Композиция для изготовления жаростойких композитов

Изобретение относится к области строительных материалов, в частности к производству жаростойких композитов (бетонов) на основе химических связующих. Технический результат заключается в повышении предела прочности при сжатии и термостойкости жаростойких композитов. Композиция для изготовления жаростойких композитов включает компоненты при следующем соотношении, мас. %: отработанный катализатор ИМ-2201 10-15, щебень 33-40, Н3PO4 10-15, алюмохромистые отходы травления алюминиевых сплавов 24-30, ферропыль из самораспадающихся шлаков низкоуглеродистого феррохрома 10-13. 3 табл.

 

Изобретение относится к области строительных материалов, в частности к производству жаростойких композитов (бетонов) на основе химических связующих. К химически связующим, применяемым в жаростойких бетонах, относятся жидкое стекло, силикат-глыба (прозрачный стекловидный сплав щелочных силикатов - полуфабрикат жидкого стекла) и фосфатные связки.

Известны композиции для получения пористых заполнителей (для бетонов) на основе химических связующих следующего состава, мас. %: жидкое стекло - 45-65; хлорид натрия - 5-15; отход горно-обогатительной фабрики при обогащения угля - 15-20; межсланцевая глина, образующаяся при добыче горючих сланцев - 15-20 (патент РФ №2440312, МПК С04В 14/24. Композиция для производства пористого заполнителя/ Абдрахимова Е.С., Рощупкина И.Ю., Абдрахимов В.З., Куликов В.А.; заявитель и патентообладатель Самарский государственный аэрокосмический университет имени академика С.П. Королева. №2010122114; заявл. 31.05.20910; опубл. 20.01.2012. Бюл. №2 [1]).

Недостатком указанного состава композиции является относительно низкая прочность 2,65-2,75 МПа.

Наиболее близкой к изобретению является композиция для получения жаростойких композитов, включающая следующие компоненты, мас. %: отработанный катализатор ИМ-2201 - 10-15; щебень - 33-40; песок - 10-13; H3PO4 - 10-15; алюмохромистые отходы травления алюминиевых сплавов с содержанием, мас. %: SiO2 - 7,2; Al2O3 - 68,3; Fe2O3 - 1,4; MgO - 0,7; Cr2O3 - 10,2; R2O - 11,8 - 24-30 (патент РФ №2528643, МПК С04В 28/34. Композиция для изготовления жаростойких композитов/ Абдрахимова Е.С., Рощупкина И.Ю., Абдрахимов В.З., Репин М.В.; заявитель и патентообладатель Самарский государственный аэрокосмический университет имени С.П. Королева. - №2013110158; заявл. 06.03.2013; опубл. 20.09.2014. Бюл. 26 [2]).

Недостатком указанного состава композиции являются относительно низкий предел прочности при сжатии и термостойкость.

Сущность изобретения - повышение качества жаростойкого композита.

Техническим результатом изобретения является повышение предела прочности при сжатии и термостойкости жаростойких композитов.

Указанный технический результат достигается тем, что в известную композицию, включающую отработанный катализатор ИМ-2201, щебень, H3PO4 и алюмохромистые отходы травления алюминиевых сплавов дополнительно вводят ферропыль из самораспадающихся шлаков низкоуглеродистого феррохрома с размером частиц не более 0,5 мм и с содержанием оксидов: %: SiO2 - 30,2; Al2O3 - 7,8; СаО - 45,4; MgO - 7,3; Cr2O3 - 7,8; п.п.п. - 1,5 при следующем соотношении компонентов, мас. %:

отработанный катализатор ИМ-2201 10-15
щебень 33-40
H3PO4 10-15
алюмохромистые отходы травления алюминиевых сплавов 24-30
ферропыль из самораспадающихся шлаков
низкоуглеродистого феррохрома 10-13

Ферропыль из самораспадающихся шлаков низкоуглеродистого феррохрома является отходом актюбинского завода ферросплавов филиала АО «ТНК «Казхром».

Самораспадающийся ферросплавный шлак отход электрометаллургического производства феррохрома представляет собой пылевидный материал с размером частиц не более 0,5 мм.

Самораспадающийся шлак - это разрушение зерен двухкальциевого силиката с образованием мелкодисперсного порошка, происходящее вследствие развития в массе зерен напряжения, превышающего их предел прочности. Напряжение в массе зерен возникают в результате полиморфизма 2CaO·SiO2, изменения объема расплава при охлаждении. Переход β->>γ 2CaO·SiO2 сопровождается увеличением объема на 12%. Удельная поверхность самораспадающихся ферросплавных шлаков составляет 1800-2500 см2/г. Химический состав ферропыли из самораспадающихся шлаков низкоуглеродистого феррохрома представлен в таблице 1.

Алюмохромистые отходы травления алюминиевых сплавов образуются в процессе обработки алюминиевых сплавов металлургических заводов. Из отработанных травильных растворов осаждается осадок, который концентрируется на дне ванны и постепенно кристаллизуется. Шлам этой группы отличается высоким содержанием Al2O3 и может при определенных условиях стать заменителем природного пирофиллита, бокситов и других алюмосодержащих компонентов при производстве жаростойких композитов (бетонов) на основе химических связующих. Размер частиц алюмохромистых отходов травления алюминиевых сплавов от 0,1 до 5 мкм, химический состав представлен в таблице 1.

Для изготовления жаростойких композитов (бетонов) использовались щебень, ортофосфорная кислота (H3PO4) и отработанный катализатор ИМ-21 согласно требований ГОСТов и ТУ (таблица 2):

а) щебень, отвечающий требованиям ГОСТа 8267-93 «Щебень и гравий из плотных горных пород для строительных работ. Технические условия» М 600, 800-1000, со средней плотностью зерен от 2,0 до 2,5 кг/м3 из карбонатных пород, добываемый в Самарской области, фракции 5-10 мм;

б) в качестве связующей использовалась ортофосфорная кислота H3PO4 в чистом виде по ГОСТ 6552-80, норма - чистый (ч) ОКП 26 1213 0021 10. Массовая доля ортофосфорной кислоты (H3PO4), не менее 85%, плотность не менее 1,69;

в) в заявке, как и в прототипе, использовался отработанный катализатор ИМ-21 (отходы производства) - ТУ 38.103544-89. Химический состав катализатора представлен в таблице 1. Согласно ТУ 38. 103544-89 отработанный катализатор ИМ-2201 должен иметь следующие показатели: внешний вид порошка - серо-зеленого цвета, насыпная плотность 1,0-1,5 г/см3, массовая доля Al2O3 не менее 70%. Отработанный катализатор использовался как огнеупорный материал.

Сведения, подтверждающие возможность осуществления изобретения

Технологический процесс производства бесцементных жаростойких композитов (бетонов) и изготовления изделий и конструкций из них включает в себя приготовление формовочной массы, формование изделий и термообработку.

Следует отметить, что для своего затвердения и набора марочной прочности жаростойкие композиты (бетоны) требуют особую термообработку.

Для композитов (бетонов) на ортофосфорной кислоте с компонентами, представленными в таблице 2, - нагревание до 500°С с подъемом температуры до 200°С со скоростью 60°С/час и до 500°С - 150°С/час, выдерживание в течение 4 часов, охлаждение вместе с печью.

В таблице 3 представлены физико-механические показатели жаростойкого композита (бетона).

Как видно из таблицы 3, жаростойкий композит (бетон) из предложенных составов имеет более высокие показатели по механической прочности и термостойкости, чем прототип.

Полученное техническое решение при использовании ферропыли из самораспадающихся шлаков низкоуглеродистого феррохрома позволяет повысить показатели по механической прочности и термостойкости жаростойкого композита (бетона).

Использование техногенного сырья при получении жаростойкого композита (бетона) способствует утилизации промышленных отходов, охране окружающей среды, расширению сырьевой базы для строительных материалов.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Патент РФ №2440312, МПК С04В 14/24. Композиция для производства пористого заполнителя / Абдрахимова Е.С., Рощупкина И.Ю., Абдрахимов В.З., Куликов В.А.; заявитель и патентообладатель Самарский государственный аэрокосмический университет имени академика СП. Королева. - №2010122114; заявл. 31.05.20910; опубл. 20.01.2012. Бюл. №2

2. Патент РФ №2528643, МПК С04В 28/34. Композиция для изготовления жаростойких композитов / Абдрахимова Е.С, Рощупкина И.Ю., Абдрахимов В.З., Репин М.В.; заявитель и патентообладатель Самарский государственный аэрокосмический университет имени С.П. Королева. - №2013110158; заявл. 06.03.2013; опубл. 20.09.2014. Бюл. 26

Композиция для изготовления жаростойких композитов, включающая отработанный катализатор ИМ-2201, щебень, Н3РО4 и алюмохромистые отходы травления алюминиевых сплавов, отличающаяся тем, что она дополнительно содержит ферропыль из самораспадающихся шлаков низкоуглеродистого феррохрома с размером частиц не более 0,5 мм и с содержанием оксидов: %: SiO2 - 30,2; Al2O3 - 7,8; СаО - 45,4; MgO - 7,3; Cr2O3 - 7,8; п.п.п. - 1,5 при следующем соотношении компонентов, мас. %:

отработанный катализатор ИМ-2201 10-15
щебень 33-40
Н3РО4 10-15
алюмохромистые отходы травления
алюминиевых сплавов 24-30
ферропыль из самораспадающихся шлаков
низкоуглеродистого феррохрома 10-13



 

Похожие патенты:

Изобретение относится к области строительных материалов, в частности к производству жаростойких композитов (бетонов) на основе химических связующих. Техническим результатом изобретения является повышение предела прочности при сжатии и термостойкости жаростойких композитов, которая достигается добавлением в композицию шлакопыльевого отхода от производства низкоуглеродистого феррохрома при следующем соотношении компонентов, мас.%: отработанный катализатор ИМ-2201 10-15, щебень 33-40, H3PO4 10-15, алюмохромистые отходы травления алюминиевых сплавов 24-30, шлакопыльевый отход от производства низкоуглеродистого феррохрома 10-13.

Изобретение относится к области строительных материалов, в частности к производству жаростойких бетонов на основе химических связующих в виде фосфатных связок. Техническим результатом изобретения являются повышения предела прочности при сжатии и термостойкости жаростойких бетонов.

Изобретение относится к области строительных материалов, в частности к производству жаростойких композитов (бетонов) на основе химических связующих. К химическим связующим, применяемым в жаростойких бетонах, относятся жидкое стекло, силикат-глыба (прозрачный стекловидный сплав щелочных силикатов - полуфабрикат жидкого стекла) и фосфатные связки.

Изобретение относится к области строительных материалов, в частности к производству жаростойких бетонов на основе химических связующих. Техническим результатом изобретения является повышение предела прочности при сжатии и термостойкости жаростойких бетонов.

Изобретение относится к области строительных материалов, в частности к производству жаростойких бетонов на основе химических связующих. Технический результат заключается в повышении предела прочности при сжатии и термостойкости жаростойких бетонов.

Изобретение относится к области строительных материалов, в частности к производству жаростойких бетонов на основе химических связующих. Техническим результатом изобретения являются повышения предела прочности при сжатии и термостойкости жаростойких бетонов.

Изобретение относится к области строительных материалов, в частности к производству жаростойких бетонов на основе фосфатных связок. Техническим результатом изобретения является повышение предела прочности при сжатии и термостойкости жаростойких бетонов.

Изобретение относится к области строительных материалов, в частности к производству жаростойких бетонов на основе химических связующих. Техническим результатом изобретения является повышение предела прочности при сжатии и термостойкости жаростойких бетонов.

Изобретение относится к сырьевой смеси для получения фосфатного продукта, цементной суспензии на фосфатной основе и к способу получения фосфатного продукта. Смесь для получения высокопрочного фосфатного цемента включает дигидроортофосфат калия, оксид металла группы IIA в количествах от примерно 20 до примерно 100 частей на 100 частей дигидроортофосфата калия и дигидроортофосфат кальция в количествах от примерно 3 до примерно 30 частей на 100 частей дигидроортофосфата калия.

Изобретение относится к области строительных материалов, в частности к производству жаростойких бетонов на основе химических связующих. Техническим результатом изобретения является повышение предела прочности при сжатии и термостойкости жаростойких бетонов.

Изобретение относится к области строительных материалов, в частности к производству жаростойких композитов (бетонов) на основе химических связующих. Техническим результатом изобретения является повышение предела прочности при сжатии и термостойкости жаростойких композитов Композиция для изготовления жаростойких композитов (бетонов), включающая отработанный катализатор ИМ-2201, щебень из карбонатных пород со средней плотностью зерен 2-2,5 кг/м3, фракции 5-10 мм, Н3РО4, плотностью не менее 1,69 г/см3 и алюмохромистые отходы травления алюминиевых сплавов с размером частиц от 0,1 до 5 мкм, дополнительно содержит шлак от производства ферросилиция, размолотый до прохода через сито 0,14 мм и с содержанием оксидов, мас.%: SiO2 - 49,4; Al2O3 - 6,8; Fe2O3 - 4,4; СаО - 24,5; MgO - 15,1 при следующем соотношении компонентов, мас.%: отработанный катализатор ИМ-2201 10-15, щебень из карбонатных пород со средней плотностью зерен 2-2,5 кг/м3 33-40, Н3РО4 10-15, алюмохромистые отходы травления алюминиевых сплавов 24-30, шлак от производства ферросилиция 10-13. Использование техногенного сырья при получении жаростойкого бетона способствует утилизации промышленных отходов, охране окружающей среды, расширению сырьевой базы для строительных материалов. 3 табл.

Изобретение относится к области строительных материалов, в частности к производству жаростойких композитов (бетонов) на основе химических связующих. Композиция для изготовления жаростойких композитов включает, мас.%: отработанный катализатор ИМ-2201 10-15, щебень из карбонатных пород фракции 5-10 мм 33-40, Н3РО4 плотностью не менее 1,69 г/см3 10-15, алюмохромистые отходы травления алюминиевых сплавов с размером частиц от 0,1 до 5 мкм 24-30, глиежи, размолотые до прохода через сито 0,14 мм и с содержанием оксидов, мас.%: SiO2 - 61,5; Al2O3 -19,8; Fe2O3 - 7,4; СаО - 6,7; MgO - 2,2; R2O - 1,1; п.п.п. - 1,3, 10-13. Технический результат – повышение предела прочности при сжатии и термостойкости жаростойких композитов, утилизация промышленных отходов. 3 табл.

Изобретение относится к области строительных материалов, в частности к производству жаростойких композитов (бетонов) на основе химических связующих. Техническим результатом изобретения является повышение предела прочности при сжатии и термостойкости жаростойких композитов, которая достигается добавлением в композицию микрокремнезем от производства ферросилиция при следующем соотношении компонентов, мас. %: отработанный катализатор ИМ-2201 10-15; щебень фракции 5-10 мм 33-40; Н3РО4 10-15; алюмохромистые отходы травления алюминиевых сплавов 24-30; микрокремнезем от производства ферросилиция 10-13. Технический результат - повышение механической прочности и термостойкости жаростойкого композита (бетона), утилизация промышленных отходов, охрана окружающей среды, расширение сырьевой базы для строительных материалов. 3 табл.

Изобретение относится к области теплотехники и направлено на повышение эффективности теплоизоляционных характеристик и срока эксплуатации конструкционно-теплоизоляционного материала, используемого для обеспечения тепловой защиты передового энергетического оборудования. Cпособ получения конструкционно-теплоизоляционного материала включает подготовку формовочной смеси, формование, полимеризацию и термообработку, выдержку и остывание. При этом подготовку формовочной смеси проводят в три этапа. На первом этапе готовят смесь на основе алюмосиликатных микросфер, алюмохромфосфатного связующего и катализатора отверждения. На втором этапе готовят смесь на основе алюмосиликатных микросфер и карбамидфурановой смолы. На третьем этапе проводят гомогенизацию двух полученных смесей путем порционного добавления первой смеси ко второй, затем осуществляют формование путем кратковременной виброусадки и постепенного прессования смеси при давлении пуансона 1,5 МПа. Далее проводят полимеризацию при комнатной температуре в течение 12 ч, термообработку осуществляют в кислородной среде ступенчатым нагревом до 700°С в течение 16 ч при следующих температурных режимах: первые 4 ч - при температуре 100-150°С, следующие 4 ч - при температуре 250°С, последующие 4-5 ч - при температуре 400-500°С, оставшееся время - при температуре 700°С. Выдержку проводят при температуре 700°С в течение 4 ч и остывание в печи - в течение 4-5 ч. Причем оптимальное соотношение алюмохромфосфатного связующего и карбамидфурановой смолы по объему составляет 70:30, а соотношение объемов связующих и алюмосиликатных микросфер составляет 1:6. Технический результат – повышение эффективности теплоизоляционных характеристик и срока эксплуатации материала, а именно теплопроводность составляет 0,089 Вт/(м⋅К), прочность на сжатие – 0,75 МПа, плотность – 0,25 г/см3. 1 ил., 1 табл.

Изобретение относится к области теплотехники, в частности к производству легковесных огнеупорных теплоизоляционных изделий. Композиция включает связующее и легкий заполнитель и дополнительно содержит карбамидофурановую смолу марки ФК и катализатор отверждения марки ОК в количестве 10% от массы смолы. При этом в качестве связующего выбрано алюмохромфосфатное связующее, а в качестве легкого заполнителя выбраны полые алюмосиликатные микросферы с размером частиц от 150 до 280 мкм при следующем соотношении компонентов, маc.%: алюмохромфосфатное связующее 25-34, полые алюмосиликатные микросферы 55-69,5, катализатор отверждения марки ОК 0,5-1, карбамидофурановая смола марки ФК 5-10. Техническим результатом является повышение механических свойств огнеупорных легковесных теплоизоляционных изделий и снижение тепловых потерь с теплоизолируемой поверхности. 3 табл., 12 пр.

Изобретение относится к области строительных материалов, в частности к производству жаростойких композитов на основе химических связующих. Технический результат заключается в повышении предела прочности при сжатии и термостойкости жаростойких композитов. Композиция для изготовления жаростойких композитов включает компоненты при следующем соотношении, мас. : отработанный катализатор ИМ-2201 10-15, щебень 33-40, Н3PO4 10-15, алюмохромистые отходы травления алюминиевых сплавов 24-30, ферропыль из самораспадающихся шлаков низкоуглеродистого феррохрома 10-13. 3 табл.

Наверх