Радиатор

Изобретение относится к теплотехнике и может быть использовано в теплообменных аппаратах, в конструкциях для охлаждения электронной аппаратуры, термоэлектрических охлаждающих устройствах и (или) термоэлектрических генераторах и других тепловыделяющих элементов как при естественной, так и принудительной конвекции. Техническим результатом изобретения является увеличение эффективности теплоотдачи радиаторов, независимо от среды теплообмена. Технический результат достигается за счет того, что в конструкции радиатора используется эффект гигантской теплоотдачи телами субмиллиметровых размеров и обеспечивается возможность циркуляции теплоносителя через все размещенные на основании параллельно между собой теплоотводящие элементы, причем элементы могут располагаться на одной или на обеих поверхностях основания. 4 ил.

 

Изобретение относится к теплотехнике и может быть использовано в теплообменных аппаратах, в конструкциях для охлаждения электронной аппаратуры, термоэлектрических охлаждающих устройствах и (или) термоэлектрических генераторах и других тепловыделяющих элементах, как при естественной, так и принудительной конвекции.

Известна конструкция пластинчатого петельно-проволочного радиатора (см. статью А.П. Орнатский, Б.В. Латенко, Ю.С. Попель. Исследование влияния геометрических характеристик пластинчатых петельно-проволочных радиаторов полупроводниковых приборов на теплообмен при естественной конвекции. Журнал «Теплофизика и теплотехника», 1973 г., вып. 23, с. 53-57, рис. 1 на с. 53), содержащая в своем составе основание, на котором припаяны петельно-проволочные ребра, представляющие собой согнутые отрезки проволоки, оба конца которых припаяны к основанию, а петля выступает над поверхностью основания перпендикулярно к ней и выполнена из проволоки диаметром от 0,49 до 1,0 мм. В сравнении с радиаторами с гладкими ребрами петельно-проволочное оребрение дает выигрыш в массе на 30-50% при одинаковых габаритах и толщине основания. Недостатком такого радиатора являются технологические трудности при использовании проволоки диаметром меньше 0,5 мм, так как из-за недостаточной жесткости проволоки утрачивается петлеобразная форма ребер и снижается эффективность теплоотдачи.

Наиболее близким по технической сущности и достигаемому результату является радиатор, известный из патента UA 2252465, H01L 2.10.2003, содержащий основание из теплопроводящего материала и отрезки теплопроводников, имеющих сечение произвольной формы, закрепленных концами на основании с обеспечением теплового контакта и соединенных между собой поддерживающим каркасом из теплопроводящего материала, установленным фиксированно относительно основания с обеспечением теплового контакта. В указанном радиаторе увеличение жесткости конструкции обеспечило стабильную форму проволочных петель при использовании проволоки субмиллиметрового диаметра, например от 0,005 до 0,5 мм и за счет этого повысило интенсивность теплоотдачи и эффективность охлаждения радиатора, используя тот факт, что с уменьшением линейных размеров тел до десятков и единиц микрометров существенно увеличивается коэффициент конвективной теплоотдачи (см. статью Э.Г. Бочкарев, В.М. Андреев, К.А. Тузовский, Д.В. Зиновьев, Э.Ю. Павленко. «Эффект гигантской теплоотдачи челами субмиллиметровых размеров», которая опубликована в журнале «Доклады академии наук», 1999 г., т. 366, №2, с. 178-180).

Недостатком предлагаемой конструкции радиатора, принятого за прототип, является то, что тепловой контакт с охлаждаемой поверхностью осуществляется по линии, представляющей собой проволоку поддерживающего каркаса, а участками проволоки, представляющими петли, занята вся поверхность, образованная поддерживающим каркасом, что исключает возможность установки радиаторов друг за другом из-за большого сопротивления при расходе теплоносителя.

Техническим результатом изобретения является увеличение площади теплового контакта поддерживающих каркасов с охлаждаемой поверхностью и обеспечение циркуляции теплоносителя и, следовательно, отводимой мощности при существенном увеличении коэффициента теплоотдачи и эффективности охлаждения.

Указанный технический результат достигается за счет того, что в радиаторе, содержащем основание из теплопроводящего материала и отрезки теплопроводников, имеющих сечение произвольной формы, закрепленных концами на основании с обеспечением теплового контакта и соединенных между собой поддерживающим каркасом из теплопроводящего материала, установленным фиксированно относительно основания с обеспечением теплового контакта, в отличие от известного, основание выполнено плоским, на стороне(ах) которого расположены равномерно и параллельно между собой поддерживающие каркасы с закрепленными на них отрезками теплопроводников, при этом отрезки теплопроводников закреплены образуя в плоскостях, проходящих через поддерживающие каркасы, участки, заполненные отрезками теплопроводников, чередующиеся с участками, свободными от отрезков теплопроводников.

За счет указанных изменений конструкции достигается увеличение площади теплового контакта поддерживающих каркасов с охлаждаемой поверхностью и обеспечение циркуляции теплоносителя через промежутки между участками, заполненными отрезками теплопроводников, представляющими петли, и, следовательно, отводимой мощности при существенном увеличении коэффициента теплоотдачи и эффективности охлаждения. Для отвода тепла от нагревающихся элементов в окружающую среду элементы располагаются с обеспечением теплового контакта на основании, на противоположной поверхности которого расположены равномерно и параллельно между собой поддерживающие каркасы с закрепленными на них отрезками теплопроводников, при этом отрезки теплопроводников закреплены образуя в плоскостях, проходящих через поддерживающие каркасы, участки, заполненные отрезками теплопроводников, чередующиеся с участками, свободными от отрезков теплопроводников.

Для обеспечения теплообмена между различными теплоносителями в радиаторе поддерживающие каркасы с закрепленными на них отрезками теплопроводников равномерно расположены и па противоположной поверхности основания, параллельно между собой. Увеличение теплоотдающей способности радиатора обеспечивается тем, что на основании, с обеспечением теплового контакта, равномерно размещены параллельно между собой поддерживающие каркасы с закрепленными на них отрезками теплопроводников, между которыми распределяется тепловая нагрузка. Увеличению эффективности охлаждения при вынужденной циркуляции теплоносителя способствует чередование в плоскости поддерживающих каркасов участков, заполненных отрезками теплопроводников произвольной формы сечения, с участками, свободными от отрезков теплопроводников произвольной формы сечения. Например, при минимальном диаметре проволоки поддерживающего каркаса 0,6 мм и длине поддерживающего каркаса 40 мм (типовой размер термоэлектрического модуля Пельтье - одного из охлаждаемых устройств) отношение площади участков, заполненных отрезками теплопроводников произвольной формы сечения, к общей площади поддерживающего каркаса может меняться от 0,15 до 0,85. Большей величине отношения соответствует большее сопротивление циркуляции теплоносителя.

Сущность изобретения поясняется чертежами, где:

на фиг. 1 изображена одна из возможных конструкций радиатора, работающего с одним теплоносителем;

на фиг. 2 изображен вариант конструкции радиатора, осуществляющего теплообмен между двумя теплоносителями;

на фиг. 3 в увеличенном масштабе изображена выноска участка, заполненного отрезками теплопроводников произвольной формы сечения;

на фиг. 4 приведен общий вид радиатора, работающего с одним теплоносителем.

Предложенный радиатор содержит основание 1, на котором параллельно между собой равномерно расположены поддерживающие каркасы 2, на которых закреплены отрезки теплопроводников 3 произвольной формы сечения, и в плоскости поддерживающих каркасов 2 чередуются участки, занятые отрезками теплопроводников 3 произвольной формы сечения, с участками 4, свободными от отрезков теплопроводников произвольной формы сечения, причем поддерживающие каркасы 2 с закрепленными на них отрезками теплопроводников 3 произвольной формы сечения могут равномерно располагаться и на противоположной поверхности основания 1 параллельно между собой.

Радиатор работает следующим образом.

С обеспечением теплового контакта на свободной поверхности основания 1 размещают тепловыделяющие элементы, от которых необходимо отводить тепло. Теплота равномерно распределяется по поверхности основания 1 между отрезками теплопроводников 3 произвольной формы сечения, закрепленных на поддерживающих каркасах 2 и имеющих тепловой контакт с основанием 1, и передается вдоль отрезков теплопроводников 3 произвольной формы сечения к их вершинам, что приводит к их нагреванию до температуры выше температуры окружающей среды. Вследствие разности температур отрезков теплопроводников 3 произвольной формы сечения и окружающей среды между ними происходит теплообмен, и теплота от них передается к окружающему теплоносителю. Для обеспечения циркуляции теплоносителя через все установленные параллельно между собой каркасы 2 в них чередуются участки, заполненные отрезками теплопроводников 3 произвольной формы сечения, с участками 4, свободными от отрезков теплопроводников 3 произвольной формы сечения. Для обеспечения эффективного теплообмена между двумя теплоносителями поддерживающие каркасы 2 с закрепленными на них отрезками теплопроводников 3 произвольной формы сечения равномерно расположены параллельно между собой и на противоположной поверхности основания 1, также с чередованием участков, заполненных отрезками теплопроводников 3 произвольной формы сечения, с участками 4, свободными от отрезков теплопроводников 3 произвольной формы сечения. Высота поддерживающих каркасов 2 с закрепленными на них отрезками теплопроводников 3 произвольной формы сечения определяется теплоносителем и скоростью его циркуляции.

Для реализации предлагаемого технического решения могут быть использованы участки теплопроводников произвольной формы сечения, чередующиеся с участками, свободными от теплопроводников и предназначенными для циркуляции теплоносителя, выполненные, например, из медной фольги толщиной 0,05 мм с шириной теплопроводников 0,02 мм и зазором между теплопроводниками 0,04 мм способом химического травления аналогично изготовлению печатных плат. К полученной заготовке, на участки большей ширины припаиваются горизонтальные и вертикальные проволочные элементы поддерживающего каркаса. Далее сборки размещаются, с обеспечением теплового контакта, на одной или на обеих поверхностях основания, в зависимости от назначения радиатора.

Испытания предлагаемого и штыревого радиаторов с одинаковыми размерами основания 40×40 мм, одинаковой высотой теплоотводящих элементов, одинаковой тепловой нагрузке 18,8 Вт при одинаковых скоростях воздуха через поперечное сечение теплоотводящих элементов показали в предлагаемом радиаторе многократное превышение разности температур воздуха на входе и выходе радиатора и, следовательно, большую отводимую мощность. Предлагаемый радиатор превышает эффективность известных радиаторов независимо от среды теплообмена.

Радиатор, содержащий основание из теплопроводящего материала и отрезки теплопроводииков, имеющих сечение произвольной формы, закрепленных концами на основании с обеспечением теплового контакта и соединенных между собой поддерживающим каркасом из теплопроводящего материала, установленным фиксированно относительно основания с обеспечением теплового контакта, отличающийся тем, что основание выполнено плоским, на стороне(ах) которого расположены равномерно и параллельно между собой поддерживающие каркасы с закрепленными на них отрезками теплопроводииков, при этом отрезки теплопроводииков закреплены образуя в плоскостях, проходящих через поддерживающие каркасы, участки, заполненные отрезками теплопроводииков, чередующиеся с участками, свободными от отрезков теплопроводииков.



 

Похожие патенты:

Изобретение относится к электронно-вычислительной технике и может быть использовано в конструкциях радиоэлектронной аппаратуры (РЭА) с набором сменных модулей, работающих в условиях повышенного тепловыделения, значительных механических нагрузок, а также агрессивных погодно-климатических факторов при войсковой эксплуатации.

Изобретение предназначено для осуществления направленного регулируемого отвода тепла в радиоэлектронной и электротехнической аппаратуре и поддержания минимальной рабочей температуры теплонагруженных элементов - мощных ЭРИ, узлов, блоков и модулей, что приводит к значительному увеличению их сроков эксплуатации.

Изобретение имеет отношение в общем к силовой электронике, а более конкретно, к усовершенствованному охлаждению для силовой электроники. Заявленный теплоотвод (60, 70) для охлаждения по меньшей мере одного корпуса (20) электронного устройства включает нижнюю крышку (12), верхнюю крышку (14) и тело (16), сформированные по меньшей мере из одного теплопроводящего материала.

Изобретение относится к металлокерамической связанной подложке и, в частности, к объединенной подложке с жидкостным охлаждением, и к способу ее изготовления. Технический результат - уменьшение затрат на материалы и изготовление, и уменьшение изгиба (деформации формы), повышение прочности и теплоизлучающей производительности.

Изобретение относится к электротехнике, а именно к полупроводниковой преобразовательной технике, и может использоваться в статистических преобразователях электрической энергии, в агрегатах на основе силовых полупроводниковых приборов и модулей.

Изобретение относится к электронной технике. Процесс изготовления многокристальных трехмерных ИС методом вертикальной сборки с применением технологии TSV включает в себя формирование в кристаллах на кремниевой пластине сквозных медных проводников с выступами над лицевой или тыльной стороной утоненных пластин.

Изобретение относится к электротехническим средствам обеспечения рабочих характеристик интегральных схем (ИС) в защищенной бортовой аппаратуре, в частности, микропроцессоров и микроконтроллеров, путем термостабилизации поверхности корпуса ИС.

Изобретение относится к охлаждающему устройству, использующему искусственные струи. Технический результат - улучшение активного охлаждения посредством принудительной конвекции.

Изобретение относится к теплотехнике и может быть использовано для поддержания и регулирования температуры. Изобретение позволяет повысить быстродействие регулирования температуры при сохранении устойчивости микронагревателя к термоудару, его надежностных и ресурсных характеристик.

Группа изобретений относится к охлаждающему блоку мощного полупроводникового устройства (100). Блок содержит теплоотвод с активным охлаждением (102) и контроллер (208; 300), контроллер (208; 300) выполнен с возможностью регулирования эффективности охлаждения теплоотвода (102) в зависимости от температуры полупроводникового перехода, проводящего большой ток, содержащегося в мощном полупроводниковом устройстве (100), причем контроллер (208; 300) выполнен с возможностью приема сигнала температуры, определяющего фактически измеренное значение температуры полупроводникового перехода, проводящего большой ток, при этом контроллер (208; 300) содержит модуль выбора, выполненный с возможностью выбора между режимом управления с обратной связью и режимом управления с упреждением для регулирования эффективности охлаждения.

Изобретение относится к области мини- и микросистем, которые используются в энергетике и на транспорте и могут применяться в устройствах для охлаждения электроники. В конденсаторе-сепараторе для двухкомпонентных двухфазных систем, содержащем конденсатор, сепаратор, согласно изобретению конденсатор имеет форму продольного ребра, а с обеих сторон ребра расположен капиллярный щелевой сепаратор, представляющий собой узкий плоский микроканал шириной 10-30 мкм. Изобретение должно обеспечить повышение интенсивности теплообмена при конденсации, снижение массы и габаритов конденсатора, удешевление конструкции, повышение мощности. 2 ил.

Изобретение относится к устройству (1) для подачи электрического напряжения питания на электрическую нагрузку бытового прибора, содержащему силовой электронный модуль (2), который содержит гибридную печатную плату (3) с первой подложкой (4) схемы и второй подложкой (5) схемы, причем область (19) перехода между первой и второй подложками (4, 5) схем имеет меньшую теплопроводность по сравнению с первой и/или второй подложками (4, 5) схем, и устройство термозащиты для термозащиты силового электронного модуля (2), причем на первой подложке (4) схемы гибридной печатной платы (3) расположен по меньшей мере один полупроводниковый переключатель (6), выполненный с возможностью получения напряжения питания для электрической нагрузки, а на второй подложке (5) схемы гибридной печатной платы (3) расположен датчик (8) температуры устройства термозащиты для регистрации температуры, воздействию которой подвергается по меньшей мере один полупроводниковый переключатель (6) при эксплуатации устройства (1), и причем на корпусе силового электронного модуля (2) расположена теплопроводящая пленка (13), которая прилегает к металлической области корпуса модуля, контактирующей с первой подложкой схемы, и к другой области корпуса, выполненной из синтетического материала и контактирующей со второй подложкой схемы, при этом посредством пленки (13) по меньшей мере один полупроводниковый переключатель (6) и датчик (8) температуры термически соединены друг с другом. Изобретение обеспечивает надежную защиту силового электронного модуля от перегрева. 2 н. и 6 з.п. ф-лы, 5 ил.

Изобретение относится к области электротехники и может быть использовано в многоуровневом преобразователе. Техническим результатом является снижение вибраций в многоуровневом преобразователе. Многоуровневый преобразователь (5) содержит по меньшей мере два последовательно соединенных подмодуля (SM), причем каждый подмодуль (SM) имеет, соответственно, по меньшей мере два переключателя (10, 20, 30, 40, 210, 220, 410, 420) и конденсатор (С), а также два токоведущих внешних вывода (А1, А2) модуля. В соответствии с изобретением предусмотрено, что по меньшей мере один подмодуль имеет по меньшей мере один внешний теплоотвод (60, 80,300, 400), который служит в качестве токоведущего внешнего вывода (А1, А2) модуля. 12 з.п. ф-лы, 11 ил.

Изобретение относится к теплотехнике и может быть использовано в теплообменных аппаратах, в конструкциях для охлаждения электронной аппаратуры, термоэлектрических охлаждающих устройствах и термоэлектрических генераторах и других тепловыделяющих элементов как при естественной, так и принудительной конвекции. Техническим результатом изобретения является увеличение эффективности теплоотдачи радиаторов, независимо от среды теплообмена. Технический результат достигается за счет того, что в конструкции радиатора используется эффект гигантской теплоотдачи телами субмиллиметровых размеров и обеспечивается возможность циркуляции теплоносителя через все размещенные на основании параллельно между собой теплоотводящие элементы, причем элементы могут располагаться на одной или на обеих поверхностях основания. 4 ил.

Наверх