Устройство для окислительной деструкции металлоорганических комплексов жидких радиоактивных отходов

Изобретение относится к области ядерной энергетики и касается, в частности, вопросов обращения с жидкими радиоактивными отходами, образующимися при работе атомных электростанций. Устройство для окислительной деструкции металлоорганических комплексов жидких радиоактивных отходов содержит фотохимический реактор с импульсной ксеноновой лампой и блок питания с накопительным конденсатором, высоковольтным выпрямителем, блоком инициирования и блоком управления. Импульсная ксеноновая лампа подключена к блоку питания так, что импульсная ксеноновая лампа и накопительный конденсатор образуют разрядный контур. Колба импульсной ксеноновой лампы выполнена в виде шара или иного тела вращения. В импульсной ксеноновой лампе наименьший внутренний радиус колбы превышает расстояние между электродами не менее чем в 5 раз, а параметры импульсной ксеноновой лампы и разрядного контура связаны расчетным соотношением. Изобретение позволяет повысить эффективность и производительность процесса очистки жидких радиоактивных отходов от металлоорганических комплексов путем интенсификации УФ обработки. 2 ил.

 

Изобретение относится к области ядерной энергетики и касается, в частности, вопросов обращения с жидкими радиоактивными отходами (ЖРО), образующимися при работе атомных электростанций (АЭС). Изобретение может быть использовано для обработки загрязненных радиоактивными элементами растворов при дезактивации оборудования, при работе спецпрачечных, при переработке кубовых остатков (КО) выпарных аппаратов установок переработки трапных вод АЭС.

В ходе эксплуатации АЭС образуется значительное количество жидких радиоактивных сред: протечки (трапные воды), отработавшие дезактивационные растворы, воды спецпрачечной, вода санпропускников, регенерационные растворы ионообменных фильтров систем спецводоочисток и др., которые собираются, усредняются и концентрируются выпариванием. ЖРО гомогенного состава АЭС загрязнены продуктами деления, в основном 134Cs, 137Cs, а также активированными продуктами коррозии, в основном 60Co. Образовавшиеся при упаривании кубовые остатки направляются на временное хранение в железобетонные облицованные емкости. При хранении малорастворимые соединения, захватывая часть радионуклидов, выпадают в осадок и собираются на дне в виде шлама, а осветленная часть КО постепенно декантируется и перерабатывается.

Локализация, концентрирование и переработка таких отходов значительно упрощаются после удаления или разрушения содержащихся в них комплексонов (этилендиаминтетрауксусная кислота (ЭДТА), щавелевая, лимонная кислоты и др.), синтетических поверхностно-активных веществ (СПАВ), которые связывают радионуклиды и затрудняют их выделение традиционными физико-химическими методами.

В последние годы получило развитие направление переработки КО путем выделения из них радионуклидов в небольшом объеме шламов и ионоселективных сорбентов и получения нерадиоактивных или низкорадиоактивных солей, относящихся к категории ОНАО (особонизкорадиоактивные отходы), размещение которых возможно на полигоне промышленных отходов или в простых ангарах. Радиоактивные вещества в растворах кубового остатка ЖРО находятся в виде простых и комплексных ионов, а также коллоидных частиц. Основными радионуклидами являются 137Cs, 134Cs, 60Co. Изотопы цезия находятся в растворе в ионном виде. Изотоп 60Co - в форме комплексов с соединениями, используемыми для дезактивации оборудования, такими как щавелевая кислота, полифосфаты и др. Поэтому для выделения этого радионуклида из раствора необходимо разрушить эти комплексы.

Для осуществления окислительной деструкции металлоорганических комплексов в современных условиях применяют озонирование или фотохимическое окисление путем воздействия ультрафиолетового (УФ) излучения в присутствии перекиси водорода.

Так, при осуществлении известного способа очистки кубовых остатков жидких радиоактивных отходов от радиоактивного кобальта и цезия по патенту RU 2467419 (МПК G21F 9/30, опубл. 20.11.2012) используется устройство для УФ облучения обрабатываемого раствора на основе ксеноновой лампы. Это известное устройство является аналогом предлагаемого технического решения.

Недостатком известного устройства для фотохимической окислительной деструкции металлоорганических комплексов ЖРО является невысокая эффективность окислительной деструкции. Этот недостаток является следствием того, что в известном устройстве для инициирования фотохимических процессов используется жесткое УФ излучение, вырабатываемое ксеноновой эксимерной лампой. Излучение такой лампы обладает узкополосным (квазимонохроматическим) спектром и низкой интенсивностью, что обусловливает невысокую эффективность инициирования фотохимических реакций и очень ограниченное число возможных фотохимических реакций (реализуются лишь такие процессы, для которых энергия электронных связей между ионами в составе металлоорганических комплексов ЖРО совпадает или близка к энергии квантов генерируемого эксимерной лампой излучения).

Известно также устройство для очистки и обеззараживания водных сред по патенту RU 2031850, которое может быть использовано для фотохимической окислительной деструкции растворов ЖРО и принято за прототип.

Известное устройство выполнено с использованием ксеноновой лампы трубчатого типа, работающей в режиме повторяющихся импульсов излучения. Работа ксеноновой лампы в таком режиме характеризуется широким непрерывным спектром вырабатываемого УФ излучения и высокой его интенсивностью. Известное устройство содержит фотохимический реактор с импульсной ксеноновой лампой и блок питания с накопительным конденсатором, высоковольтным выпрямителем, блоком инициирования и блоком управления, при этом импульсная ксеноновая лампа подключена к блоку питания так, что импульсная ксеноновая лампа и накопительный конденсатор образуют разрядный контур.

Известное устройство в значительной степени устраняет недостатки прототипа, а именно за счет повышении интенсивности УФ излучения в импульсе и широкого непрерывного спектра излучения повышается скорость фотохимических реакций и увеличивается их количество, что в результате приводит к повышению эффективности фотохимической деструкции растворов ЖРО.

Однако известному устройству присущи свои недостатки.

Так, интенсивность импульса излучения лампы трубчатого типа в спектральном диапазоне 200…300 нм не очень высока (1,7·103…3,5·103 Вт/см2, что соответствует яркостной температуре 8000…9000 К). Форсированием электрического режима работы такой лампы можно достичь яркостной температуры 10000…12000 К и даже более, однако в таких режимах лампа имеет низкий ресурс работы (что проявляется либо в очень быстрой деградации излучательных характеристик, либо в разрушении лампы), и в рассматриваемой области применения такие решения не могут быть использованы. Одной из главных причин ограничения излучательных характеристик и снижения кпд ламп трубчатого типа в таких режимах является уменьшение прозрачности кварцевой трубки из-за непосредственного воздействия высокотемпературной плазмы и ее коротковолнового излучения на стенку трубки, вызывающее испарение внутреннего поверхностного слоя кварцевой трубки и экранировку УФ излучения плазменного канала образовавшимися парами кварца.

Т.о. ограниченные возможности импульсных трубчатых ксеноновых ламп обусловливают недостаточно высокую эффективность фотохимической деструкции металлоорганических комплексов ЖРО.

Задача, решаемая настоящим изобретением, заключается в выведении из растворов ЖРО радионуклидов и активированных продуктов коррозии.

Техническим результатом от использования предлагаемого технического решения является повышение эффективности и производительности процесса очистки ЖРО от металлоорганических комплексов путем интенсификации УФ обработки, приводящей к увеличению количества и скорости протекания фотохимических окислительных реакций.

Указанный технический результат достигается тем, что колба импульсной ксеноновой лампы выполнена в виде шара или иного тела вращения, при этом в импульсной ксеноновой лампе наименьший внутренний радиус колбы превышает расстояние между электродами не менее чем в 5 раз, а параметры импульсной ксеноновой лампы и разрядного контура связаны соотношением

где

С - емкость накопительного конденсатора, Ф;

U - напряжение заряда накопительного конденсатора, В;

τm - время достижения максимума разрядного тока, с;

l - длина межэлектродного промежутка лампы, м

A=5·10-3 - коэффициент.

Расчетное соотношение (1), полученное в результате экспериментальных исследований, связывает конструктивные параметры предлагаемого устройства, определяющие временные и энергетические характеристики электрического разряда в шаровой лампе, и является необходимым и достаточным условием генерации высокотемпературной плазмы ксенона с высокими излучательными характеристиками в УФ области спектра.

Изобретение поясняется чертежами, где на фиг. 1 изображена упрощенная функциональная блок-схема устройства для окислительной деструкции металлоорганических комплексов жидких радиоактивных отходов, на фиг. 2 - увеличенное схематическое изображение импульсной ксеноновой лампы шаровой конструкции.

Устройство содержит герметичный разъемный корпус 1, выполненный в виде тела вращения из материала, непрозрачного для УФ излучения, и снабженный входным 2 и выходным 3 отверстиями для пропускания обрабатываемой жидкости. Герметичность корпуса обеспечивается уплотнением 4 из деформируемого материала, например химически стойкой резины или фторопласта. Конструктивные элементы, обеспечивающие деформацию уплотняющих материалов (проточки и буртики под прокладки, стягивающие болты и пр.), стандартны и на чертеже не показаны.

Возможно иное выполнение корпуса 1, например, в виде цилиндра.

В корпусе продольно расположена импульсная ксеноновая лампа 5 в виде кварцевой колбы 6 с впаянными в концы колбы электродами: анодом 7 и катодом 8. Колба 6 выполнена в виде шара или иного тела, образованного вращением образующей вокруг оси (чаще всего такая колба имеет вид вытянутого сфероида) и заполнена инертным газом ксеноном при начальном давлении несколько атмосфер.

Конструкция импульсной лампы шарового типа обеспечивает удаление стенки кварцевой колбы Rmin (фиг. 2) от середины межэлектродного промежутка на величину, превышающую межэлектродное расстояние d не менее чем в 5 раз.

Герметичность корпуса 1 с установленной в нем импульсной ксеноновой лампой 5 обеспечивается уплотнениями 9. Корпус в сборе с импульсной ксеноновой лампой образуют фотохимический реактор.

К электродам импульсной ксеноновой лампы 5 подключен блок питания 10, состоящий из накопительного конденсатор 11, высоковольтного выпрямителя 12, блока инициирования 13 и блока управления 14. Конденсатор 11 и импульсная ксеноновая лампа 5 соединены между собой так, что образуют разрядный контур с индуктивностью L.

Высоковольтный выпрямитель 12 может быть реализован в различных вариантах, например по схеме AC/DC преобразователя, работающего на емкостную нагрузку.

Блок инициирования 13 лампы 5 также может быть выполнен по-разному, например в виде быстродействующего сильноточного ключа (тиристора, транзистора и т.д.) или в виде импульсного повышающего трансформатора.

Блок управления 14 обеспечивает согласованную и синхронизированную работу остальных компонентов блока питания в циклическом режиме «заряд-разряд».

В конкретном примере выполнения устройства для окислительной деструкции металлоорганических комплексов жидких радиоактивных отходов технические параметры имеют следующие значения: емкость накопительного конденсатора - 1 мкФ, напряжение заряда - 4 кВ, индуктивность разрядного контура = 10 мкГн, расстояние между импульсной шаровой лампы электродами составляет 5…10 мм, а начальное давление ксенона в лампе - 5…10 атм.

Работа устройства осуществляется следующим образом.

На вход 2 корпуса 1 фотохимического реактора поступает раствор ЖРО. Оператор установки или соответствующая автоматика подает команду включения на блок управления 14, который запускает автоматический циклический режим заряда-разряда. Высоковольтный выпрямитель 12 заряжает накопительный конденсатор 11, при этом напряжение заряда контролируется блоком управления 14. При достижении заданного значения напряжения на конденсаторе 11 (определяется по срабатыванию соответствующим образом настроенного компаратора в блоке управления) высоковольтный выпрямитель 12 выключается, а конденсатор 11 оказывается заряженным до напряжения U. По команде блока управления 14 включается блок инициирования 13, который вырабатывает импульс поджига высокого напряжения (~20…30 кВ), прикладываемый к электродам 7 и 8 импульсной ксеноновой лампы 5. Межэлектродный промежуток лампы пробивается, и начинается разряд конденсатора 11 через лампу 10.

Далее процессы заряда и разряда циклически повторяются до тех пор, пока не будут остановлены соответствующей командой. Максимальная частота повторения циклов «заряд-разряд» и, соответственно, импульсов излучения определяется временем заряда конденсатора 11 до напряжения U (мощностью зарядного устройства - высоковольтного выпрямителя 12) и может достигать 1000 Гц и более. Важно то, что в зависимости от программ, заложенных в память блока управления, и от управляющих команд оператора частота повторения импульсов излучения может меняться от 0 (одиночные импульсы) до максимальной.

Разряд конденсатора в среде ксенона приводит к образованию высокотемпературной интенсивно излучающее плазмы. При соблюдении определенных взаимосвязей между конструктивными параметрами устройства, определенных соотношением (1), эффективная температура излучения плазмы превышает 15000 К, характер спектра излучения - непрерывный во всем диапазоне прозрачности кварцевой колбы 6 лампы 5 (по меньшей мере, от 165 до 2000 нм), при этом в спектре излучения превалирует УФ компонента излучения (более 50%), а интенсивность излучения в спектральном диапазоне 200…300 нм составляет не менее 3,7·104 Вт/см2, что, по крайней мере, на порядок превосходит аналогичную характеристику устройства-прототипа.

Излучение лампы 5 попадает на протекающий в фотохимическом реакторе между кварцевой колбой 6 и внутренней стенкой корпуса 1 раствор ЖРО и инициирует в нем фотохимические реакции окисления. При этом благодаря высокой эффективной температуре излучения импульсной лампы обладает очень высокой интенсивностью в УФ области спектра, что приводит к высокой скорости фотохимических реакций и к интенсивному фотоокислению содержащихся в обрабатываемом растворе ЖРО металлорганических комплексов.

Обработанный раствор ЖРО выводится из фотохимического реактора через выходное отверстие 3.

Для практического использования предложенного решения очень важным является большой ресурс работы (~108…109 импульсов) импульсной лампы шарового типа, который обеспечивается за счет того, что при выполнении приведенного в формуле изобретения признака о соотношении наименьшего внутреннего радиуса колбы и расстояния между электродами лампы разогретая до высокой температуры плазма не контактирует с кварцевой колбой лампы, а слой холодного ксенона (толщиной Δ=Rmin-rp, где Rmin - минимальный внутренний радиус колбы лампы, rp - наружный радиус разрядного (плазменного) канала) экранирует жесткое вакуумное ультрафиолетовое излучение плазмы с энергией квантов, превышающей потенциал ионизации ксенона, благодаря чему повышается механическая стойкость кварцевой стенки к динамическим нагрузкам и исключается проявление эффектов обратимой непрозрачности кварца.

Устройство для окислительной деструкции металлоорганических комплексов жидких радиоактивных отходов, содержащее фотохимический реактор с импульсной ксеноновой лампой и блок питания с накопительным конденсатором, высоковольтным выпрямителем, блоком инициирования и блоком управления, при этом импульсная ксеноновая лампа подключена к блоку питания так, что импульсная ксеноновая лампа и накопительный конденсатор образуют разрядный контур, отличающееся тем, что колба импульсной ксеноновой лампы выполнена в виде шара или иного тела вращения, при этом в импульсной ксеноновой лампе наименьший внутренний радиус колбы превышает расстояние между электродами не менее чем в 5 раз, а параметры импульсной ксеноновой лампы и разрядного контура связаны соотношением

где
С - емкость накопительного конденсатора, Ф;
U - напряжение заряда накопительного конденсатора, В;
τm - время достижения максимума разрядного тока, с;
l - длина межэлектродного промежутка лампы, м;
А=5·10-3 - коэффициент.



 

Похожие патенты:
Изобретение относится к области охраны окружающей среды, а точнее к области переработки жидких радиоактивных отходов (ЖРО) к захоронению. Способ подготовки твердой фазы жидких радиоактивных отходов к захоронению включает разделение жидких радиоактивных отходов на жидкую и твердую фазы.

Изобретение относится к полимерным композициям, применяемым в ядерной технике, а именно для кондиционирования низко- и среднеактивных отработанных ионообменных смол (ИОС).

Изобретение предпочтительно относится к способу уменьшения количества тритиевого водорода, выделяемого атомной промышленностью в процессе работы с радиоактивными отходами.

Изобретение относится к ядерной технике, в частности к переработке высокоактивных отходов, получаемых при переочистке диоксида плутония, используемого при изготовлении смешанного уран-плутониевого топлива.

Изобретение относится к устройству для сушки сверхвысокими частотами отработанных радиоактивных ионообменных смол. Заявленное устройство содержит основание (1), емкость загрузочную (2), кран шаровой (3), дозатор (4), камеру загрузочную (14) с патрубками (15) и ротором (20), реактор с прямоугольным волноводом (27), патрубком (26) и съемным вкладышем - обечайкой (28), переходник (35), шиберы (29, 30), подъемник (41), приводы (31), емкость для сбора обработанного материала (42), термоскоп (16), влагомер (18), вакуумный насос, конденсатор пара, тензометрические датчики веса, генератор ЭМП СВЧ диапазона (36), волноводный ферритовый вентиль (37), источник тока (40), стойку управления с аппаратурой управления и контроля (37), устройство снабжено вертикальным поршневым дозатором (4), состоящим из корпуса, штока, поршня, клапана впускного, фланца клапана впускного, пружины клапана впускного, выпускного клапана, пружины выпускного клапана, привода подачи поршня, выводным патрубком загрузочной камеры с влагомером, выводным патрубком загрузочной камеры с термоскопом, выводным патрубком реактора (25) с вакуумным насосом, конденсатором пара, соединенным с вакуумным насосом, установленным внутри реактора съемным вкладышем-обечайкой, не менее чем тремя тензометрическими датчиками веса, переходником, нижний фланец которого имеет внутреннюю кольцевую конусную проточку, системой блокировки привода пиноли ротора, системой блокировки привода заслонки шибера.

Изобретение относится к средствам обращения с жидкими радиоактивными отходами. Способ переработки жидких радиоактивных отходов (ЖРО) содержит следующие основные стадии: подача исходного раствора ЖРО, выпаривание ЖРО, корректировка рН исходного раствора, добавление активированного пиролюзита к исходному раствору, перемешивание полученной суспензии, нагрев суспензии, отвод выделяющегося пара с последующей его конденсацией, отбор проб выделяющихся газов и их хроматографический анализ, образование сухого остатка, а также цементирование сухого остатка.

Изобретение относится к атомной энергетике, а именно к ионообменной технологии переработки борсодержащих вод в системе регенерации борной кислоты из теплоносителя на АЭС с реакторами типа ВВЭР.

Изобретение относится к способу иммобилизации жидких содержащих тритий радиоактивных отходов. Способ заключается в отверждении жидких содержащих тритий радиоактивных отходов в устойчивой кристаллической матрице, получаемой путем обезвоживания кристаллогидрата соли металла, удаления кристаллизационной воды.

Изобретение относится к технологии радиационной обработки различных объектов и может быть использовано в области медицины, пищевой промышленности и обработки различных материалов.

Изобретение относится к области дезактивации оборудования, используемого при переработке облученного ядерного топлива атомных электростанций (ОЯТ АЭС). Способ дезактивации экстракционного оборудования путем его промывки раствором комплексона кислотного характера в разбавленной азотной кислоте заключается в том, что в многоступенчатый экстрактор или каскад экстракторов, работающий в режиме противоточной кислотной промывки, после полной реэкстракции и вытеснения радионуклидов вводят водный раствор комплексона или соли комплексона.

Изобретение относится к радиохимической технологии и может быть использовано для получения порошка диоксида урана, идущего на изготовление керамических таблеток уранового оксидного ядерного топлива. Способ получения оксидов урана под действием микроволнового излучения осуществляют путем нагревания уранилнитрата. При этом используют твердый уранилнитрат, предварительно обработанный гидразингидратом. Процесс проводят при температуре 600-1000°С в течение 10-30 минут. Изобретение позволяет упростить способ получения оксидов урана за счет использования твердого уранилнитрата в процессе микроволновой термической денитрации при взаимодействии с гидразингидратом с исключением образования водных растворов-отходов при проведении процесса, уменьшить время проведения процесса. 2 з.п. ф-лы, 2 ил., 2 табл., 4 пр.

Изобретение относится к области охраны окружающей среды, направлено на сохранение природных ресурсов и защиту среды обитания человека, изобретение может быть использовано для локализации радиоактивных отходов, в частности донных отложений, загрязненных радионуклидами. Способ переработки радиоактивных донных отложений включает их смешение с веществом, обеспечивающим их заключение в керамическую матрицу, и выдержку до окончания схватывания. При этом смешение компонентов производится одновременно при непосредственном заполнении контейнера матричными материалами и донными отложениями в виде суспензий. В качестве вещества, обеспечивающего заключение донных отложений в форму керамической матрицы, используют такие связующие, как вода, дигидрофосфат калия, оксид магния, фосфоросодержащий модификатор, при следующем соотношении компонентов, мас.%: донное отложение 2,5; KH2PO4 3; Н2O 2; MgO 1; фосфоросодержащий модификатор 0,0425. В способе возможно использование воды, предварительно охлажденной до 8-10°C. Техническим результатом является повышение экологической безопасности хранения радиоактивных донных отложений за счет повышения эффективности процесса перемешивания отходов, оптимизации времени их отверждения и снижения скорости выщелачивания радионуклидов из матрицы. 1 з.п. ф-лы, 1 ил., 3 табл., 1 пр.

Изобретение относится к фильтровальному устройству для фильтрации содержащего радиоактивные аэрозоли и газообразный радиоактивный йод газового потока. Фильтровальное устройство для фильтрации газового потока содержит закрытый герметично для текучей среды корпус, по меньшей мере, с одним входом для неочищенного газа, одним выходом для очищенного газа и одним содержащим фильтрующую среду фильтрующим элементом, который расположен в корпусе так, что подлежащий фильтрации газовый поток попадает от одного входа для неочищенного газа в выход для очищенного газа только через фильтрующий элемент. В устройстве предусмотрен, по меньшей мере, один трубный элемент, который проходит через корпус, таким образом от первого проточного поперечного сечения ко второму проточному поперечному сечению, которое, при рассматривании в вертикальном направлении, лежит над первым проточным поперечным сечением, что все внутреннее пространство трубного элемента находится в контакте исключительно с текучей средой, окружающий фильтровальное устройство. Изобретение позволяет повысить о твод тепла. 68 з.п. ф-лы, 5 ил.

Изобретение относится к радиохимической технологии и может быть использовано для испытаний оборудования в технологии переработки отработавшего ядерного топлива (ОЯТ). Способ приготовления имитатора для отработки процессов осветления продуктов кислотного растворения отработавшего ядерного топлива заключается в получении тонкодисперсной модельной суспензии, содержащей химически инертную в азотнокислых средах твердофазную композицию. В состав композиции входят более одного компонента, представляющие собой тонкодисперсные гидратированные оксидные и металлидные формы, которые вносят в виде отдельно приготовленных порошков путем диспергирования в жидкости с получением концентрации частиц твердой фазы 10-35000 мг/л, плотности частиц твердой фазы 4,4-6,5 г/см3, размера частиц твердой фазы 50-2500 нм, плотности суспензий 1,3-2,4 г/см3. Изобретение позволяет имитировать продукт кислотного растворения ОЯТ с учетом способа его получения, типа ОЯТ, глубины выгорания, длительности выдержки перед переработкой, операций, предшествующих растворению. 14 з.п. ф-лы, 5 ил., 1 табл., 1 пр.

Изобретение относится к экологии, в частности к защите окружающей среды, и может найти применение при восстановлении плодородия и снижении радиоактивности почв. Способ ремедиации радиоактивных почв включает посев радиоаккумулирующих растений, природное минеральное сырье. На зараженный радиацией участок вносят 4-5 т/га цеолитсодержащей глины аланит, содержащий 30-33% кальция. В качестве радиоаккумулирующих растений используют амарант, под покров которого высевают многолетние бобовые травы, клевер и люцерну, обволакивая их семена смесью муки амаранта и гумата калия в соотношении 1:1, смачивая их минеральной водой, в состав которой входят кальций и калий. Способ позволяет за короткий период снизить радиацию почв на 87,8% и сохранить ее плодородие. 1 табл., 2 пр.

Изобретение относится к области охраны окружающей среды, может быть использовано для переработки радиоактивных отходов путем их иммобилизации. Способ остекловывания радиоактивного шлака включает его смешение с флюсующей добавкой, кальцинацию, нагрев смеси до температуры плавления, выдержку при этой температуре для гомогенизации и последующую кристаллизацию путем охлаждения расплава для получения химически и радиационно-устойчивой стеклокерамики, в качестве флюсующей добавки к кальцинированному шлаку используют тетраборат натрия (Na2B4O7) при следующем соотношении компонентов, масс. %: шлак 55-85; Na2B4O7 - 15-45. Изобретение позволяет получить стеклокерамику, в которой образуется силикофосфатная фаза, прочно фиксирующая актинидные элементы и обладающая высокой химической и радиационной устойчивостью и термодинамической стабильностью. 3 з.п. ф-лы, 4 ил., 3 пр.

Изобретение относится к средству дезактивации радиоактивного углеродсодержащего материала, в частности графита. Предложенный способ включает инжекцию водяного пара в указанный материал одновременно с первой термической обработкой, осуществляемой путем обжига материала при температуре в интервале от 1200 до 1500°С. При этом первой термической обработке предшествует стадия сушки материала для контроля качества воды, находящейся в реакторе. Предусмотрена также возможность проведения при более низкой температуре второй термической обработки (RO2, RO3) после первой термической обработки (RO1) с инжекцией оксоуглерода для обеспечения процесса окисления в соответствии с реакцией Будуара. Техническим результатом является снижение уносов массы из графита и уменьшение объема вторичных отходов. 4 н. и 11 з.п. ф-лы, 3 ил.
Изобретение относится к технологиям обработки материалов с радиоактивным загрязнением и может быть использовано при очистке жидких радиоактивных отходов (ЖРО). Способ очистки жидких радиоактивных отходов включает подачу жидких радиоактивных отходов в емкость, внесение в указанную емкость сорбентов, перемешивание жидких радиоактивных отходов и сорбентов в емкости, отделение отработанного сорбента от раствора, отличающийся тем, что сорбент вносят в емкость в упаковке, выполненной из растворимых в водной среде материалов. Изобретение позволяет снизить дозовую нагрузку на обслуживающий персонал в процессе очистки жидких радиоактивных отходов, упростить технологию очистки жидких радиоактивных отходов, повысить надежность и безопасность процесса очистки жидких радиоактивных отходов. 1 з.п. ф-лы, 2 пр.

Изобретение относится к области разделения жидких сред. Выпарная установка для концентрирования жидких растворов содержит, по меньшей мере, одну ступень выпаривания, включающую барабан с приводом вращения, трубкой подачи исходного раствора в его внутреннюю полость, трубкой отвода упаренного раствора и приспособлением для очистки его внутренней поверхности. Установка снабжена паровым компрессором, выход которого соединен трубопроводом с греющей паровой рубашкой барабана первой ступени выпаривания, а вход компрессора соединен трубопроводом с внутренней полостью барабана одноступенчатой установки или с внутренней полостью барабана последней ступени выпаривания. Греющая рубашка каждой ступени соединена трубопроводом с внутренней полостью барабана предыдущей ступени. Количество ступеней выбирается из условия превышения дополнительной генерации пара при переходе сжатого в компрессоре пара из перегретого состояния в насыщенное состояние над суммарной разностью расходов конденсируемого и генерируемого пара в барабанах всех ступеней выпаривания. Изобретение позволяет снизить энергетические затраты при обеспечении непрерывной работы. 7 з.п. ф-лы, 1 ил.

Изобретение относится к атомной промышленности в части консервации емкостей-хранилищ радиоактивных отходов. Способ консервации остатков радиоактивных отходов в емкостях-хранилищах включает заполнение емкости-хранилища бетоном с использованием штатных технологических отверстий и пробуренных скважин, в которых установлены вертикально перемещаемые бетоноводы, через которые в емкость-хранилище укладывают бетон-консервант последовательными слоями и откачку жидких радиоактивных отходов. Скважины бурят по периферии емкости-хранилища, по которым сначала укладывают бетон-консервант с образованием вокруг всасывающего патрубка насоса впадины и вытеснением в нее с периферии имеющихся в емкости-хранилище жидких радиоактивных отходов, откачку которых осуществляют периодически по мере уменьшения площади впадины и возрастания уровня жидких радиоактивных отходов в ней. После откачки во впадину через штатное технологическое отверстие, расположенное над впадиной, подают цементный раствор. Изобретение позволяет уменьшить объем жидких радиоактивных отходов, отверждаемых в емкости. 2 з.п. ф-лы, 5 ил.
Наверх