Способ получения ферритов-хромитов переходных элементов со структурой шпинели



Способ получения ферритов-хромитов переходных элементов со структурой шпинели
Способ получения ферритов-хромитов переходных элементов со структурой шпинели
Способ получения ферритов-хромитов переходных элементов со структурой шпинели

 


Владельцы патента RU 2602277:

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" (RU)

Изобретение относится к способу получения твердых растворов со структурой шпинели на основе ферритов и хромитов переходных элементов и может найти применение в химической промышленности в процессах органического синтеза для производства бутадиена и углеводородов из синтез-газа. Авторами решена задача разработки способа изготовления эффективного катализатора на основе феррита-хромита никеля (II)-меди (II) посредством гомогенизации исходных оксидов никеля (II), железа (III), хрома (III) с введением в смесь оксидов минерализатора хлорида калия с введением дополнительно оксида меди (II), брикетирования под давлением 15 МПа и термообработки полученной смеси оксидов при температуре 760-800°C. Технический результат от введения оксида меди (II) заключается в снижении температуры термообработки. 5 ил., 6 пр.

 

Изобретение относится к способу получения твердых растворов ферритов-хромитов переходных элементов со структурой шпинели и может найти применение в химической промышленности в процессах органического синтеза, например при производстве бутадиена и конверсии оксида углерода (II).

Известен способ получения катализатора конверсии оксида углерода (II) на основе хромита-алюмината меди (II)-цинка [Технология катализаторов / Под ред. И.П. Мухленова, Л.: Химия, 1989. - 272 с.], по которому в качестве исходных материалов применяются гидрокарбонат меди (II), гидроксид алюминия и хромовая кислота. Исходные вещества проводят в пластификаторе с паровым обогревом, полученную массу сушат 8-10 часов на ленточной сушилке при 100-120°C, а затем во вращающейся прокалочной печи при температуре 450°C в течение 6-8 часов. Прокаленную шихту повторно смешивают со связующей добавкой, в качестве которой используют бихромат меди с оксидом цинка, подсушивают при 100-110°C в течение 8-10 часов, смешивают с графитом и таблетируют.

Недостатком этого способа получения шпинелей являются загрязнение окружающей среды продуктами разложения солей, большие затраты энергии для нагрева и выпаривания воды, использование опасных для здоровья веществ.

Наиболее близким к заявляемому является способ получения шпинелей из смеси оксидов Патент №2257953, «Способ получения железо-хром-никелевых шпинелей», опубл. 10.08.2005, МПК B01J 23/86), согласно которому используют исходные оксиды никеля (II), железа (III), хрома (III) и минерализатор - хлорид калия в количестве 0,5-1,5% (масс.) от веса оксидов. Далее исходные оксиды и минерализатор гомогенизируют в агатовой ступке в течение одного часа и брикетируют в таблетки диаметром 20 мм под давлением P=15 МПа. Синтез шпинели осуществляют в течение 4-5 часов при температуре 800-1000°C. Для процессов, в которых нежелательно присутствие хлорида калия, полученную железо-хром-никелевую шпинель размалывают до размера зерен 315 мкм и отмывают от хлорида калия до отрицательной реакции на хлорид-ионы. В итоге получают образцы шпинели, содержащие одну хорошо окристаллизованную фазу шпинели.

Недостатком этого способа является проведение синтеза при высоких температурах термообработки, а также получение образцов с мало активной поверхностью.

Перед авторами стояла задача разработки способа получения шпинелей на основе ферритов-хромитов переходных элементов, имеющих повышенные значения удельной площади поверхности, при более низких температурах термообработки, что позволяет существенно снизить энергоемкость, затраты на обслуживание оборудования и, тем самым, удешевить их производство при одновременном улучшении эксплуатационных характеристик.

Поставленная задача решается путем получения твердых растворов со структурой шпинели путем гомогенизации исходных оксидов железа (III), хрома (III), никеля (II) и минерализатора хлорида калия, брикетирования и термообработки, причем гомогенизацию проводят в присутствии оксида меди (II) и термообработку смеси исходных материалов проводят при температуре 760-800°C.

Технический результат от введения оксида меди (II) заключается в снижении температуры и формировании структуры, содержащей две фазы шпинели, и обеспечивается за счет образования микрорасплава хлоридов меди CuCl2, CuCl при температуре около 430°C, переводящих процесс формирования структуры из диффузионной области в кинетическую.

На Фиг. 1 представлена рентгенограмма образцов шпинелей, полученных из оксидов переходных элементов NiO-CuO-Fe2O3-Cr2O3 в присутствии KCl при температуре термообработки 800°C.

На Фиг. 2 представлена микрофотография образца, полученного из оксидов переходных элементов NiO-CuO-Fe2O3-Cr2O3 в присутствии KCl при температуре 800°C.

На Фиг. 3 представлена рентгенограмма образца, полученного из оксидов переходных элементов NiO-CuO-Fe2O3-Cr2O3 в присутствии KCl при температуре 900°C.

На Фиг. 4 представлена рентгенограмма образцов шпинелей NiFe0.6Cr1.4O4, полученных из оксидов переходных элементов в присутствии КСl при температуре термообработки 800°C.

На Фиг. 5 представлена рентгенограмма образца, полученного из оксидов переходных элементов NiO-CuO-Fe2O3-Cr2O3 в присутствии KCl при температуре 700°C.

Способ заключается в получении твердых растворов со структурой шпинели на основе ферритов-хромитов никеля (II)-меди (II) путем дозирования исходных оксидов никеля (II), меди (II), железа (III), хрома (III) и минерализатора хлорида калия в количестве 0,5-1,5% (масс.) от веса оксидов. Далее исходные оксиды и минерализатор гомогенизируют в агатовой ступке в присутствии этилового спирта в течение одного часа и брикетируют в таблетки диаметром 20 мм под давлением P=15 МПа. Синтез шпинелей осуществляют в течение 40-45 часов при температуре 760-800°C. Для процессов, в которых нежелательно присутствие хлорида калия, полученный материал размалывают до размера зерен 315 мкм и отмывают от хлорида калия до отрицательной реакции на хлорид-ионы.

Пример 1. Отвешивали с погрешностью 0,0005 г заданные рецептурой количества исходных оксидов никеля (II), меди (II), железа (III) и хрома (III), а также минерализатор, в качестве которого брали хлорид калия. При этом состав исходной шихты был следующий: NiO - 0.3-0.5% (мол.), CuO - 0.5-0.7% (мол.), Fe2O3 - 0.3-0.5% (мол.), Cr2O3 - 0.5-0.7% (мол.), хлорид калия - 0,2-1,2% (масс.) (сверх 100%). Смесь гомогенизировали в течение часа в агатовой ступке в присутствии этилового спирта. Полученную шихту брикетировали в таблетки диаметром 20 мм под давлением 15 МПа, помещали в муфельную печь и подвергали термообработке при температуре 780°C в течение 48 часов.

Окончание процесса формирования структуры шпинели определяли с помощью рентгенофазового анализа: синтез шпинелей прошел на 100% (на рентгенограммах образцов содержатся только линии, характеризующие шпинель). При этом материал содержит две фазы шпинели - со структурой кубической шпинели на основе феррита никеля (II) и со структурой тетрагональной шпинели на основе хромита меди (II). Материал имеет развитую поверхность, размер кристаллитов - от 220 нм до 3 мкм, площадь поверхности, измеренная методом BET по адсорбции азота, составляет 1.82 м2/г.

Пример 2. Готовили феррит-хромит никеля (II)-меди (II) аналогично описанному в примере 1, только термообработку проводили при температуре 760°C в течение 54 часов.

Окончание процесса формирования структуры шпинели определяли с помощью рентгенофазового анализа: синтез шпинелей прошел на 100% (на рентгенограммах образцов содержатся только линии, характеризующие шпинель). При этом материал содержит две фазы шпинели - со структурой кубической шпинели на основе феррита никеля (II) и со структурой тетрагональной шпинели на основе хромита меди (II). Материал характеристики, как в примере 1.

Пример 3. Готовили феррит-хромит никеля (II)-меди (II) аналогично описанному в примере 1, только термообработку проводили при температуре 800°C в течение 43 часов.

Окончание процесса формирования структуры шпинели определяли с помощью рентгенофазового анализа: синтез шпинелей прошел на 100% (на рентгенограммах образцов содержатся только линии, характеризующие шпинель). При этом материал содержит две фазы шпинели - со структурой кубической шпинели на основе феррита никеля (II) и со структурой тетрагональной шпинели на основе хромита меди (II). Материал характеристики, как в примере 1.

Пример 4. Готовили феррит-хромит никеля (II)-меди (II) аналогично описанному в примере 1, только термообработку проводили при температуре 900°C. По окончании термообработки рентгенофазовый анализ показал, что процесс формирования структуры завершен полностью (в образце не присутствуют исходные оксиды), однако образец содержит три фазы: кубическую шпинель, тетрагональную шпинель и фазу делафоссита. Размер кристаллитов от 214 нм до 2 мкм. Значения площади поверхности, измеренной методом BET, - 1.06 м2/г.

Пример 5. Готовили феррит-хромит никеля (II) аналогично описанному в примере 1, только не вводили CuO. По окончании термообработки рентгенофазовый анализ показал, что процесс формирования структуры завершен полностью (в образце не присутствуют исходные оксиды), однако образец содержит хорошо окристаллизованную фазу шпинели с недостаточно развитой поверхностью. Значения площади поверхности, измеренной методом BET, - около 1 м2/г.

Пример 6. Готовили феррит-хромит никеля (II)-меди (II) аналогично описанному в примере 1, только термообработку проводили при температуре 700°C. По окончании термообработки рентгенофазовый анализ показал, что процесс формирования структуры завершен не полностью (в образце присутствуют исходные оксиды).

Как видно из приведенных примеров, процесс изготовления ферритов-хромитов переходных элементов при температуре 760-800°C в присутствии оксида меди (II) завершается формированием структуры с наиболее высоким значением площади поверхности. Процесс при температуре термообработки 760-800°C проходит полнее по сравнению с процессом в отсутствии оксида меди (II) либо по сравнению с процессом, проводимым при температуре 700°C. Проведение процесса при температуре 900°C приводит к увеличению энергетических затрат на производство шпинелей и образованию дополнительно фазы делафоссита, что не позволяет получать образец только со структурой шпинели, а при отсутствии оксида меди (II) формируется материал, содержащий одну фазу шпинели с невысокими значениями площади поверхности.

Способ получения шпинелей путем гомогенизации исходных оксидов железа (III), хрома (III), никеля (II) и минерализатора хлорида калия, брикетирования и термообработки, отличающийся тем, что гомогенизацию проводят в присутствии оксида меди (II) и термообработку смеси исходных материалов проводят при температуре 760-800°С.



 

Похожие патенты:

Изобретение относится к многокомпонентному оксидному катализатору, который используется для реакции парофазного каталитического окисления или реакции парофазного каталитического аммоксидирования пропана или изобутана.

Изобретение относится к катализаторам (вариантам) для получения ацетальдегида в процессе изомеризации окиси этилена, а также к способу приготовления заявленных катализаторов.

Изобретение относится к химической промышленности, а именно к области производства гетерогенных катализаторов преобразования метанола в углеводороды, и может быть с успехом реализовано на предприятиях химической промышленности, в том числе для получения топлив.

Изобретение раскрывает экструдированный катализатор для изомеризации 1-бутена, включающий MgO в диапазоне от 0.1 мас. % до 90 мас.
Изобретение раскрывает зернистый десульфирующий материал для десульфирования потока технологической текучей среды, содержащий одно или более соединений меди, нанесенных на зернистый оксид цинка как материал носителя, причем данный десульфирующий материал присутствует в форме гранул, которые составляют одно или более порошкообразных соединений меди, оксид цинка, оксид цинка, полученный прокаливанием одного или более предшественников оксида цинка, и одно или более связующих веществ, и имеет содержание меди, в пересчете на CuO, составляющее от 0,1 до 5,0 масс.

Изобретение относится к области каталитического процесса дегидрирования циклогексанола в технологии получения ε-капролактама. Заявленный катализатор дегидрирования циклогексанола в циклогексанон включает карбонат кальция, оксид цинка, дополнительно содержит смесь терморасширенного графита и шунгита в их соотношении 1,0-1,2:0,1-0,12 при следующем содержании компонентов, мас.%: карбонат кальция - 16,0-38,0; оксид цинка - 61,5-2,5; смесь терморасширенного графита и шунгита - 0,5-1,5.

Изобретение относится к способу и устройству для смешивания потоков регенерированного и карбонизированного катализаторов. Способ смешивания двух потоков катализатора, включающий подачу первого потока катализатора в пространство между стенкой лифт-реактора и стенкой камеры, размещенной в указанном лифт-реакторе; подачу второго потока катализатора в указанный лифт-реактор; прохождение указанного первого потока катализатора из указанного пространства в отверстие в указанной камере и прохождение указанных первого потока катализатора и второго потока катализатора вверх в указанном лифт-реакторе; включающий прохождение указанного первого потока катализатора вдоль указанной стенки указанной камеры перед поступлением указанного первого потока в указанное отверстие.

Изобретение относится к способу и устройству для смешения потоков зауглероженного и регенерированного катализатора. Способ смешения двух потоков катализатора, включающий подачу первого потока катализатора, который представляет собой поток регенерированного катализатора, в камеру; подачу второго потока катализатора, который представляет собой поток зауглероженного катализатора, в вертикальный стояк; пропускание катализатора из указанной камеры в указанный вертикальный стояк; и пропускание указанного первого потока катализатора и указанного второго потока катализатора вверх по указанному вертикальному стояку.

Изобретение относится к тройному катализатору для обработки выбросов отработанных газов из двигателей внутреннего сгорания с принудительным зажиганием, установленных на транспортных средствах, фильтру для сажи с тройным катализатором, способу получения катализатора, способу обработки выбросов отработанных газов, выхлопной системе для двигателя внутреннего сгорания и транспортному средству.

Изобретение относится к катализатору для окислительной очистки нефти и нефтяных дистиллятов от меркаптанов. Данный катализатор содержит комплекс соли меди с азотсодержащим лигандом, иммобилизованный на носителе.

Изобретение относится к способу повышения селективности при получении акриловой кислоты с помощью оболочечного катализатора для частичного газофазного окисления акролеина до акриловой кислоты, состоящего из полой цилиндрической несущей подложки длиной от 2 до 10 мм, наружным диаметром от 4 до 10 мм и толщиной стенок от 1 до 4 мм, а также нанесенной на наружную поверхность несущей подложки оболочки из каталитически активной оксидной массы общей формулы (I): в которой X1 означает один или несколько элементов из группы щелочных и щелочно-земельных металлов, X2 означает один или несколько элементов из группы кремния, алюминия, титана и циркония, и n означает стехиометрический коэффициент элемента кислорода, который определяется стехиометрическими коэффициентами отличающихся от кислорода элементов, а также их зарядовым числом в формуле (I).

Изобретение относится к области очистки газов от вредных примесей и может быть использовано для очистки газовых смесей от оксида углерода в системах коллективной и индивидуальной защиты органов дыхания.

Изобретение относится к способам получения катализаторов очистки выбросов дизельных двигателей. .

Изобретение относится к способу получения этилацетата дегидрированием этанола в присутствии медь-цинкового катализатора при повышенной температуре и давлении. .

Изобретение относится к катализаторам для получения сложного эфира карбоновой кислоты. .
Изобретение относится к катализаторам, содержащим оксид железа. .

Изобретение относится к области нефтепереработки и нефтехимии, в частности к катализаторам для гидроочистки нефтяных дистиллятов. .
Наверх