Сапфировый терагерцовый фотонно-кристаллический волновод

Изобретение относится к области элементной базы терагерцовой оптотехники, в частности к волноводам для передачи терагерцового излучения. Сапфировый терагерцовый фотонно-кристаллический волновод представляет собой диэлектрическое тело, в котором имеются параллельные каналы, расположенные в виде гексагональной структуры. При этом ось С монокристаллического сапфира, из которого выполнен волновод, направлена вдоль каналов, а минимальный размер сечения каналов волновода равен или больше длины волны передаваемого терагерцового излучения. Технический результат состоит в уменьшении удельных потерь энергии передаваемого излучения, а также в возможности получения стабильного спектрального состава передаваемого излучения. 5 з.п. ф-лы, 4 ил.

 

Изобретение относится к области элементной базы терагерцовой оптотехники, а именно к волноводам для передачи излучения терагерцового (ТГц) диапазона электромагнитного спектра, расположенного между инфракрасной и микроволновой областями шкалы электромагнитных волн от 0,1 до 10,0 ТГц, и может быть, в частности, применено в ТГц спектроскопии для характеризации конденсированных сред и газов, для неразрушающего технологического и эксплуатационного контроля конструкционных материалов, неразрушающего исследования объектов искусства, анализа химического состава газовых смесей, контроля качества фармацевтической продукции, а также для целей медицинской диагностики.

Основными требованиями, предъявляемыми к ТГц волноводам для спектроскопии, являются низкие удельные потери ТГц излучения, минимальная дисперсия ТГц импульса на выходе волновода в широком спектральном диапазоне.

Излучение терагерцового диапазона сильно поглощается большинством сред из-за наличия вибрационных, ротационных и либрационных степеней свободы молекулы вещества. Передача излучения с использованием металлического волокна, пучка волокон или металлических пластин за счет плазмонного возбуждения характеризуется довольно большими потерями мощности передаваемого излучения (0,1 дБ/см) и низкой эффективностью ввода излучения в волновод. Полые металлические трубки, применяемые для передачи ТГц излучения, практически не имеют поглощения в волноводной сердцевине (0,01 дБ/см), но обладают значительной дисперсией, что приводит к существенному уширению импульсов излучения. Наличие сильного поглощения или большой дисперсии не позволяют получить относительно длинный волновод, пригодный для использования в устройствах импульсной спектроскопии.

Известны альтернативные волноводные структуры, в которых одновременно получают низкий уровень потерь и минимальную дисперсию - фотонно-кристаллические волноводы (ФКВ). ФКВ представляют собой стержень (волокно) с регулярной системой протяженных полостей или каналов, в совокупности формирующих двумерную дифракционную решетку Брегга в поперечном сечении волновода (волокна). Рассеяние излучения на данной двумерной дифракционной решетке позволяет сформировать локализованные моды излучения в области сердцевины или в оболочке волновода (волокна) и обеспечить распространение электромагнитного излучения в единственно возможном разрешенном направлении - вдоль оси волновода - с минимальной дисперсией и потерями в широком спектральном диапазоне.

Для передачи излучения ТГц диапазона перспективны различные ФКВ с полой волноводной центральной частью, так как данное излучение сильно поглощается большинством сред, в том числе стеклами и полимерными средами, широко использующимися для создания ФКВ волноводов и волокон в других областях шкалы электромагнитных волн.

Так, известны фотонно-кристаллические ТГц волноводы с передачей ТГц излучения по полой сердцевине, окруженной многослойной оболочкой из слоев полимеров с чередующимся различным показателем преломления (патент США US 2009/0097809 A1, опубл. 16.04.2009). Недостатком данного волновода является наличие потерь мощности ТГц излучения за счет его сильного поглощения в полимерах (полиэтилен высокой плотности (HDPE), полиэтилен, полиметилметакрилат (ПММА), фторопласт, тефлон, полиметилпентен (ТРХ), циклоолефиновый сополимер (СОС)), использующихся в качестве материала таких волноводов, а также потери, возникающие при изгибах/деформации волновода в процессе его эксплуатации. Кроме того, спектральные характеристики полимерных ФКВ претерпевают существенную трансформацию при случайных изгибах или деформациях, что не позволяет применять их в интересах абсорбционной или диэлектрической спектроскопии.

Наиболее близким к заявляемому изобретению решением является пористый терагерцовый ФКВ [A. Hassani, A. Dupuis, M. Skorobogatiy. Low loss porous terahertz fibers containing multiple subwavelength holes. - Applied physics letters 92, 071101 (2008)], который представляет собой полимерное тело с гексагональным массивом продольных отверстий. Оболочкой служит воздух, окружающий полимерное тело. Размер отверстий и толщина перемычек волноводной части меньше длины волны излучения, а диаметр волноводной части сравним с длиной волны передаваемого излучения. При такой геометрии энергия моды распределена по всем каналам волновода (результирующий эффективный показатель преломления позволяет соответствующим ему модам проникать через перемычки) и, таким образом, используется максимально весь «воздушный» бездисперсионный и не поглощающий объем волновода и одновременно «фокусирующее» действие ФК структуры. Несмотря на заявленные пониженные потери при передаче ТГц излучения (0,1 дБ/см), пропускание данного волновода ограниченно поглощением в полимере, из которого он изготовлен. Кроме того, существование поля в крайних каналах и за пределами волновода обуславливает повышенную вероятность потерь излучения при изгибах, а также при наличии дефектов структуры и загрязнениях. Несмотря на увеличение пропускания такого волновода в несколько десятков раз по сравнению с монолитным ТГц волноводом из того же материала, указанные недостатки не позволят создать волновод с действительно эффективной передачей изучения рассматриваемого диапазона длин волн, в том числе для импульсной спектроскопии.

В настоящем изобретении предлагается принципиально новый подход к созданию ТГц ФКВ для целей спектроскопии, основанный на использовании кристаллического сапфира. По сравнению с полимерными средами сапфир обладает низким собственным поглощением в ТГц области электромагнитного спектра, что позволяет достигнуть качественно новой эффективности передачи ТГц излучения по волноводу. Сапфир имеет очень высокую твердость, температуру плавления, теплопроводность, прочность и сопротивление термоудару, что чрезвычайно расширяет круг задач, в которых может быть применен сапфировый ТГц ФКВ.

Задачей, которую решает изобретение, является создание волновода длиной несколько десятков сантиметров с низкими потерями и управляемой дисперсией при передаче ТГц излучения в широком спектральном диапазоне.

Технический результат состоит в получении терагерцового волновода длиной до нескольких десятков сантиметров с существенно уменьшенными удельными потерями энергии передаваемого излучения, при этом низкий уровень потерь ТГц излучения сохраняется во всем широком рабочем спектральном диапазоне волновода; в получении волновода со стабильным спектральным составом передаваемого излучения, достаточным для характеризации сред при импульсной ТГц спектроскопии.

Технический результат достигается за счет того, что в сапфировом терагерцовом фотонно-кристаллическом волноводе, представляющем собой диэлектрическое тело, в котором имеются параллельные каналы, расположенные в виде гексагональной структуры, материалом волновода является монокристаллический сапфир, ориентация оси С в котором расположена вдоль каналов, а минимальный размер сечения каналов волновода равен или больше длины волны передаваемого ТГц излучения.

Применение монокристаллического сапфира в качестве материала волновода для передачи ТГц излучения позволяет снизить потери мощности передаваемого ТГц излучения, так как сапфир, являясь монокристаллом, обладает существенно более низким поглощением ТГц электромагнитного излучения в сравнении с полимерными средами и стеклами. Направление главной оси сапфира («С»-ось) вдоль оптической оси волновода позволяет минимизировать влияние анизотропии кристалла на оптические свойства волновода для ряда задач. Выполнение сапфирового ТГц ФКВ с диаметром каналов (периодом решетки) соизмеримым или большим, чем длина волны передаваемого ТГц излучения, позволяет получать эффективную дифракцию ТГц излучения в радиальном направлении (высокую волноводную эффективность устройства) в случае, когда ТГц излучение вводится нормально к входной грани ФКВ и в пределах некоторой апертуры, соответственно.

Кроме того, для сапфирового ТГц волновода не характерны изгибные потери даже в случае больших боковых усилий; волновод может работать в широком диапазоне температур. Волновод по данному изобретению может использоваться при работе, включающей контакт с агрессивными средами и стерилизацию любыми средствами и методами. Возможность эксплуатации волновода в широком диапазоне температур и в агрессивных средах позволяет существенно расширить спектр приложений методов ТГц спектроскопических исследований и ТГц технологий в целом.

Кроме того, в частном случае реализации изобретения, каналы волновода имеют цилиндрическую форму и могут быть одного диаметра.

Кроме того, в частном случае реализации изобретения, по крайней мере, один канал отсутствует.

Кроме того, в частном случае реализации изобретения, на поверхность, по крайней мере, одного канала волновода нанесено диэлектрическое или металлическое покрытие.

Кроме того, в частном случае реализации изобретения, один или несколько каналов волновода заполнены жидкостью (газом), показатель преломления которой отличается от показателя преломления материала волновода.

Использование волноводов с каналами, имеющими цилиндрическую форму, в том числе равного диаметра, использование волноводов с нарушением периодичности за счет отсутствия, по крайней мере, одного канала, с диэлектрическим или металлическим покрытием одного или нескольких каналов, а также выполнение волновода с каналами, наполненными жидкостями и газами с отличающимся показателем преломления позволяет расширить возможности управления в волноводе оптическими свойствами волноводной структуры, ее дисперсией и потерями.

Кроме того, в частном случае реализации изобретения, у волновода имеются входная и выходная грани, которые являются перпендикулярными или наклонными к оптической оси волновода и/или имеют неплоскую форму, что позволяет повысить эффективность ввода ТГц излучения в волновод, снизить потери излучения на входе и выходе.

Устройство и его работа поясняется рисунками, представленными на фиг. 1-4.

Фиг. 1. Схематичное изображение частного случая изобретения - терагерцовый фотонно-кристаллический волновод, имеющий гексагональный массив каналов равного диаметра.

Фиг. 2. Фотография сапфирового ТГц ФКВ длиной 200 мм с гексагональным массивом каналов диаметром 2,5 мм по данному изобретению (частный случай).

Фиг. 3. Поперечные моды электромагнитного поля в фотонно-кристаллическом волноводе из сапфира (Фиг. 1, 2) с диаметром каналов 2,5 мм для различных спектральных областей.

Фиг. 4. Графики экспериментально полученного эффективного показателя преломления neff (вверху) и коэффициента затухания а (внизу) в зависимости от длины волны электромагнитного излучения для ТГц ФКВ, показанного на Фиг. 2.

Волновод работает следующим образом. Широкополосное импульсное ТГц излучение фокусируется оптической системой на входной торец 1 сапфирового ТГц ФКВ 2 (Фиг. 1). В волноводе формируются устойчивые моды ТГц излучения, структура которых определяется структурой фотонно-кристаллического сечения волновода 2, причем особенность модовой структуры такова, что за счет совокупного устойчивого состояния мод энергия электромагнитного ТГц излучения передается с входного торца 1 на выходной торец 3 волновода 2 в широком спектральном диапазоне (Фиг. 3, 4). ТГц излучение, распространяющееся в волноводе 2, сконцентрировано (локализовано) в каналах 4 волновода: как в центральном канале, так и в боковых каналах (Фиг. 3).

Для приведенного в качестве примера сапфирового фотонно-кристаллического волновода были продемонстрированы рекордно низкие удельные потери на распространение - 0,02 дБ/см в широком спектральном диапазоне (как минимум от 0,5 до 1,0 ТГц) (Фиг. 4). Таким образом, по данному изобретению возможно создание сапфировых ТГц ФК волноводов длиной до нескольких десятков сантиметров с бездисперсионным распространением ТГц импульса в широком спектральном диапазоне. Использование сапфировых ФК ТГц волноводов позволит существенно расширить возможности ТГц диагностических систем, в том числе создать на их основе ТГц эндоскопы различного назначения.

1. Терагерцовый фотонно-кристаллический волновод, представляющий собой диэлектрическое тело, в котором имеются параллельные каналы, расположенные в виде гексагональной структуры, отличающийся тем, что материалом волновода является монокристаллический сапфир, ориентация оси C в котором расположена вдоль каналов, минимальный размер сечения каналов волновода равен или больше длины волны передаваемого ТГц излучения.

2. Волновод по п. 1, отличающийся тем, что каналы имеют цилиндрическую форму.

3. Волновод по п. 2, отличающийся тем, что каналы имеют одинаковый диаметр.

4. Волновод по п. 1, отличающийся тем, что на поверхность по крайней мере одного канала нанесено диэлектрическое или металлическое покрытие.

5. Волновод по п. 1, отличающийся тем, что один или несколько каналов заполнены жидкостью (газом), показатель преломления которой отличается от показателя преломления материала волновода.

6. Волновод по п. 1, отличающийся тем, что имеются входная и выходная грань волновода, которые являются перпендикулярными или наклонными к оптической оси волновода и/или имеют не плоскую форму.



 

Похожие патенты:

Изобретение относится к способам обнаружения активных волокон, направления и длины волны передаваемого сигнала и ввода-вывода оптического излучения через боковую поверхность оптического волокна (ОВ) с помощью изгиба и может быть использовано для ввода (вывода) оптического сигнала в ОВ в системах мониторинга волоконно-оптических линий передачи (ВОЛП) и мультиплексорах ввода-вывода сигналов (OADM).

Высокомощный сверхъяркий малошумящий источник накачки содержит затравочный источник, который генерирует малошумящий световой сигнал, множество высокомощных полупроводниковых лазерных диодов, объединенных для испускания излучения вспомогательной накачки, и легированный Yb мультимодовый волоконный преобразователь длин волн излучения вспомогательной накачки.

Изобретение относится к области светотехники. Техническим результатом является повышение эффективности ввода светового излучения от источника света в волновод.

Изобретение относится к области светотехники. Техническим результатом является расширение арсенала технических средств.

Заявляемое изобретение относится к области химии и касается шихты для получения теллуритно-молибдатных стекол, которые могут найти применение в оптике для изготовления волоконных световодов и планарных оптических волноводов, применяемых в оптоэлектронных приборах видимого, ближнего и среднего ИК-диапазонов.

Изобретение относится к области устройств для сращивания оптического кабеля. Заявленная коробка (1) для сращивания оптического кабеля, содержащая вспомогательное устройство для заполнения зазоров и обеспечения водонепроницаемости, включает в себя по меньшей мере одну торцевую поверхность (2) для прохода кабеля, по меньшей мере одно вспомогательное устройство для заполнения зазоров и обеспечения водонепроницаемости и по меньшей мере одну эластичную усадочную трубку (4).

Изобретение относится к области светотехники, а именно к устройствам освещения дневным светом. Техническим результатом является повышение эффективности компенсации потерь от поглощения дневного света.

Изобретение относится к области осветительных устройств, основанных на использовании волоконной оптики, и может использоваться в осветительных устройствах в светотехнике, в медицине для фототерапии и косметологии.

Изобретение относится к коллиматору света и к осветительному прибору. Коллиматор (1) содержит диффузный отражающий слой и удлиненный световой волновод (100) длиной (wl), шириной (ww) и высотой (wh) волновода.

Изобретение относится к светоизлучающей системе, которая содержит множество смежно расположенных светоизлучающих устройств. Каждое светоизлучающей устройство содержит пластинообразный световод, имеющий переднюю, заднюю и торцевые поверхности.

Изобретение относится к плазмонной интегральной оптике и может быть использовано при конструировании компонентов плазмонных устройств различного назначения. Одномодовый плазмонный волновод, выполненный в виде заполненного диэлектриком протяженного V-образного канала в пленке металла на подложке, имеет периодически меняющееся по длине волновода поперечное сечение. При этом упомянутое изменение поперечного сечения канавки удовлетворяет условию образования фотонного кристалла с запрещенной зоной для моды, локализованной на краях канавки, с периодом L, определяемым по формуле , где с - скорость света, ν - рабочая частота излучения, εm и εd - соответственно диэлектрические проницаемости металла и диэлектрика на рабочей частоте. Технический результат изобретения заключается в возможности обеспечения одномодового режима распространения оптических плазмонов в волноводе на основе V-образной канавки в металлической пленке. 6 з.п. ф-лы, 7 ил.

Изобретение относится к области светотехники и может быть использовано в светильниках, в которых имеется возможность использовать более редко распределенные источники света. Техническим результатом является повышение равномерности яркости освещения и хорошего смешения цветов. Светильник содержит плоские верхний и нижний световодные слои (10, 11), оптически связанные друг с другом по меньшей мере одним оптическим элементом (12a, 12b) связи, который обеспечивает прохождение света из верхнего (10) в нижний световодный слой (11). По крайней мере один оптический элемент связи представляет собой краевой элемент для связывания соседних краев световодных слоев. Светильник содержит рассеивающий элемент (14), выполненный с возможностью создания излучения света от поверхности излучения нижнего световодного слоя (11). Верхний световодный слой (10) содержит первый (16а) и второй (16б) источники света в полости (17), которые отвернуты друг от друга и расположены с возможностью излучения света к соответствующей одной из боковых сторон полости в противоположных направлениях, параллельных продольной оси, так, что свет проходит в направлении продольной оси верхнего световодного слоя (10). 2 н. и 10 з.п. ф-лы, 20 ил.

Изобретение относится к области нанотехнологий, в частности к области производства оптического волокна. Чирпированное фотонно-кристаллическое волокно состоит из центральной волноведущей жилы и структурированной оболочки в виде массива капилляров, диаметры которых возрастают от центра к периферии. Причем центры возрастающих по диаметру капилляров находятся на радиальной оси центральной жилы, а линии, проведенные через точки касания и центры капилляров, образуют равнобочные трапеции. Структурированная оболочка дополнительно включает массив выполненных из более жесткого стекла удерживающих капилляров или цилиндров - вставок, заполняющих пространство между рабочими капиллярами, причем размеры вставок также возрастают от центра к периферии. Способ изготовления чирпированного фотонно-кристаллического волокна включает нагрев исходной заготовки и вытягивание трубок и цилиндров необходимых диаметров, сборку пакетов определенной топологии и перетяжку в волокно. С помощью направляющей трубки, длина которой составляет 1/4-1/5 длины собираемого пакета, формируют полую сердцевину. Далее на направляющей трубке закрепляют первый ряд уложенных вдоль ее образующей рабочих капилляров, в промежутки между соприкасающимися рабочими капиллярами укладывают и закрепляют первый ряд удерживающих капилляров. Аналогично формируют последующие ряды рабочих и удерживающих капилляров. Собранный пакет помещают в опорную трубу, закрепляя его удерживающими капиллярами, и перетягивают в волокно с требуемыми параметрами. Техническим результатом изобретения является расширение функциональных возможностей сборки конструкций микроструктурированных волокон, а также снижение дисперсии. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области светотехники. Техническим результатом является повышение контрастности, яркости экрана и равномерности освещения. Осветительное устройство содержит корпус (5) со множеством отсеков (3), при этом каждый отсек содержит соответствующее светоизлучающее окно (15), источник (11) света и набор скрещенных призматических листов (10). Свет, излучаемый источником (11) света во время работы, распространяется через призматические листы и впоследствии через светоизлучающее окно. Ориентация набора призматических листов (10) является различной для каждого отсека, в результате чего каждый отсек излучает отличающийся пучок света. Источник (10) света каждого отсека может быть переключен отдельно, что позволяет легко установить вид пучка, излучаемого из осветительного устройства. Рассеиватель (17, 23) может быть установлен на одной стороне или на обеих сторонах набора призматических листов. 3 н. и 11 з.п. ф-лы, 10 ил.

Изобретение относится к области лазерной волоконной техники, в частности к области создания новых типов активных лазерных сред. Устройство представляет собой многоэлементное волокно для источника лазерного излучения, включающее активное волокно, содержащее световедущую жилу, легированную по меньшей мере одним типом редкоземельного элемента, и светоотражающую оболочку. Кроме того, по меньшей мере, один световод накачки, находящийся в оптическом контакте с активным волокном, при этом стеклянное активное волокно и стеклянный световод накачки покрыты, по меньшей мере, одним слоем полимерной оболочки. Вокруг полимерной оболочки оптического волокна намотана металлическая проволока или лента. Технический результат – стабилизация эффективности генерации волоконного лазера. 5 з.п. ф-лы, 3 ил.

Изобретение относится к области оптического приборостроения и может найти применение для изготовления волоконных брэгговских решеток показателя преломления. Способ состоит в использовании импульсного излучения фемтосекундного лазера, которое с помощью микрообъектива фокусируется через шлифованную боковую грань прозрачной феррулы в сердцевину нефоточувствительного волоконного световода с защитным покрытием. Нефоточувствительный волоконный световод перемещается с помощью высокоточного линейного позиционера с постоянной скоростью V. Пространство между нефоточувствительным волоконным световодом и внутренними стенками феррулы заполняется иммерсионной жидкостью для компенсации кривизны боковой поверхности нефоточувствительного волоконного световода. Показатель преломления иммерсионной жидкости подбирается равным показателю преломления феррулы. С помощью пьезокерамического позиционера, на котором закреплена феррула, осуществляется настройка положения фокуса перед изготовлением. Также пьезокерамический позиционер используется для подстройки положения точки фокусировки внутри сердцевины нефоточувствительного волоконного световода в процессе изготовления. Технический результат - увеличение точности изготовления волоконных брэгговских решеток, в увеличении прочностных характеристик и скорости изготовления волоконных брэгговских решеток. 5 з.п. ф-лы, 4 ил.

Изобретение относится к области светотехники. Техническим результатом является повышение эффективности освещения. Оптический элемент содержит пластину (100) и множество коллимирующих средств (104). Оптический элемент предназначен для установки перед источником света, содержащим светоизлучающую поверхность (106), при этом оптический элемент выполнен с возможностью получения внешнего вида зенитного фонаря. Пластина (100) размещена параллельно светоизлучающей поверхности (106) и выполнена непрозрачной, причем одна из ее сторон имеет отражающую поверхность (102), которая размещена параллельно светоизлучающей поверхности (106). Отражающая поверхность (102) является светоотражающей в заданной спектральной области для получения синего светового излучения. Множество коллимирующих средств коллимирует часть света, принимаемого от источника света, для получения коллимированного светового луча 112 в конкретном направлении. Каждое из коллимирующих средств содержит одно из множества отверстий (104) пластины (100). 4 н. и 7 з.п. ф-лы, 7 ил.

Изобретение относится к оптическим волокнам, имеющим низкие изгибные потери. В заявленной группе изобретений раскрывается два варианта выполнения оптического волокна. В первом варианте оптическое волокно содержит первую внутреннюю область оболочки, имеющую внешний радиус r2 более 8 мкм и показатель преломления Δ2, и вторую внешнюю область оболочки, окружающую внутреннюю область оболочки, имеющую показатель преломления Δ4, причем Δ1>Δ4>Δ2. Разность между Δ4 и Δ2 более 0,002%, Δ4 более 0,0%, и упомянутое волокно имеет число MAC > 7,5. Во втором варианте раскрывается оптическое волокно, которое содержит первую внутреннюю область оболочки, имеющую внешний радиус r2 более 9 мкм и показатель преломления Δ2, и вторую внешнюю область оболочки, окружающую внутреннюю область оболочки, имеющую показатель преломления Δ4, причем Δ1>Δ4>Δ2, разность между Δ4 и Δ2 более 0,002%. Технический результат – уменьшение изгибных потерь. 2 н. и 16 з.п. ф-лы, 4 ил., 8 табл.

Изобретение относится к технике построения пользовательских интерфейсов, а также к робототехнике. Оптическая сенсорная ткань состоит из двух слоев, образованных перпендикулярными друг другу световодами бокового свечения, на боковую поверхность которых нанесено поляризационное покрытие, внутренняя структура которого симметрична относительно осевой линии световода. Сердцевины световодов одного из слоев оптически сопряжены с соответствующими излучателями, подключенными к выходам вычислителя, а сердцевины световодов второго слоя оптически сопряжены с соответствующими фотоприемниками, подключенными к входам вычислительного устройства. Технический результат изобретения заключается в повышении функциональных возможностей, а также в повышении надежности. 17 з.п. ф-лы, 25 ил.

Изобретение относится к области светотехники, в частности к устройству и способу перенаправления света для перенаправления прямого солнечного света (31) в здания и концентрирования в них. Техническим результатом является экономия электроэнергии. Устройство содержит по меньшей мере один прозрачный элемент (10), имеющий, по существу, плоскую верхнюю поверхность (11) в плоскости x-y и, по существу, плоскую нижнюю поверхность (14), причем упомянутые верхняя (11) и нижняя (14) поверхности расположены под углом α друг относительно друга вокруг оси х, и отражатель (20) света для каждого прозрачного элемента (10), имеющий плоскую поверхность. Упомянутая плоская поверхность упомянутого отражателя (20) света расположена, по существу, параллельно упомянутой нижней поверхности (14) упомянутого прозрачного элемента (10) и примыкает к ней. При этом упомянутая отражающая поверхность удалена на некоторое расстояние (12) от упомянутого прозрачного элемента с помощью прозрачной среды, имеющей более низкий коэффициент преломления, чем прозрачный элемент (10), так, что падающий на устройство свет (31) преломляется каждой границей раздела между материалами и отражается отражающим элементом (20). Способ включает в себя этап размещения упомянутого устройства (1), по существу, перпендикулярно прямому солнечному свету (31) в полдень, причем одна из его боковых поверхностей примыкает к стене или окну (40) здания. 2 н. и 13 з.п. ф-лы, 6 ил.
Наверх