Способ визуализации ограниченных (замкнутых) нестационарных вихревых течений

Изобретение относится к контрольно-измерительной технике и позволяет исследовать ограниченные (замкнутые) вихревые потоки жидкости. Изобретение может использоваться в фундаментальных и прикладных исследованиях в экспериментальной гидродинамике. Возможно применение в экологии, технологиях химических и каталитических реакций, изучении атмосферных явлений, а также ряде других областей науки и промышленных технологий, связанных с необходимостью невозмущающих измерений и контроля Способ визуализации замкнутых нестационарных вихревых течений заключается в том, что после установления исследуемого режима течения через отверстие в нижней неподвижной крышке придонную область замкнутого объема с рабочей жидкостью заполняют красителем. Причем используют краситель с плотностью, в 1,2-1,4 раза превышающей плотность рабочей жидкости. При этом в процессе визуализации плотность красителя уменьшается, а время растворения красителя больше характерных времен визуализации течения. Техническим результатом является обеспечение возможности проведения исследования замкнутых нестационарных вихревых течений при Re больше 6000. 2 ил.

 

Изобретение относится к контрольно-измерительной технике и позволяет исследовать ограниченные вихревые потоки жидкости. Изобретение может использоваться в фундаментальных и прикладных исследованиях в экспериментальной гидродинамике. Возможно применение в экологии, технологиях химических и каталитических реакций, изучении атмосферных явлений, а также ряде других областей науки и промышленных технологий, связанных с необходимостью невозмущающих измерений и контроля.

Экспериментальное исследование замкнутых нестационарных вихревых течений, генерируемых различными модельными устройствами, например, в цилиндрическом контейнере с вращающимися крышками, является непростой задачей в силу того, что подобные течения обычно характеризуются широкополосным набором различных компонент движения.

Для исследования динамики нестационарного вихревого течения и его кинематических характеристик наиболее перспективно использовать оптико-лазерные методы, не вносящие возмущения в исследуемый гидродинамический поток. Данные методы являются наиболее универсальными для регистрации кинематических характеристик нестационарных потоков жидкости и газа, позволяют проводить как локальные, так и панорамные (полевые) измерения в трехмерных потоках с высоким пространственным и временным разрешением, однако требуют использования мощных источников лазерного излучения и чувствительных фотоприемников. Наименее затратным и более простым методом является визуализация исследуемого течения. Визуализация выполняется с использованием различных типов оптических неоднородностей (например, вводимых в поток засеивающих частиц нейтральной плавучести) и освещением потока световым сечением. Фиксация разными способами (фото- и видеосъемкой, простым наблюдением) положения частиц в потоке в разные моменты времени позволяет получить качественную информацию о разных особенностях потока (вихрях, застойных зонах и зонах возвратного течения) и оценить пространственный размер этих областей.

Известен способ визуализации вихревого потока текучей среды в закрытом цилиндре (Sorensen J.N. Visualization of rotating fluid flow in a closed cylinder. Lyngby, Denmark: DTU, Department of Fluid Mechanics. 1992. Rep. AFM 92-06), при котором в объем с рабочей жидкостью вводят частицы, освещают поток световым сечением, фиксируют фотокамерой положение частиц в потоке в разные произвольные моменты времени. Вихревое течение в замкнутом цилиндре генерируется вращающейся с постоянной угловой скоростью верхней крышкой. В качестве светового сечения используют «лазерный нож», в качестве частиц используют Родамин-В со средним диаметром частиц 30 мкм. Для получения равномерного распределения рассеивающих частиц в потоке они заранее вводятся в контейнер, чтобы устранить возможность асимметрии. В качестве рабочей жидкости выбирается вода или водно-глицериновая смесь различной концентрации, с плотностью от 1 г/см3 - вода до 1,23 г/см3 - глицерин. Засеивающие частицы плотностью, близкой к плотности рабочей жидкости, обладают нейтральной плавучестью и равномерно распределены в потоке. Данный способ хорошо работает при стационарном режиме течения до числа Рейнольса (Re) 2500, но при увеличении числа Рейнольдса (Re) формируется нестационарное течение и движение частиц все более отклоняется от линий течения жидкости.

Недостатки способа:

1) качество картины структуры потока в различных областях светового сечения пропорционально времени записи и концентрации частиц;

2) при исследовании закрученного течения визуализация дает хорошие данные только для осесимметричного стационарного режима;

3) При Re больше 2500 наблюдается несоответствие наблюдаемых положений частиц структуре движения жидкости - область возвратного течения не визуализируется.

Известен способ (Наумов И.В., Окулов В.Л., Соренсен Ж.Н. Диагностирование пространственной структуры вихревых мультиплетов в закрученном течении // Теплофизика и аэромеханика, 2010. Т. 17, N 4. С. 585-593), при котором в объем с рабочей жидкостью вводят частицы. В качестве частиц используют воздушные пузырьки диаметром 0,2-0,3 мм. В замкнутом цилиндрическом контейнере пузырьки собираются на верхней крышке за счет растворенного в рабочей жидкости воздуха. Пузырьки образуются естественным путем при дегазации либо вводятся принудительно в рабочую жидкость (водно-глицериновую смесь). При вращении верхней крышки пузырьки двигаются от периферии вниз цилиндра и благодаря более низкому значению давления в центре вихрей пузырьки воздуха, при движении вдоль оси цилиндра вверх, собираются на их оси, образуя хорошо наблюдаемую тонкую воздушную нить.

Недостатки:

1) при Re больше 3000 и переходе к развитому нестационарному течению градиента давления становится недостаточно для движения пузырьков по вихревым осям, и структура потока не визуализируется.

Известен способ визуализации, описанный в работе Эскудье (Escudier М.Р. Observation of the flow produced in cylindrical container by rotating endwall // Experiments in Fluids, 1984. №2, p. 189-196.), при котором в объем с рабочей жидкостью вводят частицы, освещают поток световым сечением, фиксируют фотокамерой положение частиц в потоке в разные произвольные моменты времени. В качестве частиц используют флуоресцентный краситель. В качестве светового сечения используют «лазерный нож». Краситель вводят вдоль оси цилиндрического контейнера после установления необходимого для проведения исследований режима течения (через отверстие в нижней вращающейся крышке, генерирующей соосную с осью вращения крышки вихревую структуру). Краситель имеет плотность, близкую к плотности рабочей жидкости - водно-глицериновой смеси плотностью от 1 до 1,23 г/см3.

Недостатки способа:

1) подача красителя приводит к тому, что через некоторое время он заполняет весь контейнер, перемешиваясь и не позволяя визуализировать структуру потока.

2) при Re больше 3000 формируется нестационарное течение, при этом прецессирующая вихревая ось не совпадает с точкой ввода красителя и поэтому краситель движется не по вихревой оси.

Наиболее близким к заявляемому способу является способ, описанный в работе (Окулов В.Л., Меледин В.Г., Наумов И.В. Экспериментальное исследование закрученного потока в кубическом контейнере // ЖТФ. 2003. Т. 73, №10. С. 29-35), при котором в объем с рабочей жидкостью вводят частицы. Через отверстие в нижней неподвижной крышке при вращающейся верхней придонную область замкнутого контейнера заполняют красителем с плотностью, в 1,02-1,08 раза превышающую плотность рабочей жидкости. Например, рабочая жидкость водно-глицериновая смесь, а краситель - раствор концентрированного молока. Краситель вводят после установления необходимого для проведения исследований режима течения, регулируя угловую скорость вращения крышки. Краситель поднимается со дна контейнера восходящим приосевым течением, визуализируя различные структуры течения для разных значений режимных параметров. Визуализация распада вихревой структуры проводилась при Re=5000, 5500 и 6000.

Недостатки:

1) при нестационарном режиме течения при Re больше 6000 краситель перебалтывается потоком, не позволяя идентифицировать вихревую структуру.

Для больших чисел Рейнольдса возникает сложное нестационарное течение с двумя процессами колебаний: прецессии винтового вихревой структуры вокруг вертикальной оси контейнера и осцилляций рециркуляционной зоны вдоль этой оси. Краситель со дна контейнера восходящим течением поднимается по вихревой оси, визуализируя ядро прецессирующей вихревой структуры. При Re=5000 и 5500 наблюдается устойчивая картина распада вихревой структуры спирального типа. При увеличении числа Рейнольдса амплитуда этих двух колебаний в потоке увеличивается, и визуализация при числах Рейнольдса больше чем 6000 становится бесполезной, так как краситель размывается и заполняет собой весь контейнер. В случае визуализации красителем с очень близкой к рабочей жидкости плотности можно предположить, что на осях вихрей находится максимум осевой скорости течения и за счет этого частицы красителя увлекаются вдоль осей быстрее, делая видимыми как изначальный одиночный вихрь, так и многовихревую структуру после его распада.

Хотя ранее подобное расщепление ядра в закрученном потоке в трубе наблюдалось с помощью визуализации красящим веществом близкой к воде плотности (например, в Faler, J.H., Leibovich, S. An experimental map of the internal structure of a vortex breakdown // J Fluid Mech. 1978. 86(2), p. 313-335), но оно обеспечивалось непрерывной подачей краски к точке расщепления центрального вихря. В замкнутых нестационарных вихревых течениях заранее положение точки расщепления неизвестно из-за прецессии вихревого ядра, и способ предварительного хаотического засеивания трассерных частиц, а также ввод красителя по геометрической оси не мог обеспечить их непрерывную подачу к данной точке.

Задачей заявляемого изобретения является обеспечение возможности проведения исследования замкнутых нестационарных вихревых течений при Re больше 6000.

Поставленная задача решается тем, что в способе визуализации замкнутых нестационарных вихревых течений, при котором после установления исследуемого режима течения через отверстие в нижней неподвижной крышке придонную область замкнутого объема с рабочей жидкостью заполняют красителем, согласно изобретению используют краситель с плотностью, в 1,2-1,4 раза превышающей плотность рабочей жидкости, при этом в процессе визуализации плотность красителя уменьшается, а время растворения красителя больше характерных времен визуализации течения.

Согласно изобретению краситель имеет переменную плотность (например, сгущенное молоко с сахаром с плотностью 1,2-1,5 г/см3). Краситель с более высокой плотностью, чем рабочая жидкость, заполняет дно замкнутого контейнера, при этом краситель не перебалтывается при нестационарных режимах течения и не меняет прозрачность среды. При уменьшении плотности красителя (растворении сахара) он, увлекаемый нестационарным прецессирующим вихревым течением, вытягивается вдоль именно вихревой оси, а не геометрического центра замкнутого контейнера и движется со скоростью потока, позволяя однозначно идентифицировать вихревую структуру. При Re больше 6000, характеризующем развитый нестационарный режим, данный способ позволяет проводить визуализацию и однозначно идентифицировать вихревые структуры и их распад.

На фиг. 1 показана визуализация структуры распада вихревого ядра в закрытом контейнере квадратного сечения (ввод красителя в геометрический центр дна кюветы, краситель имеет плотность, близкую к плотности рабочей жидкости - водно-глицериновой смеси плотностью от 1 до 1,23 г/см3), где

а) визуализация структуры при Re=4207,

б) визуализация структуры при Re=4350,

в) визуализация структуры при Re=5160.

На фиг. 2 показана визуализация структуры распада вихревого ядра в закрытом контейнере квадратного сечения (заполнение придонной области рабочего объема красителем: рабочая жидкость водно-глицериновая смесь; краситель - раствор сгущенного молока с сахаром), где

а) визуализация структуры при Re=6000,

б) визуализация структуры при Re=7000,

в) визуализация структуры при Re=8000.

Способ визуализации осуществляется следующим образом.

После установления исследуемого нестационарного режима вихревого течения, определяемого угловой скоростью вращения крышки, придонную область замкнутого контейнера с рабочей жидкостью заполняют красителем, плотность которого в 1,2-1,4 раза превышает плотность рабочей жидкости. В процессе визуализации плотность красителя уменьшается и он, увлекаемый нестационарным прецессирующим вихревым течением, вытягивается вдоль вихревой оси и движется со скоростью потока, позволяя однозначно идентифицировать вихревую структуру.

Пример. Рабочая жидкость - вода, краситель - сгущенное молоко с сахаром. После установления нестационарного режима через отверстие в нижней неподвижной крышке цилиндрического контейнера придонную область заполняют сгущенным молоком с сахаром. Далее сахар растворяется, тем самым изменяется плотность красителя, и он, увлекаемый нестационарным прецессирующим вихревым течением, вытягивается вдоль вихревой оси и движется со скоростью потока, позволяя однозначно идентифицировать вихревую структуру.

Способ визуализации замкнутых нестационарных вихревых течений, при котором после установления исследуемого режима течения через отверстие в нижней неподвижной крышке придонную область замкнутого объема с рабочей жидкостью заполняют красителем, отличающийся тем, что используют краситель с плотностью, в 1,2-1,4 раза превышающей плотность рабочей жидкости, при этом в процессе визуализации плотность красителя уменьшается, а время растворения красителя больше характерных времен визуализации течения.



 

Похожие патенты:

Способ измерения векторного поля скорости протяженной поверхности относится к радиолокации поверхности Земли с космических аппаратов и может быть использован для одновременного формирования яркостных и векторно-скоростных портретов речных и океанских течений с необходимым пространственным разрешением и привязкой к координатам местности.

Изобретение относится к области авиационного метеорологического оборудования. Бортовая система измерения параметров вектора скорости ветра содержит неподвижное ветроприемное устройство, преобразователи информативных сигналов, канал аналого-цифрового преобразования, вычислительное устройство, соединенные определенным образом.

Изобретение относится к области метеорологии и касается способа определения профиля ветра в атмосфере. Способ включает в себя излучение приемопередатчиком длинных когерентных импульсов, регистрацию отраженного сигнала, получение доплеровского сигнала на различных высотах в различных направлениях зондирования.

Изобретение относится к устройствам для измерения величины (модуля) и угла направления (аэродинамического угла) вектора истинной воздушной скорости, а также других высотно-скоростных параметров летательного аппарата (ЛА), определяющих движение ЛА относительно окружающей воздушной среды.

Изобретение относится к устройствам для измерения величины (модуля) и угла направления (аэродинамического угла) вектора истинной воздушной скорости, а также других высотно-скоростных параметров летательного аппарата, определяющих движение относительно окружающей воздушной среды.

Изобретение относится к измерительной технике, в частности к устройствам для измерения величины (модуля) и угла направления (аэродинамического угла) вектора истинной воздушной скорости, а также других высотно-скоростных параметров летательного аппарата.

Изобретение относится к области для регистрации микроперемещений морской воды. Устройство для реализации заявленного способа для измерения скорости течений и волновых процессов в океане выполнено в виде прямоугольного отрезка, открытого с торцов для воды, на одной стороне отрезка находится плоский оптический излучатель, а на противоположной стороне выполнены отверстия разного диаметра для оптических датчиков.

Изобретение относится к технической физике и может быть использовано для исследования измерителей потока насыщенного и влажного пара. Заявлен способ определения истинного объемного паросодержания и скоростей фаз потока влажного пара в паропроводе после узла смешения потоков перегретого пара и воды, включающий измерение расхода, статического давления и температуры входящего в узел смешения потока перегретого пара, измерение расхода, статического давления и температуры входящего в узел смешения потока воды, измерение статического давления и температуры в паропроводе после узла смешения потоков перегретого пара и воды.

Изобретение относится к области океанографических измерений и преимущественно предназначено для определения скорости ветра над морской поверхностью. Технический результат - обеспечение возможности учитывать вклад поверхностного течения в уровень отраженных водной поверхностью радиосигналов, что повышает точность определения скорости ветра. Сущность: установленным на космическом аппарате радиоальтиметром облучают водную поверхность, регистрируют отражённый назад сигнал, по фронту радиоимпульса определяют значимую высоту поверхностных волн, по времени прохождения сигнала до поверхности и обратно определяют крупномасштабный рельеф поверхности, по нему рассчитывают поле поверхностного течения, и определяют скорость ветра по величине отраженного назад сигнала с учётом значимой высоты волн и влияния поля течения на величину отражённого назад сигнала. .

Изобретение относится к методам расчета экстремальных значений гидрометеорологических параметров окружающей среды, которые используются при оценках риска индустриальной деятельности человека.

Изобретение относится к способам дистанционных исследований атмосферы, основанных на использовании эффекта Доплера и применении фазоманипулированных сигналов, и может быть использовано для измерения скорости ветра. Сущность: при реализации способа применяют устройство, содержащее задающий, приемный каналы (1, 2 соответственно) и канал (3) выбора дальности. При этом задающий канал (1) вырабатывает частоту излучения колебаний f 0 , которые бинарно манипулированы по фазе псевдослучайной последовательностью длительностью Т с элементарным сигналом Т э . Причем Т / Т э = N * , где N * - дискретность посылок измерения во времени. Одновременно в задающем канале (1) вырабатывается аналогичный сигнал со смещением по частоте f 0 + f с м , то есть вида Ф М N ( f 0 + f с м ) . Входной отраженный сигнал имеет вид по частоте f 0 + f д о п л е р а . Входной отраженный сигнал перемножается в первом случае с выходным сигналом τ д а л ь н о с т и дальности, а во втором случае - τ д а л ь н о с т и дальности + π 2 , тем самым для выбранной дальности τ задержки устраняется манипуляция по фазе и вырабатываются непрерывные сигналы. После перемножения сигналы формируются и интегрируются их огибающие по частотам f с м + f д о п л е р а за время не менее длительности Т. После этого определяется канал с максимальной амплитудой сигнала максимальной доплеровской частоты, соответствующей скорости ветра на выбранном расстоянии. Технический результат: измерение скорости ветра. 1 з.п. ф-лы, 1 ил.

Способ определения скорости ветра над водной поверхностью, в котором получают при помощи двух оптических систем на основе линеек ПЗС-фотодиодов с разными направлениями визирования два пространственно-временных изображения водной поверхности. Стыкуют полученные изображения. Определяют направления распространения ветровых порывов по углам наклона полос ветровых порывов на пространственно-временных изображениях и известному углу между направлениями визирования. Скорость ветра определяют над каждой точкой водной поверхности в направлении визирования на основании модельной зависимости дисперсии уклонов волн. Технический результат заключается в разработке способа определения пространственного распределения по дальности скорости ветра над водной поверхностью по пространственно-временным изображениям водной поверхности при рассеянном небесном освещении (вне зоны солнечных бликов), полученным как с неподвижного основания, так и с движущегося носителя, и обладающего высокой помехоустойчивостью. 4 ил.

Группа изобретений относится к датчикам для измерения скорости воздушного летательного аппарата по отношению к окружающей его воздушной массе. Сущность заключается в том, что устройство для измерения скорости воздуха содержит гибкую конструкцию, имеющую внешнюю поверхность с первым открытым каналом для воздуха, имеющим нижнюю часть с первым отверстием, и первый датчик давления, установленный в гибкой конструкции в положении с нижней стороны и сообщающийся по текучей среде с первым отверстием. Технический результат – исключение обледенения или закупоривания трубок Пито. 3 н. и 20 з.п. ф-лы, 10 ил.

Изобретение относится к области морского приборостроения и может быть использовано при разработке и производстве технических средств измерений морских подводных течений. Технический результат – расширение функциональных возможностей. Сущность изобретения состоит в том, что равномерно прямолинейно двигающийся подводный аппарат на заданной глубине совершает маневр в горизонтальной плоскости по скорости, при этом измеряют относительную скорость, курс и угол сноса до и после маневра подводного аппарата и вычисляют параметры вектора течения. Другая сущность состоит в том, что при маневрировании по курсу фиксируют величину и направление относительной скорости, когда приращение угла сноса изменяет алгебраический знак, а угол сноса принимает максимальное значение, соответствующее величине относительной скорости, что определяет параметры вектора течения. Технический результат, достигаемый при реализации разработанного технического решения, состоит в обеспечении возможности проведения измерений на любых географических широтах и глубинах акватории, включая и подводно-подледное пространство арктической акватории, высокую производительность при широкомасштабных исследованиях с покрытием больших площадей и различных глубин, при этом обеспечиваются автономность и технико-экономическая эффективность, обусловленная исключением высокозатратных работ по производству, установке и обслуживанию заякоренных буйков и стационарных буйковых станций и внешних средств измерения и обсервации. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области метеорологии и может быть использовано для определения направления и скорости ветра в вертикальном разрезе. Сущность: в интересующую область пространства запускают беспилотный летательный аппарат (БПЛА), для которого заранее определена калибровочная зависимость между наклоном вектора тяги, вектором скорости ветра, углом поворота корпуса БПЛА, атмосферным давлением, влажностью, температурой и суммарной мощностью, развиваемой двигателями БПЛА. При этом БПЛА, выполненный способным зависать в заданной точке пространства, при достижении нужной точки с заранее выбранными координатами переводят в режим удержания географических координат и равномерного движения по вертикали, а затем запускают режим равномерного вращения вокруг вертикальной оси. Через промежутки времени, кратные полному обороту БПЛА вокруг вертикальной оси, измеряют наклон вектора тяги, потребляемую двигателями мощность, атмосферное давление, температуру и влажность воздуха. При этом полный оборот и направление БПЛА определяют с помощью электронного магнитного компаса. Используя полученную при калибровке зависимость и вновь измеренные характеристики, определяют направление и скорость ветра в вертикальном разрезе. Технический результат: расширение функциональных возможностей, повышение точности позиционирования зонда. 1 ил.

Группа изобретений относится к метеорологии и может быть использована для измерения скорости ветра и температуры воздуха в атмосферном пограничном слое до высоты 2-3 км. Сущность: устройство содержит наземный модуль и размещенный на борту беспилотного летательного аппарата (БПЛА) высотный модуль. В состав наземного модуля включены следующие элементы: генератор (1) тактовых импульсов, измеритель (2) временных интервалов, вычислительный блок (3), дешифратор (4) координат, источник (5) акустических импульсов первой пары акустически согласованных источника и приемника акустических импульсов, излучатель (6) электромагнитных импульсов, приемник (7) электромагнитных импульсов, приемник (8) акустических импульсов второй пары акустически согласованных источника и приемника акустических импульсов, приемник (9) кодовых сигналов. В состав высотного модуля включены следующие элементы: приемник (10) акустических импульсов первой пары акустически согласованных источника и приемника акустических импульсов, приемник (11) электромагнитных импульсов, излучатель (12) электромагнитных импульсов, источник (13) акустических импульсов второй пары акустически согласованных источника и приемника акустических импульсов, передатчик (14) кодовых сигналов, блок (15) определения координат БПЛА. Выбирают точки зондирования X1 и X2 таким образом, чтобы точка X1 находилась на планируемой высоте контроля метеопараметров, а точка X2 - на поверхности земли. Причем прямая, проходящая через точки X1, X2, не должна быть ортогональна плоскости поверхности земли. Из точки X2 синхронно излучают одиночные акустический и электромагнитный импульсы. В точке X1 указанные акустический и электромагнитный импульсы регистрируют. По разности времени прихода импульсов в точку X1 определяют время распространения акустического импульса по трассе X2-X1. Одновременно из точки X1 синхронно излучают одиночные акустический и электромагнитный импульсы. В точке X2 указанные акустический и электромагнитный импульсы регистрируют. По разности времени прихода импульсов в точку X2 определяют время распространения акустического импульса по трассе X1-X2. Рассчитывают средние по трассе X1-X2 скорость ветра и температуру. Технический результат: увеличение дальности измерений, уменьшение зависимости измерений от метеорологических условий, увеличение помехозащищенности измерений. 2 н.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике и может быть использовано для определения температуры нестационарного газового потока, теплового импульса потока, скорости движения фронта теплового возмущения, зависимости скорости движения фронта теплового возмущения от расстояния до источника его возникновения. Заявлен регистратор температуры и скорости нестационарного газового потока, который содержит информационный датчик и блок измерения, который состоит из аналого-цифрового преобразователя, блока памяти, генератора тактовой частоты, N-аппаратно-программных каналообразующих модулей, микроЭВМ, аппаратно-программного модуля контроля внутренних питающих напряжений, блока измерения параметров окружающей среды, супервизора, радиотрансивера, com-порта, источника эталонных напряжений. При этом информационный датчик состоит из N-датчиков температуры, аналого-цифровой преобразователь является синхронным N-канальным, блок памяти энергонезависимым и перезаписываемым. Дополнительно введены приемопередатчик, персональная ЭВМ, при этом N датчиков температуры (N≥4) информационного датчика размещены перпендикулярно направлению движения фронта теплового возмущения на равных расстояниях R друг от друга, вход приемопередатчика соединен с первым выходом блока измерений, выход приемопередатчика соединен с входом персональной ЭВМ. 1 ил.
Наверх