Регулируемый привод позволяет изменять объем загружаемого песка в зависимости от температуры, измеренной на выходе печи. Температура зависит от вязкости. Например, при варьировании температуры в пределах некой заданной величины в районе 2200°F, подача песка будет увеличиваться при падении температуры, и уменьшаться при ее росте. В одном из частных примеров никаких изменений не происходит при колебаниях температуры в пределах 5%; однако при превышении указанного пятипроцентного предела величина изменения объема загружаемого песка в сторону увеличения или уменьшения будет зависеть от типа печи, подачи твердых частиц расклинивающего материала и прочих условий, которые хорошо известны специалистам в данной области техники. К другим примерам средств загрузки относятся: ленточный конвейер или цепной панцирный конвейер и их эквиваленты, известные любому специалисту в данной области техники.

В еще одном из примеров осуществления настоящего изобретения в качестве устройства для резкого охлаждения используется устройство распыления расплавленного расклинивающего материала с потоком жидкости, которая был отделена от шлама (например, с помощью распылительных сопел и/или водяного экрана). В альтернативном варианте охлаждение материала может осуществляться воздушным способом. По меньшей мере, в одном из примеров реализации заявленного изобретения смесь горячих твердых частиц поступает из печи на движущуюся стальную перфорированную конвейерную ленту, которая проходит над поддоном для сбора воды. Вода подается в смесь, когда та находится на ленте.

В еще одном из примеров осуществления настоящего изобретения для измельчения материала используются такие средства, как устройство дробления резко охлажденного расклинивающего материала и устройство размола дробленого расклинивающего материала. В одном таком примере в качестве устройства дробления используется конусная эксцентриковая дробилка с тем, чтобы можно было изменять пространство дробления для получения частиц разного размера. К альтернативным дробилкам относятся следующие устройства: щековые дробилки, валиковые дробилки, шаровые дробилки и их эквиваленты, знакомые каждому специалисту в данной области техники. В некоторых примерах дробилка измельчает отвержденную агломерированную смесь до частиц размерами от ¼ дюйма до около ½ дюйма.

В некоторых примерах осуществления настоящего изобретения в качестве размалывающих устройств применяются мельницы следующих типов: стержневая мельница, шаровая мельница, бесшаровая мельница, валковая мельница или их эквиваленты, знакомые специалистам в данной области техники. По меньшей мере, в некоторых таких примерах реализации заявленного изобретения дробленый материал перемещается с помощью конвейера и подается в смешивающее/измельчительное устройство, где частицы указанного материала уменьшаются в размерах; при этом, по меньшей мере, в одном из примеров осуществления настоящего изобретения 98-99% материала проходит через 30 ячеек размерами около 590 микрон, и частицы проходящего материала по своим размерам и прочности аналогичны остроугольному мелкозернистому песку.

В некоторых примерах осуществления настоящего изобретения к средствам сортировки частиц по размерам относится грохот, снабженный, по меньшей мере, одним ситом. Приемлемым вариантом грохота может быть вибросито. Если частицы материала проходят сито, то этот материал классифицируется как «соответствующий техническим требованиям по размерам». Если частицы материала слишком мелкие, они сбрасываются на подающее устройство для частиц заниженных размеров, которое подает их обратно на вход в бункер печи. Если частицы материала слишком крупные, они отделяются и попадают на подающее устройство для частиц завышенных размеров, которое предусмотрено в бункере на входе в печь. По меньшей мере, в одном из примеров реализации заявленного изобретения потоки частиц заниженного и завышенного размера объединяются перед подачей в печь. К другим приемлемым средствам сортировки частиц по размерам относятся следующие устройства: неподвижные сита, барабанные сита и устройства разделения по массе (например, циклонные сепараторы, через которые проходит измельченный материал, и/или системы разделения по удельному весу в жидком растворе). Примеры подходящих циклонных сепараторов хорошо известны специалистам в данной области техники. Еще одним приемлемым способом сепарации является разделение по удельному весу в жидком растворе. Подходящие сепарационные системы такого типа также хорошо известны любому специалисту в данной области техники.

Согласно еще одному из примеров осуществления настоящего изобретения к средствам расплавления относятся устройства нагрева шлакообразующего материала; при этом летучие компоненты, содержащиеся в шлакообразующем материале, высвобождаются в газовой фазе, а расклинивающий агент, содержащийся в шлакообразующем материале, подвергается расплавлению. К примерам таких средств нагрева шлакообразующего материала относятся следующие устройства: вращающаяся печь со шлакоудалением, наклонная печь и горизонтальная печь, как с непосредственным нагревом, так и с нагревом отраженным пламенем. К альтернативным средствам расплавления расклинивающего материала, содержащегося в загружаемом материале, относятся следующие устройства: бесшлаковая печь, вертикальная печь (например, печь Герресхофа или многоподовая вертикальная печь Pacific), горизонтальная печь для спекания с кальцинаторной решеткой и прочие эквивалентные печи, хорошо известные специалистам в данной области техники. В некоторых примерах реализации заявленного изобретения режим работы печи предусматривает подачу в нее шлама и добавление к указанному шламу расклинивающего агента для начала процесса расплавления шлама вместе с расклинивающим агентом с образованием текучей слипшейся массы. По мере перемещения смеси вниз к выпускному отверстию печи температура смеси возрастает за счет тепла, создаваемого горелкой печи. Вместе с тем, по мере возрастания температуры вязкость смеси уменьшается. В это же самое время органические материалы, переносимые смесью, сгорают, испаряются и выбрасываются в атмосферу через вентиляционную трубу, оставляя текучую смесь твердых веществ. Вязкость этой текучей смеси регулируется или путем увеличения или уменьшения нагрева горелкой печи, или путем добавления в смесь того или иного количества расклинивающего агента, или и тем и другим способом одновременно.

В некоторых примерах осуществления настоящего изобретения также предусмотрены средства измерения расхода расплавленного материала, выходящего из печи. Примером средства измерения расхода расплавленного материала на выходе печи служит датчик температуры, выдающий соответствующие сигналы. Специалистам в данной области техники известны и другие эквивалентные средства измерения. В некоторых других вариантах реализации заявленного изобретения предусмотрены средства регулирования нагрева печи, исходя из результатов измерений. К примерам способов регулирования нагрева печи по результатам измерений относятся: изменение расхода расклинивающего агента, подаваемого на вход печи, исходя из результатов измерений; и изменение расхода топлива, подаваемого на горелку печи, с целью уменьшения или увеличения величины высвобождаемого тепла.

Как было сказано выше, выделение шлама из потока, вытекающего из скважины, приводит к образованию, по меньшей мере, двух потоков; при этом один из, по меньшей мере, двух потоков представляет собой практически жидкий поток воды. А в одном еще более подробном примере предусмотрено устройство подачи электромагнитного импульса в практически жидкий поток воды. По меньшей мере, один из примеров подачи электромагнитного импульса в практически жидкий поток воды раскрыт в патенте США №6,063,267, который включен в настоящий документ посредством ссылки для использования в любых целях. К альтернативным вариантам устройства, описанного в этом патенте, которые могут использоваться в различных примерах реализации настоящего изобретения, относятся стандартные коагуляторы биоцидов (химические, электрические и механические), которые хорошо известны любому специалисту в данной области техники.

По меньшей мере, в одном из примеров осуществления настоящего изобретения поданный удельный импульс обладает следующими характеристиками: переменной длительностью и сверхвысокими частотами в диапазоне около 10-80 кГц. Специалистам в данной области техники известны и другие импульсы, обладающие частотой, достаточной для уничтожения всех микроорганизмов, присутствующих в жидкости, и способной вызвать коагуляцию растворенных в ней твердых веществ; при этом их характеристики могут зависеть от конкретных свойств жидкости в конкретной скважине. Такие импульсы обычно разрушают клетки микроорганизмов.

В еще одном из примеров реализации заявленного изобретения предусмотрены средства смешивания расклинивающего агента с практически жидким потоком воды (как до, так и после подачи импульса). Одним из примеров средств для смешивания расклинивающего агента с практически жидким потоком воды служит блендер, конструкция которого известна специалистам в данной области техники (например, в виде открытого или снабженного решеткой бака). В некоторых примерах в блендер также добавляется агент, уменьшающий поверхностное натяжение, а также иные компоненты, хорошо известные любому специалисту в данной области техники. Затем смесь подается в устройство, повышающее ее давление (например, в насосную установку для гидроразрывов, известную также под названием «напорная насосная установка», что известно специалистам в данной области техники), после чего смесь под давлением закачивается в скважину.

В других примерах осуществления настоящего изобретения частицы расклинивающего агента из пластовой и/или промывочной воды и других источников приводятся к требуемым размерам с использованием определенного сочетания печи, дробилки, мельницы и сит с целью создания расклинивающего агента с частицами различных размеров, которые специалисты в данной области техники считают пригодными для использования в операциях по гидроразрыву пластов. Например, смотрите статью ((Industrial Materials» в журнале Mining Engineering, с. 59-61, июнь 2012 года (www.miningengineeringmagazine.com), которая включена в настоящую заявку посредством ссылки. Различные размеры получаются за счет регулирования используемой мельницы и сит.

Примеры осуществления настоящего изобретения также представлены на прилагаемых чертежах, которые носят исключительно иллюстративный характер, и не являются техническими или сборочными чертежами, и не вычерчены в масштабе. Различные элементы представлены в символьном виде; кроме того, в различных местах «навешаны» окошки с обозначением элементом, которые иллюстрируют движение материала из одного места в другое. Однако специалисты в данной области техники понимают, какие из этих элементов находятся в нормально замкнутом или закрытом состоянии. Ничто на чертежах или в подробном описании не должно толковаться как ограничивающее смысл какого-либо термина в формуле изобретения, используемого в рамках своего обычного смысла, известному любому специалисту в различных областях техники, сведенных вместе в настоящем документе.

Краткое описание фигур

На фиг. 1 представлена схема буровой площадки, на которой показано движение различных материалов, используемых в различных примерах осуществления настоящего изобретения.

На фиг. 2А и 2B, если их соединить по соответствующим пунктирным линиям, показан вид сбоку одного из примеров осуществления настоящего изобретения.

На фиг. 2С представлено схематическое изображение системы управления, используемой, по меньшей мере, в одном из примеров осуществления настоящего изобретения.

На фиг. 3A и 3B, если соединить их с наложением элементов вблизи пунктирных линий, показан вид в плане примера осуществления настоящего изобретения, представленного на фиг. 2А и 2B.

На фиг. 3C и 3D показаны, соответственно, виды в изометрии и сбоку одного из аспектов примеров осуществления настоящего изобретения, представленных на фиг. 2А-2B и 3A-3B.

На фиг. 4 показан вид сбоку еще одного из примеров осуществления настоящего изобретения.

На фиг. 5 показан вид в плане примера реализации заявленного изобретения, представленного на фиг. 4.

Подробное раскрытие настоящего изобретения

На фиг. 1 представлена блок-схема использования настоящего изобретения в скважине для добычи углеводородов, включающей в себя ствол (1) с зацементированной колонной (3) обсадных труб, проходящей через зоны разлома, которые изолированы пакерами. Гибкие НКТ (9) вводятся в скважину с помощью буровой установки (11) для выполнения операций по гидроразрыву, известных специалистам в данной области техники.

Промывочная (и/пластовая) вода, выливаемая из скважины, направляется в трехфазный сепаратор (10) шлама/жидкостей/газов/углеводородов/воды, откуда выходят жидкие и газообразные углеводороды; при этом вода из сепаратора (10) направляется в бак-хранилище (17) воды для гидроразрывов, в котором может также содержаться вода и из других источников (так называема «подпиточная» вода). Жидкий шлам проходит из трехфазного сепаратора (10) в двухфазный сепаратор (14), который производит жидкость, поступающую в систему (32) резкого охлаждения, и шлам, поступающий в печь (24). Шлак из печи (24) проходит через систему (32) резкого охлаждения и поступает в дробилку (40), после чего подается на мельницу (46). Частицы размолотого материала сортируются по размерам на сите (50), после чего материал с частицами требуемого размера поступает в бункер (26) для хранения расклинивающего агента, в котором может также содержаться расклинивающий агент из другого источника (например, песок). Вода подается в коагулятор (13) биоцидов. Расклинивающий агент из бункера (26) поступает в блендер (15) вместе с водой из коагулятора (13) биоцидов, после чего смесь воды и расклинивающего агента подается на насосную установку (19) для гидроразрывов, которая закачивает эту смесь в скважину, где она разрывает слой (21) горючих сланцев. При необходимости в блендер (15) могут быть внесены и другие добавки. Кроме того, в альтернативных вариантах осуществления настоящего изобретения расклинивающий агент может быть добавлен в воду до ее поступления в коагулятор (13) биоцидов.

В примерах реализации заявленного изобретения предусмотрено создание расклинивающего агента разного типа с частицами заданных размеров, который был получен из шлама, извлеченного из скважины для добычи углеводородов, подвергнутой гидроразрыву.

На фиг. 2А и 2С, а также на фиг. 3A-3D можно видеть конкретный пример осуществления настоящего изобретения. В этом примере шлам извлекается из массы, осажденной под действием силы тяжести, которая скапливается в нижней части стандартного трехфазного сепаратора (10) (который характеризуется унифицированной конструкцией, хорошо известной специалистам в данной области техники). В частном примере, представленном на фиг. 2А, уровень границы раздела между водой и углеводородом облегчает сепарацию и восстановление любого жидкого углеводородного продукта из потока промывочной или пластовой жидкости (которая находится под давление при поступлении в сепаратор (10)) за счет использования наружного или внутреннего индикатора уровня жидкости (не показан), что должно быть очевидно любому специалисту в данной области техники. Этот индикатор передает сигнал о результатах измерения уровня жидкости на предварительно запрограммированный интегратор контрольных данных о низком/высоком уровне воды (не показан). При достижении уставки максимального уровня воды в сепараторе (10) интегратор данных активирует регулирующий клапан (не показан), который управляет расходом воды, протекающей через водоподводящий патрубок (10а) («Подвод воды» на чертеже), с целью уменьшения объема воды, заходящего в трехфазный сепаратор. После этого расход воды начнет уменьшаться до тех пор, пока не будет достигнута уставки, при которой объем поступающей воды уравновешивает объем воды, выходящей из трехфазного сепаратора. И наоборот, при превышении уставки минимального уровня воды в трехфазном сепараторе (10) интегратор данных инициирует еще большее открытие регулирующего клапана во впускном патрубке (10а) для увеличения объема или расхода воды, достаточного для того, чтобы стабилизировать уровень воды на границе раздела. Если этого дополнительного объема воды окажется недостаточно для стабилизации уровня воды на границе раздела, то интегратор активирует насос (не показан) и откроет еще один регулирующий клапан (не показан), расположенный в выпускном патрубке (не показан) в баке (17) для хранения воды (фиг. 1). Этот выпускной патрубок соединен с впускным патрубком (10); таким образом, вода из бака-хранилища (17) воды для гидроразрывов будет по-прежнему поступать в трехфазный сепаратор вместе с промывочной или пластовой водой до тех пор, пока уровень воды в сепараторе (10) не достигнет заданной границы раздела. После этого регулирующий клапан подпиточной воды закроется, и насос подпиточной воды прекратить свою работу. Такая последовательность управляющих воздействий необходима для того, чтобы обеспечить статическую и эксплуатационную устойчивость при сепарации и восстановлении любых жидких углеводородных продуктов, поступающих в трехфазный сепаратор вместе с потоком промывочной или пластовой воды, вытекающей из скважины.

Конфигурация с переливными стенками и перегородками (широко применяемая в установках сепарации газа/нефти) облегчает сепарацию и восстановление жидкого углеводородного продукта, при наличии такового, используя границы раздела в качестве максимальной высотной отметки воды в сепараторе и позволяя более легким углеводородам подниматься наверх, а затем удаляться в качестве жидкого углеводородного продукта после его переливания через стенку, удерживающую жидкий углеводородный продукт, и поступления на выходное фланцевое соединение для жидких углеводородных продуктов. Горизонтальная перегородка под переливной стенкой ограничивает потенциально возможный чрезмерный унос воды вместе с потоком жидкого углеводородного продукта. По мере поступления потока промывочной или пластовой воды в трехфазный сепаратор (10) сброс давления высвобождает более легкие газообразные углеводороды, что способствует всплыванию жидких углеводородных продуктов, а также сбрасыванию газообразных углеводородных продуктов через выпускной патрубок (10с). Вода вытекает из сепаратора (10) через патрубок (10b) и попадает в уравнительный бак (не показан), откуда она перекачивается обратно в бак (17) для хранения воды (фиг. 1).

Из сепаратора (10) поршневой диафрагменный шламовый насос (12) с приводом от электродвигателя перекачивает шлам наверх до впускного отверстия двухфазного сепаратора (14), предназначенного для разделения воды и твердых веществ, в результате чего образуется поток (16) шлама и поток (18) жидкости, который перекачивается насосом (19) в охладитель (обозначен буквой «О»). Шлам, осажденный в нижней части двухфазного сепаратора (14), транспортируется ковшовым конвейером (10) из нижней части двухфазного сепаратора (14) выше уровня воды и сбрасывается в подающий бункер (22) (фиг. 2B). Этот сброс проиллюстрирован на фиг. 2А с переходом за пунктирную линию, которая соединяется с пунктирной линией в левой части фиг. 2B; при этом на указанных фигурах показано, как шлам скапливается в подающем бункере (22) вращающейся печи (24) со шлакоудалением, оставляя шламовую воду в сепараторе (14) для разделения воды и твердых веществ и на подъемнике (20). В результате весь процесс сепарации происходит при атмосферном давлении, а не в сосудах давления, как это принято в современной практике.

В подающем бункере (22) шлам из сепаратора для разделения воды и шлама смешивается с соответствующим расклинивающим материалом из бункера (26) (см. фиг. 1), а также с частицами шлама завышенного и заниженного размера, который поступает из установки (50) окончательного просеивания (описана ниже).

В ходе процесса расплавления расклинивающего материала неорганические расклинивающие материалы сплавляются в однородную массу, а летучие органические вещества, которые могут присутствовать в потоке, подаваемом из сепаратора (14) для разделения воды и шлама, сгорают и испаряются до того, как газы будут в итоге выведены наружу через выпускную трубу (30).

Расклинивающий материал, выходящий из вращающейся печи (24), резко охлаждается потоком воды с целью уменьшения его температуры по мере того, как указанный материал появляется на выходе печи (24). В некоторых примерах реализации заявленного изобретения вышедший из печи материал поступает на перфорированную конвейерную ленту (35) из нержавеющей стали с приводом от электродвигателя; и под каскадами воды, проходящей через сопла (34), происходит отверждение и охлаждение расклинивающего материала на движущейся ленте (35). Вода, используемая для резкого охлаждения расклинивающего материала, подается из сепаратора (14) для разделения воды и шлама (см. фиг. 2А) с помощью, например, центробежного насоса (19) с приводом от электродвигателя, который закачивает воду в охлаждающие сопла (34), показанные на фиг. 3B. Поддон (36) для сбора излишков воды расположен под конвейерной лентой (35). Указанный поддон предназначен для сбора и восстановления всех излишков охлаждающей воды и ее возврата в сепаратор (14) для разделения воды и шлама с помощью центробежного насоса (21) с приводом от электродвигателя через возвратный трубопровод, обозначенный буквой «В» на фиг. 2А.

Резкое охлаждение горячего расклинивающего материала по мере его выхода из печи (24) приводит к образованию множества беспорядочных разломов или трещин из-за разности температур, что обусловлено неравномерным сжатием расклинивающего материала и высокими внутренними напряжениями, вызванными быстрым охлаждением. Куски расклинивающего материала разного размера сбрасываются непосредственно в дробилку (40).

В некоторых примерах осуществления настоящего изобретения дробление или измельчение больших некондиционных кусков расклинивающего материала и уменьшение их размеров выполняется с помощью жираторной конусной или щековой дробилки с вертикальным главным валом и приводом от электродвигателя, которая хорошо известна специалистам в данной области техники. Степень уменьшения размеров регулируется путем изменения зазора в дробилке, обеспечивая на выходе материал разного размера, что хорошо известно любому специалисту в данной области техники.

Придание частицам расклинивающего материала требуемого размера завершается путем размола дробленого расклинивающего материала после его поступления в нижнюю часть дробилки. На проиллюстрированном примере материал транспортируется наверх в шаровую мельницу (46) с помощью ковшового подъемника (44). По меньшей мере, в одном из альтернативных примеров используется прутковая мельница. Для размола расклинивающего материала с получением частиц разных размеров мельница (46) регулируется путем изменения частоты вращения и размеров прутком или шаров в мельнице (46), а также интервала между этими прутками или шарами.

Размолотый расклинивающий материал проходит под действием силы тяжести через зону размола мельницы и подается на вибросито (50), в котором размеры ячеек сетки выбираются избирательно под конкретные сланцы. Например, для мягких сланцев используются сита с размерами ячеек около 590 микрон или 30 ячейками на линейный дюйм. Для твердых сланцев (например) сланцев используются сита с размерами ячеек около 150 микрон или 100 ячейками на линейный дюйм. Расклинивающий материал с частицами требуемого размера под действием силы тяжести проходит через сито с ячейками выбранного размера и поступает на выход, обозначенный буквой «А». Слишком крупные частицы расклинивающего материала, которые не проходят через наклонное вибросито (53), подаются на ленту (51а), которую хорошо видно на фиг. 3B, а остальные частицы падают на сито (55). Частицы расклинивающего материала, которые прошли через сито (53), но не прошли через сито (55), считаются частицами требуемых размеров и выводятся через отверстие «А» в бункер (26) (см. фиг. 1). Частицы расклинивающего материала заниженного размера падают на ленту (51а), которая транспортирует частицы расклинивающего материала завышенного и заниженного размера на ленту (5lb), которая подает их обратно в печь (24) с помощью подъемника (25). На фиг. 3A и 3B показан вид свержу одного из примеров осуществления настоящего изобретения, в котором компоненты системы смонтированы на прицепе или салазках и собраны на буровой площадке вместе с коагулятором биоцидов и прочими элементами (например, фиг. 4 и 5). В некоторых примерах осуществления настоящего изобретения такие прицепы или салазки выравниваются с помощью установочных домкратов (81).

Как показано на фиг. 3C и 3D, подъемник (25) загружает материал в верхнюю часть подающего бункера (22), а подъемник (23) подает материал из бункера (26) и загружает его в подающий бункер (22) через отверстие в подающем бункере (22), расположенное немного ниже.

Расклинивающий материал с частицами надлежащего размера поступает под действием силы тяжести в контейнер для расклинивающего агента, соответствующего техническим условиям (не показан), для последующего перемещения в бункер (26) для хранения расклинивающего агента, соответствующего техническим условиям (фиг. 1), который может также содержать расклинивающий агент, соответствующего техническим условиям, из другого источника.

Как показано на фиг. 2B, желательно регулировать вязкость смеси с расклинивающим агентом для устойчивого поддержания оптимальной температуры плавления (приблизительно 2200 градусов по Фаренгейту в некоторых примерах осуществления настоящего изобретения). По мере роста температуры подаваемой смеси с расклинивающим агентом вследствие нагрева печи (24) процесс расплавления различных неорганических материалов с образованием равномерно вязкой массы начинается тогда, когда температура смеси с расклинивающим агентом достигает точки плавления диоксида кремния или песка. Вязкость расклинивающего материала зависит от температуры самого материала. Такое регулирование может осуществляться разными способами.

По меньшей мере, в одном из примеров осуществления настоящего изобретения температура расплавленного материала может измеряться любым способом, известным специалистам в данной области техники (например, с помощью оптического пирометрического датчика в охлаждающей системе (32)), по мере выхода указанного материала из печи. Если температура превышает точку плавления материала, то этот материал будет слишком жидким, и подача топлива на горелку печи будет уменьшена. Вместе с тем, в подающий бункер (22) может быть добавлен больший объем расклинивающего агента, соответствующего техническим условиям. Это также повлияет на температуру, так как материал, содержащийся в шламе, не однороден по своей структуре и не сухой; соответственно, добавление расклинивающего агента из бункера будет способствовать выравниванию такой вариабельности.

На фиг. 2С можно видеть изображение схемы, на которой датчик (67) подает сигналы о температуре на выходе печи (24) на интегратор (69), на основании которых интегратор (69) регулирует работу электродвигателя (90) с переменной частотой вращения, который управляет подъемником (23) (см. также фиг. 3B), подающим расклинивающий агента из бункера (26) и загружающим его в подающий бункер (22) вращающейся печи со шлакообразованием. Потоки разных материалов соединяются в подающем бункере (22) перед их подачей на вращающийся барабан печи (24). Доля или объем расклинивающего агента, соответствующего техническим условиям, который необходимо добавить в поток материала из сепаратора (14) для разделения води и шлама, регулируется в зависимости от изменений в составе материалов, поступающих из сепаратора (14) для разделения воды и шлама. Это повышает однородность смеси с расклинивающим материалом, которая подвергается расплавлению в печи (24). По меньшей мере, в одном из примеров осуществления настоящего изобретения подача топлива на горелку уменьшается при слишком высокой температуре; если же эта мера не приводит к требуемому эффекту, то увеличивается объем расклинивающего материала, подаваемого в печь. Подобным же образом, подача топлива на горелку увеличивается при слишком низкой температуре, а если эта мера оказывается недостаточно эффективной, то уменьшается объем загружаемого расклинивающего агента. Специалистам в данной области техники известны и альтернативные варианты регулирования.

Если вернуться к фиг. 2С, то можно увидеть, что интегратор (69) также управляет клапаном (63), который увеличивает или уменьшает подачу топлива (61) на горелку (65) печи.

Еще раз вернемся к фиг. 1, на которой представлен один из примеров осуществления настоящего изобретения. Как можно видеть, сепаратор (10) подает шлам в сепаратор (14), а вода из сепаратора (10) соединяется с новой «подпиточной» водой (в баке 17) для последующего использования в дальнейших операциях по гидроразрыву. Объединенные потоки обрабатываются в электромагнитном коагуляторе (13) биоцидов, тип которого описан в патенте США №6,063,267, который включен в настоящую заявку посредством ссылки для использования в любых целях (выпускается серийно под маркой Dolphin модели 2000). По меньшей мере, в одном из примеров реализации заявленного изобретения указанный коагулятор настроен на произвольную подачу электромагнитного импульса переменной длительности с подстраиваемыми частотами в диапазоне около 10-80 кГц. Такой импульс достаточен для уничтожения биологических организмов и создания положительного заряда в воде, что способствует осаждению или коагуляции растворенных твердых веществ в скважине.

На фиг. 4 и 5 показаны, соответственно, виды сбоку и сверху одного из примеров системы, смонтированной на прицепе или салазках, которая включает в себя ряд коагуляторов биоцидов (70а-70i), отлаженных таким образом, чтобы в них могла поступать вода из бака-хранилища вода для гидроразрывов в соответствии с расходом, который используется при проведении стандартных операций по гидроразрыву сланцевых пластов. Такие системы управляются с панели (72) электроуправления, подключенной к стойке (73) питания по воздушной линии и распределения управления, которая соединена с элементами (71а-71i) подвода питания по воздушной линии. Питание подается двигателем (75), который вращает электрогенератор (77), подключенный к силовому фидеру (79) способом, известным специалистам в данной области техники.

Следует иметь в виду, что описанные выше варианты осуществления настоящего изобретения носят исключительно иллюстративный характер, и их не следует рассматривать как ограничивающие идею заявленного изобретения какой-либо одной физической конфигурацией. В настоящее изобретение могут быть внесены изменения, не выходящие за пределы существа и объема изобретения, которые должны быть понятны любому специалисту в данной области техники. Каждый элемент или стадию по любому из пунктов прилагаемой формулы изобретения следует трактовать как включающий в себя любой эквивалентный элемент или стадию. Формула изобретения охватывает настоящее изобретения максимально широко в допустимых законом пределах в любой форме, в которой она может быть использована. Эквиваленты вариантов осуществления настоящего изобретения, которые описаны в формуле изобретения, также входят в справедливый объем притязаний формулы настоящего изобретения. Все патенты, заявки на патенты и прочие документы, указанные в настоящей заявке, включены в данный документ посредством ссылки для использования в любых целях.

1. Способ создания расклинивающего агента с частицами требуемых размеров, получаемого из шлама, который был извлечен из скважины для добычи углеводородов, подвергнутой гидроразрыву, содержащий следующие стадии:
отделение воды от шлама с последующим образованием потока мокрых твердых частиц и потока жидкости;
смешивание потока мокрых твердых частиц с твердыми частицами, в результате чего образуется загружаемый материал;
расплавление загружаемого материала с получением материала расплавленного расклинивающего агента;
резкое охлаждение расплавленного материала расклинивающего агента;
измельчение охлажденного материала расклинивающего агента;
сортировка частиц измельченного материала по размерам; и
смешивание частиц измельченного материала, которые не соответствуют установленным требованиям по размерам, с загружаемым материалом.

2. Способ по п. 1, в котором указанное смешивание включает в себя:
закачку потока мокрых твердых частиц в печь; и
введение твердых частиц в печь; при этом введение твердых частиц в печь изменяет вязкость загружаемого материала; при этом загружаемый материал включает в себя поток мокрых твердых частиц с включенными твердыми частицами.

3. Способ по п. 2, в котором введение твердых частиц в печь увеличивается при слишком высокой вязкости загружаемого материала для обеспечения равномерного потока смеси в печи.

4. Способ по п. 2, в котором введение твердых частиц в печь уменьшается, когда вязкость загружаемого материала становится настолько низкой, что поток проходит через печь слишком быстро для расплавления загружаемого материала.

5. Способ по п. 1, в котором указанное резкое охлаждение представляет собой орошение расплавленного материала расклинивающего агента потоком жидкости.

6. Способ по п. 1, в котором указанное измельчение включает в себя: дробление резко охлажденного материала расклинивающего агента и размол дробленого материала расклинивающего агента.

7. Способ по п. 1, в котором указанная сортировка представляет собой просеивание через сита.

8. Способ по п. 1, в котором указанная сортировка представляет собой разделение по массе.

9. Способ по п. 1, причем он также включает в себя:
измерение расхода расплавленного материала на выходе печи; и
регулирование нагрева в печи исходя из результатов таких измерений.

10. Способ по п. 1, причем он также включает в себя отделение шлама от потока пластовой жидкости, вытекающей из скважины для добычи углеводородов; при этом пластовая жидкость содержит воду и шлам; при этом указанное отделение приводит к образованию, по меньшей мере, двух потоков; при этом один из, по меньшей мере, двух потоков представляет собой практически жидкий поток воды, а другой из, по меньшей мере, двух потоков является потоком мокрых твердых частиц.

11. Способ по п. 10, причем он также включает в себя подачу электромагнитного импульса в практически жидкий поток воды.

12. Способ по п. 11, в котором расклинивающий агент смешивается с практически жидким потоком воды до подачи электромагнитного импульса.

13. Способ по п. 11, в котором расклинивающий агент смешивается с практически жидким потоком воды после подачи электромагнитного импульса.

14. Система создания расклинивающего агента с частицами требуемого размера, получаемого из шлама, который извлекается из скважины для добычи углеводородов, подвергнутой гидроразрыву, содержащая следующие элементы:
средства отделения воды от шлама, в результате которого образуется поток мокрых твердых частиц и поток жидкости;
средства для смешивания потока мокрых твердых частиц с твердыми частицами, вследствие чего образуется загружаемый материал;
средства для расплавления загружаемого материала с образованием расплавленного материала расклинивающего агента;
средства для резкого охлаждения расплавленного материала расклинивающего агента;
средства для измельчения охлажденного материала расклинивающего агента;
средства сортировки измельченного материала до получения частиц требуемого размера; и
средства для смешивания измельченного материала, размеры частиц которого не соответствуют установленным требованиям, с загружаемым материалом.

15. Система по п. 14, в которой указанные средства для смешивания потока мокрых твердых частиц с твердыми частицами включают в себя:
устройство для закачки потока мокрых твердых частиц в печь; и
устройство для введения твердых частиц в печь; при этом введение твердых частиц изменяет вязкость загружаемого материала; при этом загружаемый материал включает в себя поток мокрых твердых частиц с включенными твердыми частицами.

16. Система по п. 14, в которой указанные средства для резкого охлаждения представляют собой устройство орошения расплавленного материала расклинивающего агента потоком жидкости.

17. Система по п. 15, в которой указанные средства для измельчения включают в себя:
устройство дробления резко охлажденного материала расклинивающего агента; и
устройство размола дробленого материала расклинивающего агента.

18. Система по п. 14, в которой указанные средства сортировки включают в себя, по меньшей мере, одно сито.

19. Система по п. 14, в которой указанное устройство нагрева представляет собой печь.

20. Система по п. 19, которая также включает в себя средства измерения расхода расплавленного расклинивающего агента на выходе печи, а также средства регулирования нагрева печи по результатам указанных измерений.

21. Система по п. 14, которая также включает в себя средства отделения шлама от потока пластовой жидкости, вытекающей из скважины для добычи углеводородов; при этом пластовая жидкость включает в себя воду и шлам; при этом отделение шлама приводит к образованию, по меньшей мере, двух потоков; при этом один из, по меньшей мере, двух потоков представляет собой поток практически жидкой воды, а другой из, по меньшей мере, двух потоков содержит поток мокрых твердых частиц.

22. Система по п. 21, которая также включает в себя устройство подачи электромагнитного импульса в практически жидкий поток воды.

23. Система по п. 22, которая также включает в себя устройство для смешивания расклинивающего агента с практически жидким потоком воды до подачи импульса.

24. Система по п. 22, которая также включает в себя устройство для смешивания расклинивающего агента с практически жидким потоком воды после подачи импульса.

25. Система по п. 14, в которой указанное устройство смешивания частиц измельченного материала, не соответствующих установленным требованиям по размерам, включает в себя устройство для расплавления.

26. Система, предназначенная для использования при выполнении операций по гидроразрыву, содержащая:
a. первый сепаратор, содержащий патрубок для забора шлама и патрубок для выпуска шлама с первым содержанием воды;
b. второй сепаратор, содержащий патрубок для забора шлама, расположенный таким образом, чтобы в него мог поступать шлам из патрубка для выпуска шлама из первого сепаратора, и патрубок для выпуска потока мокрых твердых частиц со вторым - более низким - содержанием воды;
c. печь для получения расплавленного расклинивающего агента, расположенная таким образом, чтобы в нее мог поступать шлам из патрубка для выпуска потока мокрых твердых частиц из второго сепаратора, и снабженная выпускным отверстием;
d. охладитель, расположенный таким образом, чтобы в него мог поступать расплавленный расклинивающий агент из печи;
e. дробилка, расположенная таким образом, чтобы в нее мог поступать охлажденный расклинивающий агент из охладителя;
f. мельница, расположенная таким образом, чтобы в нее мог поступать дробленый расклинивающий агент из дробилки;
g. первое сито, расположенное таким образом, чтобы на него мог поступать размолотый материал из мельницы: при этом размер ячеек первого сита задает верхний предел размера частиц расклинивающего агента; и
h. второе сито, расположенное таким образом, чтобы на него мог поступать материал, пропущенный первым ситом; при этом размер ячеек второго сита задает нижний предел размеров частиц расклинивающего агента.

27. Система по п. 26, причем она также включает в себя бункер для хранения расклинивающего агента, расположенный таким образом, чтобы в него мог поступать расклинивающий агент, скапливающийся между первым и вторым ситом.

28. Система по п. 27, причем она также включает в себя блендер, расположенный таким образом, чтобы в него мог поступать расклинивающий агент, содержащийся в бункере.

29. Система по п. 28, причем указанный первый сепаратор содержит отверстие для выпуска воды, а также включает в себя следующие элементы:
a. бак для хранения воды, расположенный в таком месте, чтобы в него могла поступать вода из первого сепаратора;
b. коагулятор биоцидов, расположенный в таком месте, чтобы в него могла поступать вода из указанного бака-хранилища воды, и снабженный выпускным отверстием, через которое загружается блендер; и
с. по меньшей мере, один насос для гидроразрывов, на который подается, по меньшей мере, расклинивающий агент и вода из блендера; при этом насос для гидроразрывов создает поток жидкости для выполнения операций по гидроразрыву.



 

Похожие патенты:

Изобретение относится к операциям обработки скважин с использованием реагентов. Композит для обработки скважин, содержащий реагент для обработки скважин и обожженный пористый оксид металла, где пористость и проницаемость обожженного пористого оксида металла является такой, что реагент для обработки скважин адсорбируется во внутрипоровых пространствах пористого оксида металла, и кроме того: площадь поверхности обожженного пористого оксида металла составляет от приблизительно 1 м2/г до приблизительно 10 м2/г, диаметр частиц 0,1 3 мм и объем пор указанного оксида металла от 0,01 до 0,10 см3/г.
Настоящее изобретение относится к деформируемым проппантам и способам обработки подземного пласта с их использованием. Способ обработки подземного пласта включает нагнетание в подземный пласт текучей композиции, которая содержит текучую среду и деформируемый проппант, имеющий взаимопроникающую полимерную сетку, образованную из первого полимерного компонента и второго полимерного компонента.

Изобретение относится к получению высокопроницаемой набивки расклинивающего агента при гидроразрыве. Способ увеличения проницаемости набивки из расклинивающего агента внутри разрыва, включающий: введение в, по меньшей мере, часть разрыва в подземном пласте смеси множества расклинивающих агентов и множества частиц, чтобы сформировать набивку из расклинивающего агента, где, по меньшей мере, часть частиц являются разрушаемыми частицами, причем часть частиц, являющаяся разрушаемыми частицами, содержит разрушаемый металл в форме прессованного продукта из относительно менее разрушаемых порошков, где сам прессованный продукт является относительно более разрушаемым, и разрушение, по меньшей мере, части частиц, чтобы создать набивку из расклинивающего агента, имеющую относительно более высокую проницаемость по сравнению с проницаемостью набивки из расклинивающего агента перед разрушением.

Изобретение относится к способам гидравлического разрыва пласта. Способ включает вскрытие пласта вертикальной скважиной, спуск в скважину колонны труб до интервала пласта и проведение гидравлического разрыва пласта - ГРП закачкой жидкости разрыва по колонне труб.

Изобретение относится к горному делу и может быть применено при гидравлическом разрыве пласта. Для обеспечения контролируемого инициирования и распространения трещин гидроразрыва осуществляют закачку первой жидкости гидроразрыва в первый горизонтальный ствол, сообщающийся с пластом по меньшей мере в одном выбранном сегменте, и создают давление первой жидкости гидроразрыва в первом стволе для создания поля механических напряжений вокруг каждого выбранного сегмента первого ствола.

Система и способ выполнения работ по гидравлическому разрыву формации у ствола скважины, разбуривающей подземную формацию. Способ включает получение интегрированных данных буровой площадки, создание модели механических свойств геологической среды, используя интегрированные данные буровой площадки, моделирование пересечения природной трещины искусственно созданным гидравлическим разрывом, используя модель механических свойств геологической среды, определение свойств пересечений встреченных природных трещин.

Изобретение относится к производству проппантов с покрытием, проппантам, получаемым таким способом, их применению и способам использования проппантов. Способ производства проппантов с покрытием включает (a) смешивание проппантов с полиольным компонентом и изоцианатным компонентом, где полиольный компонент включает фенольную смолу и, необязательно, другие соединения, содержащие гидроксигруппу, где изоцианатный компонент включает изоцианат с по меньшей мере двумя изоцианатными группами и, необязательно, другие соединения, содержащие изоцианатную группу, и где x частей изоцианатного компонента по массе используют в соотношении к 100 частям по массе полиольного компонента, со значением x от примерно 105% до примерно 550% от исходной величины изоцианата, (b) затвердевание смеси, полученной на стадии (а), с помощью обработки катализатором; и (c) необязательное повторение стадий (а) и (b) один или несколько раз, где смесь, полученная на стадии (b), или проппанты, выделенные из нее, применяются в качестве проппантов на стадии (a), где полиольный компонент на стадии (a) является тем же самым или отличным от полиольного компонента, используемого на предыдущей стадии (a), и где изоцианатный компонент в стадии (a) является тем же самым или отличным от изоцианатного компонента, используемого на предыдущей стадии (a), где проппанты с покрытием включают смесь покрытых частиц и совокупностей, где количество совокупностей не больше 10% от смеси.

Изобретение относится к текучей среде для обслуживания скважин газовых, геотермальных, угольнопластовых метановых или нефтяных месторождений. Способ обслуживания ствола скважины включает: смешивание агента для снижения трения, анионогенного поверхностно-активного вещества, катионогенного поверхностно-активного вещества и водной основы с образованием вязкоупругого геля на водной основе, введение в ствол скважины текучей среды для обслуживания скважин, содержащей вязкоупругий гель на водной основе, где агент для снижения трения содержит по меньшей мере одно высокомолекулярное полимерное звено, выбранное из акриламидных групп, акрилатных групп, сульфогрупп и групп малеиновой кислоты, а гель на водной основе содержит анионогенное поверхностно-активное вещество и катионогенное поверхностно-активное вещество и где концентрация агента для снижения трения составляет 0,06 кг/м3 (0,5 фунта/1000 галлонов) или менее в расчете на всю текучую среду для обслуживания скважин.

Изобретение направлено на получение керамического расклинивающего агента с высокими эксплуатационными характеристиками и низкой себестоимостью производства, что является актуальным для серийного производства за счет использования дисперсионного механизма упрочнения керамики путем дополнительного использования легкоплавкой монтмориллонитовой глины, обладающей низкой температурой спекания.
Изобретение относится к нефтяной промышленности и может быть применено для интенсификации работы скважины. В скважину спускают колонну насосно-компрессорных труб до забоя и промывают скважину циркуляцией, закачивают через колонну насосно-компрессорных труб на забой водный раствор поверхностно-активного вещества в объеме 3-4 м3 и продавливают водой плотностью 1,17-1,19 г/см3 в объеме 5-6 м3.
Изобретение относится к составам для ингибирования образования газовых гидратов в различных углеводородсодержащих жидкостях и газах, содержащих гидратообразующие агенты и воду, и может быть использовано в процессах добычи, переработки и транспортировки углеводородного сырья для предотвращения образования газовых гидратов.

Настоящее изобретение относится к способам снижения потерь буровой жидкости и других жидкостей для подземного ремонта скважин в подземной формации во время бурения или сооружения буровых скважин в указанной формации.
Изобретение относится к нефтяной промышленности и может быть использовано для проведения ремонтно-изоляционных работ в нефтяных и газовых скважинах. Техническим результатом изобретения является повышения долговечности и надежности слоя тампонажного материала, образовавшегося после отверждения на поверхности стенок обрабатываемой скважины.

Изобретение относится к операциям обработки скважин с использованием реагентов. Композит для обработки скважин, содержащий реагент для обработки скважин и обожженный пористый оксид металла, где пористость и проницаемость обожженного пористого оксида металла является такой, что реагент для обработки скважин адсорбируется во внутрипоровых пространствах пористого оксида металла, и кроме того: площадь поверхности обожженного пористого оксида металла составляет от приблизительно 1 м2/г до приблизительно 10 м2/г, диаметр частиц 0,1 3 мм и объем пор указанного оксида металла от 0,01 до 0,10 см3/г.
Изобретение относится к способу цементирования, включающему: введение в ствол скважины способной к схватыванию композиции, содержащей размолотый невспученный перлит, портландцемент, перемолотый с пумицитом, и воду; и предоставление возможности способной к схватыванию композиции схватиться.

Изобретение относится к нефтедобывающей промышленности, в частности к составам, используемым в качестве технологических жидкостей для заканчивания и ремонта нефтяных и газовых скважин, и может быть использовано в условиях аномально высоких пластовых давлений для глушения и консервации скважин, для ликвидации межколонных давлений путем гидрозатвора при цементировании с недоподнятием цемента до устья для создания противодавления.

Изобретение относится к бурению нефтяных и газовых скважин, преимущественно к бурению в условиях высоких температур, неустойчивых глинистых пород и при вскрытии продуктивных пластов.

Предложение относится к нефтедобывающей промышленности, в частности, к ремонтно-изоляционным работ в скважинах с применением тампонажных составов. Технический результат предложенного изобретения заключается в повышение эффективности ремонтно-изоляционных работ в скважине за счет использования тампонажного состава с более высокой герметизирующей способностью.

Изобретение относится к нефтяной и газовой промышленности. Технический результат - повышение эффективности предотвращения выпадения солей в течение длительного времени эксплуатации скважины за счет снижения межфазного натяжения на границе «нефть - ингибирующий раствор» и образования прочных силикатных пленок, включающих в себя ингибитор, на поверхности породообразующих минералов.

Настоящее изобретение относится к вязкоупругим текучим средам, загущенным кислым композициям, а также к способам их использования. Водная вязкоупругая текучая среда для обработки подземного пласта, содержащая по меньшей мере одну композицию гелеобразующего вещества, где указанная композиция гелеобразующего вещества содержит по меньшей мере одно вязкоупругое поверхностно-активное вещество приведенной общей формулы, и систему растворителей, которая содержит воду, одноатомный спирт и двухатомный или многоатомный спирт, при массовом соотношении указанного одноатомного спирта и указанного двухатомного или многоатомного спирта от 1,0 до 2,2.

Изобретение относится к бурению нефтяных и газовых скважин, а именно к безглинистым биополимерным буровым растворам, применяемым для вскрытия продуктивных пластов горизонтальных скважин и скважин с большим углом отклонения, представленных карбонатными и терригенными (песчаниками) коллекторами, а также для восстановления скважин бурением вторых стволов в различных гидрогеологических условиях. Технический результат - сохранение фильтрационно-емкостных свойств продуктивных коллекторов, снижение затрат пластовой энергии на движение флюидов с использованием биоразлагаемых полимеров и легко удалимых кольматантов. Буровой раствор на полимерной основе для строительства скважин содержит, мас.%: биополимер ксантанового типа марки xanthan gum FCC IV 0,15-0,22; модифицированный крахмал марки МК-Ф1 или МК-Б 1,8-2,5; кальцинированную и/или каустическую соду 0,1-0,2; карбонат кальция 3-10; хлорид калия или углекислый калий, или формиат натрия, или хлорид натрия 3-23; поверхностно-активное вещество ОП-10 0,1-0,2; воду - остальное. 3 табл., 1 пр.
Наверх