Возвращаемая ступень ракеты-носителя, способ ее работы и газотурбинный двигатель

Группа изобретений относится к ракетной технике и может быть применена для многоразовых возвращаемых ракетно-космический систем, способных совершать пилотируемый полет в атмосфере. Возвращаемая ступень ракеты-носителя, содержащая фюзеляж, баки окислителя и горючего, крылья, жидкостный ракетный двигатель (ЖРД) и не менее двух рулевых двигателей, в соответствии с изобретением к фюзеляжу прикреплены два боковых блока, в которых установлены газотурбинные двигатели (ГТД), которые имеют рулевой ракетный двигатель, установленный внутри выхлопного сопла, основную камеру сгорания и вспомогательный газогенератор, соединенный через коллектор смешения с основной камерой сгорания газоводом, а в верхней части боковых блоков выполнены воздухозаборники. В газоводе может быть установлен озонатор. Подвод окислителя и горючего к вспомогательному газогенератору может быть выполнен через дополнительный турбонасосный агрегат (ТНА), в состав которого входит электрогенератор. Озонатор может быть установлен внутри основной камеры сгорания непосредственно перед коллектором смешения. Газотурбинный двигатель содержит перед основной камерой сгорания кольцевой коллектор, с которым соединен газовод, а полость кольцевого коллектора сообщается с воздушным трактом отверстиями или патрубками. Газотурбинный двигатель содержит перед основной камерой сгорания соединенный с газоводом кольцевой перфорированный коллектор, установленный внутри воздушного тракта. Газотурбинный двигатель содержит перед основной камерой сгорания кольцевой коллектор. Газотурбинные двигатели могут быть оборудованы соплом с управляемым вектором тяги. Рассмотрен способ работы возвращаемой ступени ракеты-носителя, включающий ее разгон на активном участке траектории при помощи ЖРД и управление при помощи рулевых двигателей и возвращение при помощи двух ГТД, при этом ГТД запускают в разреженных слоях атмосферы, используя вспомогательные газогенераторы, работающие с избытком окислителя и компенсирующие нехватку атмосферного воздуха для работы ГТД, генераторный газ перед подачей в основную камеру сгорания озонируют, а при полете в плотных слоях атмосферы вспомогательные газогенераторы выключают. Рассмотрен газотурбинный двигатель, содержащий компрессор, основную камеру сгорания, турбину и выхлопное сопло, при этом он содержит рулевой ракетный двигатель, установленный внутри выхлопного сопла, основную камеру сгорания и вспомогательный газогенератор, соединенный газоводом через коллектор смешения с основной камерой сгорания газоводом. В газоводе может быть установлен озонатор. В коллекторе смешения установлен озонатор. В воздушном тракте между компрессором и основной камерой сгорания установлен озонатор. Озонатор может содержит два кольцевых электрода, выполненные коаксиально по обе стороны от коллектора смешения. Изобретение обеспечивает улучшение стартовых характеристик ракеты-носителя и упрощение системы управления по углам тангажа, рыскания и крена и обеспечение ее работоспособности на любых высотах. 3 н. и 14 з.п. ф-лы, 22 ил.

 

Группа изобретений относится к ракетной технике и может быть применена для многоразовых возвращаемых ракетно-космических систем, способных совершать пилотируемый полет в атмосфере.

В авиакосмической технике известен многоразовый орбитальный корабль «Буран», содержащий фюзеляж, крыло с двумя консолями, левый и правый блоки двигателей управления, размещенные в хвостовой части фюзеляжа, и носовой блок двигателей управления, расположенный в носовой части фюзеляжа (Ю.П. Семенов, Г.Е. Лозино-Лозинский, В.Л. Лапыгин, В.А. Тимченко и др. Многоразовый орбитальный корабль «Буран». М., «Машиностроение», 1995 г., стр. 40, 41, 193). На участке выведения на орбиту орбитальный корабль является полезной нагрузкой для ракеты-носителя (маршевые двигатели на орбитальном корабле «Буран» отсутствуют). После выполнения космического полета орбитальный совершает бездвигательный спуск в атмосфере (воздушно-реактивные двигатели отсутствуют), при этом управление движением орбитального корабля вокруг его центра масс при полете в верхних слоях атмосферы осуществляется с помощью двигателей управления, расположенных в левом и правом блоке двигателей управления хвостовой части фюзеляжа. При этом оси сопел двигателей управления тангажом и креном перпендикулярны продольной оси (оси ОХ) орбитального корабля, образуют углы в 30° с нормальной осью (осью OY) орбитального корабля, а оси сопел двигателей управления рысканием параллельны поперечной оси (оси OZ) орбитального корабля.

Недостатком этого проекта является невозможность использования его компоновки для многоразового ракетного блока. Блоки двигателей управления не могут быть размещены ни в хвостовой, ни в носовой частях фюзеляжа, т.к. в хвостовой части фюзеляжа ракетного блока размещена маршевая двигательная установка первой ступени ракеты-носителя, работающая на участке выведения, а в носовой части фюзеляжа возвращаемого ракетного блока располагаются воздушно-реактивные двигатели, работающие на участке возвращения возвращаемого ракетного блока к аэродрому в районе старта ракеты-носителя. Размещение блоков двигателей управления в средней части фюзеляжа нецелесообразно, т.к. в этом случае двигатели управления будут неэффективны из-за малых величин плеч управляющих сил.

Другим недостатком этого проекта является сильное влияние воздушного потока на газовые струи двигателей управления, в особенности на струи двигателей рыскания, оси сопел которых ориентированы вдоль поперечной оси OZ орбитального корабля перпендикулярно направлению полета. Наконец, еще одним недостатком является влияние силы тяги двигателей рыскания, возникающей при их срабатывании, на величины измеряемой датчиками системы управления поперечной перегрузки и угла скольжения. Двигатели управления неработоспособны в условиях космоса и на больших высотах в разреженной атмосфере, а управляющие моменты на больших высотах небольшие из-за низких тяг газотурбинных двигателей на высоте.

Известна ракета-носитель по патенту РФ на изобретение №2482030, МПК B64G 1/14, опубл 10.05.2013 г.

Эта ракета-носитель содержит соединенный со второй ступенью многоразовый ускоритель с реактивной системой стабилизации, состоящий из ракетного блока с жидкостными ракетными двигателями, соединенного с самолетным комплектом, выполненным в виде планера с крыльями переменной стреловидности с органами аэродинамического управления, соединенного с ракетным блоком по схеме «низкоплан», стабилизатора, шасси, воздушно-реактивных двигателей с их топливным баком, носового отсека, а также содержащая многократно используемые элементы, при этом установленный на ракетном блоке носовой отсек снабжен пилотской кабиной и оснащен управляемыми поворотными козырьками, количество которых равно количеству точек соединения носового отсека со второй ступенью, в местах соединения со второй ступенью в носовом отсеке выполнены карманы, воздушно-реактивные двигатели закреплены на верхних поверхностях крыльев переменной стреловидности и снабжены управляемыми защитными экранами, стабилизатор выполнен в виде двух килей, установленных на крыльях, в ракетном блоке многоразового ускорителя вокруг его продольной оси и симметрично относительно его поперечной оси, параллельной крыльям, установлено четное число дросселируемых ракетных двигателей.

Недостатки: плохие аэродинамические качества ракеты на старте из-за громоздкости фюзеляжа и наличия громоздких крыльев, неработоспособность ГТД в высотных условиях и в космосе при отсутствии воздуха, необходимого для их работы, неуправляемость возвращаемой ступени на больших высотах. Применение громоздких, имеющих большой вес крыльев переменной стреловидности не оправдано из-за того, что единственной задачей создания возвращаемой ступени является ее посадка, а не совершение сложных маневров на дозвуковых и сверхзвуковых скоростях.

Известна ракета-носитель с возвращаемой ступенью по патенту РФ на изобретение №2495799, МПК B64G 1/14, опубл. 20.10.2013 г., прототип устройства и способа.

Эта ракета-носитель содержит многоразовый возвращаемый ракетный блок, содержащий в свою очередь фюзеляж, крыло с двумя консолями, левый и правый блоки газотурбинных двигателей управления, левый и правый блоки двигателей управления размещены в гондолах на законцовках консолей крыла. Кроме того, возвращаемая ступень содержит сопла двигателей управления тангажом и креном и рыскания.

При возвращении ступени газотурбинные двигатели запускают на относительно-небольшой высоте, например 15000…20000 м. Полет до этой высоты полностью неуправляемый.

Недостатком этого технического решения является также низкое аэродинамическое качество фюзеляжа возвращаемой, т.е. первой ступени из-за размещения газотурбинных двигателей на консолях крыльев, которые имеют значительную толщину для передачи реактивной тяги и управляющего момента. Это приводит к неоправданному ухудшению характеристик ракеты-носителя при старте. Кроме того, ракета-носитель имеет очень сложную систему управления по углам тангажа, рыскания и крена.

Задачами создания изобретения являются улучшение стартовых характеристик ракеты-носителя и упрощение системы управления по углам тангажа, рыскания и крена и обеспечение ее работоспособности на любых высотах и обеспечение надежной посадки возвращаемой ступени в любую погоду.

Достигнутые технические результаты - обеспечение работоспособности газотурбинных двигателей на всех высотах и обеспечение посадки возвращаемой ступени.

Решение указанных задач достигнуто в возвращаемой ступени ракеты-носителя, содержащей фюзеляж, баки окислителя и горючего, крылья, и, по меньшей мере, один жидкостный ракетный двигатель, и не менее двух рулевых двигателей, тем, что к фюзеляжу прикреплены два боковых блока, в которых установлены газотурбинные двигатели, которые имеют рулевой ракетный двигатель, установленный внутри выхлопного сопла, основную камеру сгорания и вспомогательный газогенератор, соединенный через коллектор смешения с основной камерой сгорания газоводом, а в верхней части боковых блоков выполнены воздухозаборники. В газоводе может быть установлен озонатор.

Подвод окислителя и горючего к вспомогательному газогенератору может быть выполнен через дополнительный ТНА, в состав которого входит электрогенератор. Озонатор может быть установлен внутри основной камеры сгорания непосредственно перед коллектором смешения. Газотурбинный двигатель может содержать перед основной камерой сгорания кольцевой коллектор, с которым соединен газовод, а полость кольцевого коллектора сообщается с воздушным трактом отверстиями или патрубками. Газотурбинный двигатель может содержать перед основной камерой сгорания соединенный с газоводом кольцевой перфорированный коллектор, установленный внутри воздушного тракта. Газотурбинный двигатель может содержать перед основной камерой сгорания кольцевой коллектор. Основная камера сгорания может содержать, по меньшей мере, одно запальное устройство. Газогенератор может содержать, по меньшей мере, одно запальное устройство. Вспомогательный газогенератор может быть соединен трубопроводами окислителя и горючего с турбонасосным агрегатом, имеющим насосы горючего, окислителя и турбину. Газотурбинные двигатели могут быть оборудованы соплом с управляемым вектором тяги.

Решение указанных задач достигнуто в способе работы возвращаемой ступени ракеты-носителя, включающем ее разгон на активном участке траектории при помощи ЖРД и управление при помощи рулевых двигателей и возвращение при помощи двух ГТД тем, что ГТД запускают в разреженных слоях атмосферы, используя вспомогательные газогенераторы, работающие с избытком окислителя и компенсирующие нехватку атмосферного воздуха для работы ГТД, генераторный газ перед подачей в основную камеру сгорания озонируют, а при полете в плотных слоях атмосферы вспомогательные газогенераторы выключают.

Решение указанных задач достигнуто в газотурбинном двигателе, содержащем компрессор, основную камеру сгорания, турбину и выхлопное сопло тем, что он содержит рулевой ракетный двигатель, установленный внутри выхлопного сопла, основную камеру сгорания и вспомогательный газогенератор, соединенный газоводом через коллектор смешения с основной камерой сгорания газоводом. В газоводе может быть установлен озонатор. В коллекторе смешения установлен озонатор. В воздушном тракте между компрессором и основной камерой сгорания установлен озонатор. Озонатор может содержит два кольцевых электрода, выполненные коаксиально по обе стороны от коллектора смешения.

Сущность изобретения поясняется на фиг. 1…22, где:

- на фиг. 1 приведен внешний вид ракеты-носителя на стартовом столе,

- на фиг. 2 приведен внешний вид возвращаемой 1-й ступени в проекции с нижнего торца, в процессе приземления, вид А,

на фиг. 3 приведен внешний вид возвращаемой 1-й ступени в проекции с нижнего торца, в процессе полета, вид А,

- на фиг. 4 приведен внешний вид четырехкамерного ЖРД,

- на фиг. 5 приведен вид однокамерного ЖРД,

- на фиг. 6 приведен разрез В-В,

- на фиг. 7 приведен разрез С-С,

- на фиг. 8 приведена конструкция маршевого двигателя - ЖРД,

- на фиг. 9 приведен озонатор,

- на фиг. 10 приведен рулевой ракетный двигатель,

- на фиг. 11 приведен вспомогательный ТНА,

- на фиг. 12 приведена конструкция газотурбинного двигателя,

- на фиг. 13 приведена схема подачи компонентов топлива в газотурбинный двигатель,

на фиг. 14 приведена схема подвода газогенераторного газа в основную камеру сгорания, первый вариант,

- на фиг. 15 приведена схема подвода газогенераторного газа в основную камеру сгорания, второй вариант,

- на фиг. 16 приведена схема подвода газогенераторного газа в основную камеру сгорания, третий вариант,

- на фиг. 17 приведена схема подвода газогенераторного газа в основную камеру сгорания, четвертый вариант,

- на фиг. 18 приведена схема подвода газогенераторного газа в основную камеру сгорания, пятый вариант,

- на фиг. 19 приведена схема подвода газогенераторного газа в основную камеру сгорания, шестой вариант,

- на фиг. 20 приведена принципиальная схема газогенератора,

- на фиг. 21 приведен вид С,

- на фиг. 22 приведена система наддува бака окислителя.

Ракета-носитель (фиг. 1…22) может содержать не менее одной ступени. В дальнейшем описание ракеты-носителя составлено на примере двухступенчатой ракеты с одной (первой) возвращаемой ступенью.

РАКЕТА-НОСИТЕЛЬ

Ракета-носитель (фиг. 1…22) содержит возвращаемую ступень 1 с центральным фюзеляжем 2 и соединенные с ней соосно два боковых блока 3, выполненные в одной плоскости.

Возвращаемая ступень 1 содержит прикрепленные к боковым блокам 3 крылья 4, которые выполнены стреловидной формы и установлены в средней части возвращаемой ступени 1. Возвращаемая ступень 1 (фиг. 1 и 2) содержит два комплекта двигательных установок: маршевую, представляющую собой один или несколько жидкостно-ракетных двигателей (сокращенно - ЖРД) - 6 и газотурбинные двигатели 7.

В боковых блоках 3 установлено по одном газотурбинному двигателю 7, внутри которых установлены ракетные рулевые двигатели 8.

Жидкостных ракетных двигателей 6 в возвращаемой ступени 1 может быть установлено или один, или несколько. Возможна установка одного или нескольких четырехкамерных ЖРД 6 (фиг. 3), или несколько однокамерных, например 4 однокамерных ЖРД 6 (фиг. 2-6). Примеры четырехкамерного и однокамерного ЖРД 6 приведены соответственно на фиг. 4 и 5.

Возвращаемая ступень 1 содержит переднее шасси 9 и два задних шасси 10. Переднее шасси 9 в момент старта находится внутри корпуса 2, а задние шасси 10 - в боковых блоках 3 и выпускаются при посадке (фиг. 2 и 3).

Особенностями газотурбинного двигателя 7 являются:

- наличие встроенного в него рулевого ракетного двигателя 8,

- наличие вспомогательного газогенератора 11, который газоводом 12 соединен с газотурбинным двигателем 7 (фиг. 7).

Вспомогательный газогенератор 11 является важным и необходимым элементом ГТД 7 для обеспечения его работоспособности на любых высотах, его конструкция и возможные варианты выполнения описаны ниже. Для питания вспомогательного газогенератора горючим и окислителем предназначен дополнительный ТНА 13 (турбонасосный агрегат). Внутри газовода 12 может быть установлен озонатор 14.

ЖРД 6 (фиг. 8) содержит ТНА 15. ЖРД 6 установлены на силовой раме 16. Внутри центрального фюзеляжа 2 установлены бак окислителя 17 и бак горючего 18 (фиг. 7). К баку окислителя 17 присоединен трубопровод окислителя 19, а к баку горючего 18 - трубопровод горючего 20.

Также в верхней части боковых ступеней 3 выполнены воздухозаборниками 21, соединенными воздушным трактом с входами в ГТД 7 (фиг. 7).

ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ

Жидкостный ракетный двигатель 6 (фиг. 8) содержит камеру сгорания 22 и ТНА 15, подстыкованный к камере сгорания 22 посредством газовода 23. На ТНА 15 установлен газогенератор 24.

ТНА 15 содержит, в свою очередь, турбину 25, насос окислителя 26 и насос горючего 27. Турбонасосный агрегат 15 может содержать дополнительный насос горючего 28. Выход из насоса горючего 27 соединен трубопроводом 29 с входом в дополнительный насос горючего 28 (при его наличии). Камера сгорания 22 содержит головку 30 и сопло 31.

Возможная пневмогидравлическая схема ЖРД приведена также на фиг. 8 и содержит трубопровод горючего 32, подсоединенный одним концом к выходу из насоса горючего 27, содержащим пускоотсечной клапан 33, выход этого трубопровода соединен с главным коллектором 34 камеры сгорания 22. Выход из насоса окислителя 23 трубопроводом окислителя 35, содержащим пускоотсечной клапан окислителя 36, соединен с газогенератором 25. Также выход из дополнительного насоса горючего 27 трубопроводом горючего 37, содержащим пускоотсечной клапан горючего 38 соединен с газогенератором 24. На газогенераторе 24, на камере сгорания 22 установлены, по меньшей мере, по одному запальному устройству 39 и 40 соответственно. Запальные устройства 39 и 40 соединены электрическими связями 41 с энергетическим блоком 42.

Двигатели 6…8 оборудованы блоком управления 43, который электрическими связями 41 соединен с энергетическим блоком 42 и с пускоотсечными клапанами 33, 36 и 38. Особенностью ЖРД 6 является то, что ТНА 15 жестко закреплен на камере сгорания 22.

РАКЕТНЫЕ РУЛЕВЫЕ ДВИГАТЕЛИ

Для управления по углам тангажа, рыскания и крена при старте и в полете ракеты-носителя применяют не менее двух ракетных рулевых двигателей 8 (фиг. 9), установленных в боковых блоках 3. Фактически ракетные рулевые двигатели 8 являются и маршевыми при возвращении возвращаемой ступени 1 на землю в космосе, когда ГТД 7 еще не запущены.

Конструкция и схема питания окислителем и горючим ракетных рулевых двигателей 8 приведена на фиг. 10. Главной особенностью ракетных рулевых двигателей 8 является то, что каждый из них имеет собственный малоразмерный ТНА 44, с присоединенным к нему электрогенератором 45. Электрогенератор 45 предназначен для обеспечения электроэнергией ракеты-носителя на активном участке траектории.

К малоразмерному ТНА 44 присоединены трубопровод окислителя 46 и трубопровод горючего 47. К выходу из малоразмерного ТНА 44 присоединен трубопровод окислителя высокого давления 48 с отсечным клапаном окислителя 49 и трубопровод горючего высокого давления 50 с отсечным клапаном горючего 51.

Ракетный рулевой двигатель 8 закреплен на шарнирной подвеске 52 с возможностью качания в одной плоскости для управления по углам тангажа и крена. По углам рыскания управление ракетой-носителем на активном участке полета осуществляется рассогласованием тяг ракетных рулевых двигателей 8.

Ракетные рулевые двигатели 8 (фиг. 9) имеют собственные запальные устройства 53 для повторного включения при возвращении возвращаемой ступени 1 и используются одновременно как маршевые в вакууме и для управления полетом и стабилизации положения возвращаемой ступени 1 при ее возвращении на землю для повторного использования.

ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ

Газотурбинные двигатели 7 (фиг. 10…12) установлены в боковых блоках 3 и содержат, как упоминалось ранее, озонатор 14.

Озонатор 14, применяемый для значительного улучшения удельных характеристик ГТД 7 (фиг. 10) содержит корпус 54, внутри которого в рабочей камере 55 установлены два металлических электрода 56 и 57, соединенные силовыми связями 41 с электрогенератором 45.

Кроме того, ГТД 7 (фиг. 12) содержит корпус 58, входное устройство 59, компрессор 60, воздушный тракт 61, основную камеру сгорания 62, турбину 63 и реактивное сопло 64. Компрессор 60 содержит направляющие аппараты 65 и рабочие колеса 66, турбина 63 содержит сопловые аппараты 67 и рабочие колеса 68. Компрессор 60 и турбина 63, точнее их рабочие колеса 66 и 68, соединены валом 69. Валов 69 может быть два или три в зависимости от конструкции газотурбинного двигателя 7. Вал 69 установлен на опорах 70 и 71.

Основная камера сгорания 62 (фиг. 12) содержит жаровую трубу 72, форсуночную плиту 73 с топливными форсунками 74 и топливным коллектором 75. Под жаровой трубой 72 установлен внутренний кожух 76, между которым и жаровой трубой 72 выполнен внутренний канал 77. Между жаровой трубой 72 и корпусом 54 выполнен внешний канал 78. Внутренний и внешний каналы 77 и 78 предназначены для ввода воздуха (или газогенераторного газа) из воздушного тракта 67 внутрь жаровой трубы 72 через отверстия 79, выполненные в ней, а также для охлаждения самой жаровой трубы 72.

Газотурбинный двигатель 7 (фиг. 12) имеет систему топливоподачи, содержащую топливопровод низкого давления 80, топливный насос 81, имеющий привод 82, топливопровод высокого давления 83, вход которого соединен с топливным насосом 81, а выход через отсечной клапан 84 соединен с топливным коллектором 75, который соединен с топливными форсунками 74 основной камеры сгорания 62.

Газотурбинный двигатель 7 оборудован системами подачи горючего и окислителя от бака окислителя 17 и бака горючего 18 и дополнительным турбонасосным агрегатом 13. Кроме того, газотурбинный двигатель 7 обязательно оборудован вспомогательным газогенератором 11, который газоводом 12 через озонатор 14 соединен с воздушным трактом 67 до основной камеры сгорания 62.

ДОПОЛНИТЕЛЬНЫЙ ТУРБОНАСОСНЫЙ АГРЕГАТ

Дополнительный турбонасосный агрегат 13 (фиг. 11) входит в состав ГТД 7 и предназначен для его обслуживания, он содержит корпус 85, установленные на валу 86 насос горючего 87, насос окислителя 88, турбину 89 и второй электрогенератор 90. Второй электрогенератор 90 предназначен для питания потребителей электрической энергии возвращаемой ступени 1 и в первую очередь озонатора 14 при посадке возвращаемой ступени 1 на землю. Пилотируемый полет может продолжаться несколько часов.

Более подробно схема подключения дополнительного турбонасосного агрегата в пневмогидросхему ГТД 7 приведена на фиг. 13. Выход из бака окислителя 17 соединен трубопроводом окислителя 19, содержащим клапан окислителя 91 с насосом окислителя 88, а выход из бака горючего 18 трубопроводом горючего 92, содержащим клапан горючего 93, соединен с входом в насос горючего 87. Выход из насоса окислителя 88 трубопроводом высокого давления окислителя 94, содержащим отсечной клапан окислителя 95 соединен с входом в газогенератор 11. Выход из насоса горючего 87 трубопроводом горючего высокого давлении 96, содержащим отсечной клапан 97 и регулятор расхода 98, соединен с входом в вспомогательный газогенератор 11. Выход вспомогательного газогенератора 11 соединен с входом в турбину 89, а выход из турбины 89 газоводом 12 через озонатор 14 соединен с коллектором смешения 99 и с газовыми форсунками 100, установленным в воздушном тракте 67 перед основной камерой сгорания 62.

Организация подвода генераторного газа с избытком окислителя и его активация является важнейшим элементом предложенной конструкции газотурбинного двигателя 7. Возможны несколько вариантов исполнения соединения газовода 12 с воздушным трактом 67 (фиг. 14…19).

На фиг. 14 приведен первый вариант соединения газовода 12 с воздушным трактом 67. На корпусе 58 газотурбинного двигателя 8 в районе воздушного тракта 67 выполнен кольцевой коллектор 101, полость 102 которого отверстиями 103 соединена с воздушным трактом 67 ГТД 7.

На фиг. 15 приведен второй вариант также с кольцевым коллектором 101, полость 102 которого отверстиями 103 сообщается с радиальными патрубками 104, которые перфорированы по всей высоте отверстиями 105 для более равномерного ввода генераторного газа в воздух, проходящий в воздушном тракте 67.

На фиг. 16 приведен третий вариант. По этому варианту в воздушном тракте 67 установлен внутренний кольцевой коллектор 106, имеющий полость 107 и отверстия 108. К внутреннему кольцевому коллектору 106 присоединен газовод 12. Этот вариант обеспечивает более равномерную подачу генераторного газа в основную камеру сгорания 62 ГТД 7. Это необходимо, чтобы обеспечить равномерное температурное поле на входе в турбину 63 и предотвратить местный перегрев деталей рабочих колес 68.

На фиг. 17 приведен четвертый вариант. В газоводе 12 непосредственно перед коллектором смешения 99 установлен озонатор 14. Приближение ионизатора 14 к камере сгорания 62 уменьшает время, потребное для подачи озона в камеру сгорания 62. Это необходимо, потому что время жизни молекул озона ограничено.

На фиг. 18 приведен пятый вариант. В нем совмещены ионизатор 14 и коллектор смешения 99. Электроды 56 и 57 установлены внутри коллектора смешения 99, это дополнительно приближает ионизатор 14 к основной камере сгорания 62.

На фиг. 19 приведен шестой вариант. Озонатор 14 выполнен в воздушной тракте 67 после коллектора смешения 99. Электроды 56 и 57 выполнены концентричными и озонируют не только генераторный газ, но и основной поток воздуха в воздушной тракте 67.

Вспомогательный газогенератор газотурбинного двигателя

Для предложенного газотурбинного двигателя 7 вспомогательный газогенератор 11 может быть специально спроектирован или использован доведенный газогенератор жидкостных ракетных двигателей НК-33. Принципиальная схема вспомогательного газогенератора 11 показана на фиг. 20 и 21. Вспомогательный газогенератор 11 предназначен для сжигания компонентов топлива (горючего и окислителя), при этом один из них является избыточным компонентом, а второй - дополнительным компонентом. Наиболее предпочтительно в качестве горючего использовать керосин, а в качестве окислителя - кислород.

Вспомогательный газогенератор 11 содержит (фиг. 20) головку 109, камеру 110, распределитель окислителя (избыточного компонента) 111, установленный вдоль оси камеры ПО.

Камера 110 содержит две зоны: зону горения 112 и зону смешения 113. Первая из них предназначена для сгорания двух компонентов при оптимальном соотношении, а вторая - для подмешивания окислителя с целью выработки генераторного газа с избытком окислителя для компенсации недостатка воздуха на больших высотах полета.

Головка 109 содержит переднее днище 114 с патрубком подвода горючего 115, среднее днище 116, огневое днище 117, форсунки окислителя 118, форсунки горючего 119. Между передним 114 и средним 116 днищами образована полость 120 для подвода горючего к форсункам горючего 119, а между огневым днищем 117 и средним днищем 116 образована полость 121 для подвода окислителя к форсункам окислителя 118. В среднем днище 116 выполнены пазы 122 для подвода окислителя в полость 121. Камера 110 вспомогательного газогенератора 11 содержит наружный корпус 123 и внутреннюю оболочку 124, между которыми имеется зазор 125 для прохода окислителя. На распределителе окислителя 111 выполнены отверстия 126 для подачи избыточного компонента в зону смешения 113. Вдоль оси камеры 110 выполнен патрубок окислителя 127.

Вспомогательные газогенераторы 11 имеют устройства воспламенения 128 (фиг. 20). Основные камеры сгорания 62 имеют устройства воспламенения 129 (фиг. 14…19).

СИСТЕМА НАДДУВА БАКОВ

Система наддува бака окислителя 17 приведена на фиг. 23 и содержит трубопровод наддува 130 с клапаном наддува 131. Трубопровод наддува 130 присоединен к выходу из вспомогательного газогенератора 11, т.е. наддув осуществляется газогенераторным газом, содержащим 90…95% кислорода. Наддув баков горючего 18 осуществляется гелием. Система наддува бака горючего 18 на фиг. 1…22 не показана.

РАБОТА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ПРИ ЗАПУСКЕ И ВОЗВРАЩЕНИИ ВОЗВРАЩАЕМОЙ СТУПЕНИ РАКЕТЫ-НОСИТЕЛЯ

При запуске ракеты-носителя одновременно запускают все двигатели: ЖРД 6, рулевые двигатели 8 и газотурбинных двигателей 7. При этом вспомогательные газогенераторы 11, обслуживающие газотурбинные двигатели 7 не работают (фиг. 1).

При выходе ракеты-носителя в разреженные слои атмосферы (на высоте 10…30 км) включают вспомогательные газогенераторы 11 для компенсации недостатка воздуха, поступающего на вход в газотурбинные двигатели 7. Одновременно включают озонаторы 14, в которых кислород частично превращается в озон. Окислительные свойства озона в 80 раз лучше, чем у кислорода, поэтому увеличивается полнота сгорания горючего в основной камере сгорания 62, улучшаются его удельные характеристики и уменьшается расход топлива.

Это является чрезвычайно важным, так как топливо поднимается на орбиту и опускается в плотные слои атмосферы.

При выходе ракеты-носителя в вакуум газотурбинные двигатели 7 выключают. ЖРД 6 продолжают работу до завершения программы полета на активном участке траектории, после чего они выключаются. Рулевые ракетные двигатели 8 используются и как маршевые и для управления в космосе в условиях абсолютного вакуума.

Отсоединяют вышестоящие ступени или полезную нагрузку, после чего включают ракетные рулевые двигатели 8 и направляют возвращаемую ступень 1 к земле. При входе в разреженные слои атмосферы (на высоте от 30 до 10 км) включают газотурбинные двигатели 7 с одновременным включением обслуживающих их вспомогательных газогенераторов 11.

Ракетные рулевые двигатели 8 выключают, чтобы не тратить нерационально компоненты топлива: горючее и окислитель.

Запуск двух ГТД 7 осуществляют путем подачи электроэнергии на стартер от источника энергии (на фиг. 1…22 не показано). Одновременно включают привод 82 топливного насоса 81 (фиг. 20) и топливный насос 81 подает топливо в топливный коллектор 75 основной камеры сгорания 62 и далее через топливные форсунки 74 внутрь жаровой трубы 72, где оно воспламеняется при помощи устройства воспламенения 128. Рабочие колеса 66 турбины 63 раскручиваются и раскручивают через вал 69 рабочие колеса 68 компрессора 60. Реактивное сопло 64 создает тягу.

Практически одновременно или через 20-30 сек запускают вспомогательные газогенераторы 11, обслуживающие ГТД 7. Для этого открывают пускоотсечные клапаны 91 и 93 и подают окислитель и горючее в вспомогательные газогенераторы 11, где воспламеняют при помощи устройства воспламенения 128 (фиг. 9). Газогенераторный газ проходит через турбину 89 и поступает через озонатор 14 и коллектор смешения 99 в газовые форсунки 100 в воздушный тракт 67 перед основной камерой сгорания 62 для компенсации недостатка воздуха, предназначенного для нормальной работы ГТД 7. В этом режиме управление возвращаемой ступенью 1 осуществляют рулевые ракетные двигатели 8.

При переходе возвращаемой ступени 1 в плотные слои атмосферы (на высоте 3…4 км) выключают вспомогательные газогенераторы 11 и ГТД 7 продолжают работать, используя только скоростной напор атмосферного воздуха, поступающего через воздухозаборники 21 (фиг. 7 и 10).

Изменение режима работы газотурбинного двигателя 7 в высотных условиях осуществляется регулятором расхода 98 (фиг. 10), а при полете летательного аппарата, оборудованного таким двигателем в плотных слоях атмосферы при помощи привода 82 насоса 81. Подача горючего и окислителя во вспомогательный газогенератор 11 может быть значительно уменьшена или полностью прекращена.

При переходе первой ступени в более плотные слои атмосферы отключают вспомогательный газогенератор 11, для этого перекрывают отсечные клапаны 91 и 93 и прекращают подачу окислителя и горючего и газотурбинный двигатель 7 переходит на использование в качестве окислителя атмосферного воздуха, что более экономично.

Для управления в полете и частично в режиме возвращения первой ступени 1 ракеты-носителя применяют рассогласование тяги ГТД 7, а для стабилизации передние и задние крылья 4 и 5 (фиг. 1).

Посадка возвращаемой ступени 1 выполняется на взлетно-посадочную полосу ВПП на аэродроме. Для этого выпускают шасси 9 и 10 (фиг. 2). Для окончательного выключения газотурбинного двигателя 7 после посадки первой ступени 1 прекращают подачу топлива в его основную камеру сгорания 62 насосом 81 (фиг. 13).

Естественно, что в случае применения многоступенчатых ракет-носителей возвращаемой может быть выполнена не только первая ступень, но и последующие ступени.

Применение изобретения позволило:

1. Обеспечить надежное возвращение одной или нескольких ступеней ракет-носителей для повторного использования.

2. Обеспечить работоспособность газотурбинного авиационного двигателя на очень больших высотах (более 30000 м и в космосе).

3. Значительно повысить тягу газотурбинного двигателя за счет применения вспомогательного газогенератора и ионизатора.

4. Улучшить надежность запуска газотурбинного двигателя, особенно в высотных условиях за счет использования при запуске горячего газогенераторного газа и устройств воспламенения многократного использования.

4. Обеспечить многоразовость запуска ЖРД и ГТД за счет применения на них многоразовых запальных устройств (электрических или лазерных).

5. Обеспечить управление ракетой-носителем по углам тангажа, рыскания и крена как на активном участке траектории, так и при возвращении.

1. Возвращаемая ступень ракеты-носителя, содержащая фюзеляж, баки окислителя и горючего, крылья и, по меньшей мере, один жидкостный ракетный двигатель, и не менее двух рулевых двигателей, отличающаяся тем, что к фюзеляжу прикреплены два боковых блока, в которых установлены газотурбинные двигатели, которые имеют рулевой ракетный двигатель, установленный внутри выхлопного сопла, основную камеру сгорания и вспомогательный газогенератор, соединенный через коллектор смешения с основной камерой сгорания газоводом, а в верхней части боковых блоков выполнены воздухозаборники.

2. Возвращаемая ступень ракеты-носителя по п. 1, отличающаяся тем, что в газоводе установлен озонатор.

3. Возвращаемая ступень ракеты-носителя по п. 1, отличающаяся тем, что подвод окислителя и горючего к вспомогательному газогенератору выполнен через дополнительный ТНА, в состав которого входит электрогенератор.

4. Возвращаемая ступень ракеты-носителя по п. 1, отличающаяся тем, что озонатор установлен внутри камеры сгорания непосредственно перед коллектором смешения.

5. Возвращаемая ступень ракеты-носителя по п. 1, отличающаяся тем, что газотурбинный двигатель содержит перед основной камерой сгорания кольцевой коллектор, с которым соединен газовод, а полость кольцевого коллектора сообщается с воздушным трактом отверстиями или патрубками.

6. Возвращаемая ступень ракеты-носителя по п. 1, отличающаяся тем, что газотурбинный двигатель содержит перед основной камерой сгорания соединенный с газоводом кольцевой перфорированный коллектор, установленный внутри воздушного тракта.

7. Возвращаемая ступень ракеты-носителя по п. 1, отличающаяся тем, что газотурбинный двигатель содержит перед основной камерой сгорания кольцевой коллектор.

8. Возвращаемая ступень ракеты-носителя по п. 1, отличающаяся тем, что основная камера сгорания содержит, по меньшей мере, одно запальное устройство.

9. Возвращаемая ступень ракеты-носителя по п. 1, отличающаяся тем, что газогенератор содержит, по меньшей мере, одно запальное устройство.

10. Возвращаемая ступень ракеты-носителя по п. 1, отличающаяся тем, что вспомогательный газогенератор соединен трубопроводами окислителя и горючего с турбонасосным агрегатом, имеющим насосы горючего, окислителя и турбину.

11. Возвращаемая ступень ракеты-носителя по п. 1, отличающаяся тем, что газотурбинные двигатели оборудованы соплом с управляемым вектором тяги.

12. Способ работы возвращаемой ступени ракеты-носителя, включающий ее разгон на активном участке траектории при помощи ЖРД и управление при помощи рулевых двигателей и возвращение при помощи двух ГТД, отличающийся тем, что ГТД запускают в разреженных слоях атмосферы, используя вспомогательные газогенераторы, работающие с избытком окислителя и компенсирующие нехватку атмосферного воздуха для работы ГТД, генераторный газ перед подачей в основную камеру сгорания озонируют, а при полете в плотных слоях атмосферы вспомогательные газогенераторы выключают.

13. Газотурбинный двигатель, содержащий компрессор, основную камеру сгорания, турбину и выхлопное сопло, отличающийся тем, что он содержит рулевой ракетный двигатель, установленный внутри выхлопного сопла, основную камеру сгорания и вспомогательный газогенератор, соединенный газоводом через коллектор смешения с основной камерой сгорания газоводом.

14. Газотурбинный двигатель по п. 13, отличающийся тем, что в газоводе установлен озонатор.

15. Газотурбинный двигатель по п. 13, отличающийся тем, что в коллекторе смешения установлен озонатор.

16. Газотурбинный двигатель по п. 13, отличающийся тем, что в воздушном тракте между компрессором и основной камерой сгорания установлен озонатор.

17. Газотурбинный двигатель по п. 13, отличающийся тем, что озонатор содержит два кольцевых электрода, выполненные коаксиально по обе стороны от коллектора смешения.



 

Похожие патенты:

Изобретение относится к ракетной технике и может быть использовано при создании твердотопливных двигательных установок для многоступенчатых баллистических ракет.

Изобретение относится к ракетной технике, а именно к твердотопливным двигательным установкам системы аварийного спасения. .

Изобретение относится к ракетной технике и может быть использовано преимущественно в жидкостных ракетных двигателях. .

Изобретение относится к области космонавтики и космической техники, а именно к двигателям космических аппаратов для длительных орбитальных и межорбитальных полетов, а также для полетов к Луне и планетам.

Изобретение относится к ракетной технике и может быть использовано при создании твердотопливных двигательных установок для многоступенчатых ракет-носителей. .

Изобретение относится к области космонавтики и космической техники, а именно к двигателям космических аппаратов. .

Изобретение относится к ракетной технике и может быть использовано при создании ракетных двигателей на твердом топливе. .

Изобретение относится к ракетной технике, конкретно к устройствам многоступенчатых жидкостных ракет. .

Способ конвертирования турбовального авиационного двигателя в наземную газотурбинную установку. Удаляют лопатки из проточных частей последних ступеней компрессора и первых ступеней турбины.

Газотурбинный двигатель содержит корпус, ротор, включающий вал. Один конец вала жестко скреплен с рабочим колесом турбины, на который насажена цилиндрическая втулка ротора, выполненный с возможностью его газодинамического поддержания, а на свободном конце зафиксировано колесо центробежного компрессора, снабженный упорным подшипником.

Изобретение относится к производству газотурбинных двигателей внутреннего сгорания дня использования на всех видах транспорта. .

Двигатель // 2285138
Изобретение относится к машиностроению и может быть применено на транспортных средствах и других объектах. .

Изобретение относится к газотурбинным установкам, предназначенным для регенерации тепла, поступающего от источника тепла. .

Изобретение относится к ракетно-космической технике и может быть использовано в ракетах космического назначения лёгкого класса (РКН ЛК). РКН ЛК на нетоксичных компонентах топлива с высокой степенью заводской готовности к пусковым операциям с определенным составом, весогабаритными и техническими параметрами, необходимыми для осуществления авиационной транспортировки полностью собранной и испытанной в заводских условиях РКН ЛК, содержит спасаемые ракетный блок или двигательную установку первой ступени, воздушно-космическую парашютную систему.
Наверх