Способ моделирования состояния ингибирования функциональной активности гликопротеина-р ингибитором дипептидилпептидазы 4

Изобретение относится к экспериментальной медицине, фармакологии и предназначено для изучения принадлежности лекарственных препаратов к субстратам эффлюксного белка-транспортера гликопротеина-Р (P-gp, АВСВ1 белок), а также использования в качестве контроля ингибирующей активности P-gp при установлении веществ аналогичного типа действия. Для этого моделируют в эксперименте состояние ингибирования функциональной активности P-gp. В качестве препарата-ингибитора используют ингибитор дипептидилпептидазы-4 вилдаглиптин, который вводят кролику внутрижелудочно в дозе 5 мг/кг массы тела в течение 14 дней. При этом в качестве маркерного субстрата P-gp используют фексофенадин, который вводят животному внутрижелудочно в дозе 67,5 мг/кг до и после 14-дневного введения вилдаглиптина с последующей оценкой содержания фексофенадина в плазме крови. Способ обеспечивает создание такой модели, при которой проявляется селективный эффект в отношении P-gp в отсутствии влияния на CYP3A4 без возникновения клинически значимых побочных эффектов. 3 табл.

 

Изобретение относится к экспериментальной медицине, фармакологии и клинической фармакологии и предназначено для изучения принадлежности лекарственных препаратов к субстратам эффлюксного белка-транспортера гликопротеина-Р (P-gp, АВСВ1 белок), а также использования в качестве контроля ингибирующей активности P-gp при установлении веществ аналогичного типа действия. Для этого моделируют в эксперименте состояние ингибирования функциональной активности АВСВ1 белка. В качестве препарата-ингибитора используют блокатор дипептидилпептидазы 4 (DPP-4), предпочтительно вилдаглиптин или его фармацевтически приемлемые соли, а в качестве маркерного субстрата P-gp - фексофенадин.

В последнее время все большее значение в фармакокинетике лекарственных веществ придается лекарственным транспортерам, так как для многих лекарственных препаратов существует вероятность фармакокинетических, лекарственно-опосредованных взаимодействий. В ряде случаев они клинически значимы и возникает необходимость коррекции доз и даже введение запрета на совместное использование лекарственных препаратов в практике. Лекарственно-опосредованные взаимодействия возникают, когда два (или более) совместно вводимых лекарственных препарата взаимодействуют на этапах фармакокинетики, что приводит к увеличению или снижению системных эффектов одного или более препаратов (объектов взаимодействия). Взаимодействия считаются клинически значимыми, когда концентрация/эффекты препарата превышают безопасный уровень или происходит снижение концентрации/эффектов препарата до субтерапевтического уровня.

Большинство лекарственно-опосредованных взаимодействий связаны с изменениями со стороны ферментных систем, но все больше признается участие в их реализации белков-транспортеров. Установлено, что транспортные белки оказывают влияние на абсорбцию лекарственных препаратов при их пероральном введении (дигоксин, сульфасалазин, фексофенадин), пресистемный метаболизм (статины), распределение в тканях (метотрексат), экскрецию с желчью и мочой (дигоксин, метформин, пенициллины, противовирусные препараты). Многие лекарственные препараты способны модулировать функциональную активность и/или уровень экспрессии транспортеров, что приводит к клинически значимым лекарственным взаимодействиям. Таким образом, есть два различных аспекта рисков лекарственно-опосредованных взаимодействий, которые необходимо учитывать, в том числе и при разработке новых потенциальных лекарственных препаратов. Во-первых будет ли иметь место конкуренция за белок-транспортер между совместно используемыми лекарственными препаратами/потенциальным лекарственным препаратом и совместно используемыми с ним лекарственными препаратами. Во-вторых, не оказывает ли влияние лекарственный препарат/потенциальный лекарственный препарат на фармакокинетику используемых совместно с ним лекарственных средств. Рассмотрение каждого из аспектов необходимо для мотивированной и комплексной оценки рисков нежелательных лекарственных реакций в клинической практике (Ayrton A. et al., 2008). Потенциал лекарственных взаимодействий, как правило, оценивается с помощью исследований in vitro с последующим исследованиями in vivo (European Medicines Agency ((EMEA) Европейское агентство лекарственных средств), Guideline on the Investigation of Drug Interactions, 2012)

Наиболее клинически значимым переносчиком лекарственных веществ является - гликопротеин-Р (P-gp, АВСВ1 белок, MDR1), что определяется его широкой субстратной специфичностью и локализацией в организме. Гликопротеин-Р (P-gp) осуществляет транспортировку липофильных соединений против градиента концентрации за счет гидролиза АТФ (Hennessy M. et al., 2007).

Наиболее известна изоформа, кодируемая генном MDR1, которая связана с фенотипом множественной лекарственной устойчивости (MDR/МЛУ) (Hennessy M. et al., 2007). Однако P-gp имеет большое клиническое значение не только в противоопухолевой терапии. АВСВ1 белок участвует в процессах всасывания, распределения и выделения широкого спектра лекарственных веществ, являющихся его субстратами (Zhou S.F., 2008). P-gp обнаружен в тонком и толстом кишечнике, в печени (Thiebaut F et al., 1987), в почках (Schinkel А.Н. et al., 2003; Tramonti G. et al., 2006), в плаценте (Cordon-Cardo С.et al., 1990), в гематоэнцефалическом барьере (Zhou S.F., 2008). P-gp осуществляет выделение ряда физиологических субстратов (стероидные гормоны) (Ueda K. et al., 1992), а также ксенобиотиков, в желудочно-кишечный тракт, желчь и мочу. P-gp транспортирует разнообразные по структуре соединения от небольших молекул, таких как органические катионы, углеводы и аминокислоты, до макромолекул, таких как белки и полисахариды (Zhou S.F., 2008), 50% существующих препаратов являются его субстратами или ингибиторами (Food and Drug Administration ((FDA) Управление по надзору за качеством пищевых продуктов и медикаментов), Guidance for Industry Drug Interaction Studies - Study Design, Data Analysis, Implications for Dosing, and Labeling Recommendations, 2012; John P. et al., 2006).

Признанием важности данного белка-транспортера является разработка FDA и ЕМЕА рекомендаций по выявлению отношения потенциальных лекарственных субстанций к гликопротеину-Р, для фармацевтических компаний, регистрирующих новые препараты.

Однако высока вероятность совпадений субстратной специфичности и свойств ингибиторов и индукторов P-gp и CYP3A4. Последний является одной из наиболее важных изоформ цитохрома Р450, участвующей в метаболизме ксенобиотиков в организме человека, доля которой среди всех CYP450 составляет около 50% (Кукес В.Г. и соавт. 2013). Более 60% применяемых в настоящее время лекарственных препаратов метаболизируются при участии CYP3A4 (Li А.Р. et al., 1995).

Примером перекрестной чувствительности может быть влияние итраконазола, ингибирующего CYP3A и P-gp, рифампицина, индуцирующего CYP3A и P-gp. Тем не менее, ингибирующий потенциал по отношению к CYP3A и P-gp не обязательно одинаково выражен (табл. №1).

Например, сильный ингибитор CYP3A-вориконазол не вызывает значительных изменений транспорта субстратов P-gp, таких как дигоксин или фексофенадин. Кроме того, некоторые мощные ингибиторы P-gp, такие как амиодарон и хинидин (изменяющие AUC дигоксина или фексофенадина ≥1,5 раза), являются слабыми ингибиторами CYP3A (FDA, Guidance for Industry Drug Interaction Studies - Study Design, Data Analysis, Implications for Dosing, and Labeling Recommendations, 2012).

Согласно рекомендациям FDA и ЕМЕА для установления in vivo принадлежности лекарственного препарата к субстратам P-gp, необходимо использовать мощный селективный ингибитор данного белка-транспортера (FDA, Guidance for Industry Drug Interaction Studies - Study Design, Data Analysis, Implications for Dosing, and Labeling Recommendations, 2012; EMEA Guideline on the Investigation of Drug Interactions, 2012). Однако, до сих пор не удалось найти клинически подходящий, селективный ингибитор гликопротеина-Р, который не являлся бы также ингибитором CYP3A4 (Keogh J.P., 2012). Кроме того, очевидно, что в случае использования ингибитора in vivo для целей клинической фармакологии и персонализированной медицины, в отношении него должны предъявляться такие требования, как безопасность и минимальное влияние на гемодинамику, чтобы исключить изменения фармакокинетических показателей, не опосредованных изменением функциональной активности и/или экспрессией гликопротеина-Р.

В связи с вышеизложенным перспективными препаратами, которые могут быть использованы с данной целью являются глиптины, предпочтительно вилдаглиптин. Глиптины относятся к новому классу оральных гипогликемических препаратов, используемых для фармакотерапии сахарного диабета 2-го типа, и представляют собой селективные и обратимые ингибиторы дипептидилпептидазы 4 (DPP-4), фермента, который инактивирует инкретиновые гормоны: глюкагон-подобный пептид-1 (ГПП-1(GLP-1), а также глюкозоинсулинотропный полипептид (ГИП(GIP)), которые вносят существенный вклад в поддержание гомеостаза глюкозы (ЕМЕА, 2007). Принципиально важной особенностью влияния инкретинов на функцию панкреатических α- и β-клеток является его глюкозозависимый характер. Это означает, что инкретины стимулируют секрецию инсулина и, напротив, подавляет продукцию глюкагона лишь в условиях гипергликемии. Как только уровень глюкозы плазмы снижается до нормального уровня, вышеуказанные эффекты инкретинов нивелируются, что является надежным физиологическим механизмом, предотвращающим развитие гипогликемических состояний (Hoist J. et al., 2008). Согласно имеющимся данным на фоне монотерапии вилдаглиптином (Галвус 50 мг; производитель Novartis Pharma AG, Швейцария) в дозе 50 мг 1 или 2 раза в сутки частота развития гипогликемии без увеличения степени тяжести состояния составляет 0,5% (2 человека из 409) или 0,3% (4 из 1082), что сопоставимо с препаратами сравнения и плацебо (0,2%). При применении вилдаглиптина (Галвуса) в виде монотерапии не отмечалось повышения массы тела пациентов (Novartis Pharma AG). Вилдаглиптин имеет высокую степень безопасности, хорошо переносится, обладает глюкозозависимым действием и лишен серьезных побочных эффектов (Wilhauer Ε., 2010).

Отсутствуют существенные различия в фармакокинетических параметрах вилдаглиптина на этапе абсорбции между животными различных видов (крысой, кроликом, собакой) и человеком (ЕМЕА, 2007). Биотрансформация является основным путем инактивации вилдаглиптина. Около 60% от введенной дозы вилдаглиптина подвергается метаболической трансформации за счет гидролиза. Окислению подвергается лишь 1,6% препарата. На долю конъюгации с глюкуроновой кислотой приходится 4,4%. Изоферментные системы CYP450 участвуют в метаболизме вилдаглиптина лишь в незначительной степени. In vitro определялся низкий потенциал взаимодействия с изоферментами CYP450. И согласно инструкции по применению препарата вилдаглиптин не ингибирует и не индуцирует ферментные системы цитохрома Р450, при одновременном применении не влияет на скорость метаболизма препаратов, являющихся субстратами ферментов: CYP1A2, 2С8, 2С9, 2С19, 2D6, 2Е1, 3А4/5 (ЕМЕА, 2007; Novartis).

Целью изобретения являлось создание такой модели ингибирования функциональной активности P-gp, которая проявляла бы селективный эффект в отношении P-gp, не влияя на CYP3A4, и не сопровождалась возникновением клинически значимых побочных эффектов, а при изучении на животных была бы методически обоснована согласно международным требованиям по изучению субстратов P-gp.

Поставленная задача достигается тем, что в качестве ингибитора P-gp выбран блокатор ДПП-4 вилдаглиптин, безопасный и экономически доступный препарат.

Описание способа

В качестве экспериментальной модели использовали кроликов, которые являются адекватной трансляционной моделью для изучения гликопротеина-Р (Колхир П.В., 2007). Эксперимент выполнен на 21 половозрелом кролике-самце породы Шиншилла, средней массой 3500-4500 г. Вилдаглиптин вводили животным в течение 14 дней внутрижелудочно в дозе 5 мг/кг массы тела. Функциональную активность P-gp определяли по анализу динамики плазменной концентрации фексофенадина, маркерного субстрата белка-транспортера. Фексофенадин был выбран в качестве специфического субстрата P-gp, с низкой биодоступностью при пероральном введении, более чувствительного к снижению функциональной активности и/или экспрессии P-gp в кишечнике, чем пероральный дигоксин (ЕМЕА, Guideline on the Investigation of Drug Interactions. 27 стр). Фексофенадин (Препарат Телфаст 180 мг; производитель: Aventis Pharma, Италия) вводился однократно внутрижелудочно через зонд в дозе 67,5 мг/кг массы тела животного до и после 14-дневного введения вилдаглиптина. Пробы крови отбирали в объеме 3-5 мл из краевой вены уха кролика в гепаринизированные пробирки через 1, 2, 3, 4, 5, 6, 8, 12 и 24 часа после однократного внутрижелудочного введения фексофенадина, центрифугировали 10 минут при 3000 об/мин, плазму хранили при -28°С до анализа (Колхир С.В, 2007).

Содержание фексофенадина в плазме крови определяли методом ВЭЖХ на хроматографе «Стайер» (Россия) с ультрафиолетовым детектором и обращенно-фазовой колонке «Beckman Coulter» 4,6·250 мм, зернением 5 мкм. Экстракцию и хроматографирование маркерного субстрата осуществляли по методу Раменской Г.В. с соавт. в собственной модификации. Анализ выполняли при длине волны 220 нм и скорости подвижной фазы 1 мл/мин.

Элюирование выполняли подвижной фазой следующего состава (на 200 мл): 133,7 мл бидистиллированной воды, содержащей 2,33 мл ледяной уксусной кислоты и 0,936 мл триэтиламипа, доведенной триэтиламином до рН 4,3 и 64 мл ацетонитрила. Время удерживания пика фексофенадина составило 12,31 мин.

В качестве экстрагентов для жидкостной экстракции фексофенадина использовали дихлорметан, этилацетат и диэтиловый эфир. Коэффициент экстракции фексофенадина из плазмы крови составил 64%.

Полученные экспериментальные данные были подвергнуты математико-статистической обработке с использованием офисного пакета «Microsoft Office ХР» и программ Statistica 8.0. и IBM SPSS Satistics 20. Характер распределения данных оценивали по критерию Шапиро-Уилка. Для исследования статистической значимости показателей, имеющих нормальное распределение, использовали тест ANOVA повторных измерений. Для оценки статистической значимости показателей, распределение которых отличалось от нормального, использовали критерий Фридмана. Наличие достоверных различий определяли по параметрическому и не параметриескому критерию Ньюмена-Кейлса, соответственно. Для данных, имеющих нормальное распределение, рассчитывали среднее арифметическое значение (Mean) и стандартное отклонение (SD). Для данных, имеющих распределение, отличное от нормального, рассчитывали медиану (Median), верхний и нижний квартили (lq; uq).

Фармакокинетические параметры фексофенадина рассчитывали при помощи программы «Kinetica 5.0». Полученные данные представлены в табл. №2.

При введении вилдаглиптина в дозе 5 мг/кг массы курсом 14 дней по сравнению с исходными значениями выявлены следующие изменения фармакокинетики маркерного субстрата P-gp - фексофенадина: достоверное увеличение медиан значений Cmax после 14 дней введения на 204,5% (р<0,05) и на 5-й день отмены на 239,58% (р<0,05), медиан значений Т½ после 14 дней введения на 1222,35% (р<0,05) и на 5-й день отмены на 715,57% (р<0,05), медиан значений AUCO-t после 14 дней введения на 252,03% (р<0,05) и на 5-й день отмены на 322,22% (р<0,05), медиан значений AUCO-∞ после 14 дней введения на 736,62% (р<0,05) и на 5-й день отмены на 969,24% (р<0,05), медиан значений MRT после 14 дней введения на 563,16% (р<0,05) и на 5-й день отмены на 215% (р<0,05), снижение средних значений С1 после 14 дней введения на 87,36% (р<0,05) и на 5-й день отмены на 87,17% (р<0,05), медиан значений Vd после 14 дней введения на 42,49% (р<0,05) и на 5-й день отмены на 55,54% (р<0,05), медиан значений Смах/AUCO-∞ после 14 дней введения на 69,23% (р<0,05) и на 5-й день отмены на 53,85% (р<0,05).

Указанные изменения свидетельствуют об увеличении концентрации фексофенадина в крови за счет увеличения абсорбции и замедления выведения маркерного субстрата. В соответствии с рекомендациями FDA ингибитором P-gp признаются вещества, увеличивающие AUC фексофенадина более чем на 25%, что может служить доказательством ингибирующего влияния вилдаглиптина на функциональную активность P-gp.

Поскольку глюкоза и инсулин способны регулировать активность гликопротеина-Р (Yeh S.Y. et al., 2012), у интактных животных после 14 дней введения вилдаглиптина и на 5-й день его отмены изучали уровни инсулина натощак и на 45 минуту после глюкозной нагрузки (3 г/кг), а также уровень глюкозы до и через 90 минут после глюкозной нагрузки. Рассчитывали гликемический и инсулиногенный индексы (табл. №3) (указанные сроки были выбраны в связи с тем, что в данные промежутки времени наблюдаются максимальные отличия от нормы уровня инсулина, глюкозы и инсулиногенного индекса при введении вилдаглиптина) (Burkey B.F. et al., 2005; Руководство по проведению доклинических исследований лекарственных средств, 2012). Уровень инсулина определяли радиоиммунным методом, концентрацию глюкозы - глюкозоксидазным методом в центральной научно-исследовательской лаборатории РязГМУ.

Изученные показатели представлены в табл. №3. Достоверных различий в уровнях глюкозы и инсулина натощак, показателях гликемического и инсулиногенного индекса до и после 14 дней введения вилдаглиптина, а также на 5-й день его отмены не обнаружено. Таким образом изменения функциональной активности P-gp не могут быть связаны с уровнем глюкозы и/или инсулина.

Использование предлагаемого способа моделирования состояния ингибирования функциональной активности P-gp позволяет применять вилдаглиптин в качестве положительного контроля пониженной функциональной активности белка-транспортера при поиске веществ аналогичного действия, а также для прогнозирования потенциальных субстратов P-gp среди лекарственных и/или потенциальных лекарственных веществ на этапе доклинических исследований.

Способ моделирования состояния ингибирования функциональной активности эффлюксного белка-транспортера гликопротеина-P в эксперименте, включающий введение препарата-ингибитора, отличающийся тем, что в качестве такого препарата используют ингибитор дипептидилпептидазы-4 вилдаглиптин, который вводят кролику внутрижелудочно в дозе 5 мг/кг массы тела в течение 14 дней и в качестве маркерного субстрата гликопротеина-P используют фексофенадин, который вводят животному внутрижелудочно в дозе 67,5 мг/кг до и после 14-дневного введения вилдаглиптина с последующей оценкой содержания фексофенадина в плазме крови.



 

Похожие патенты:
Изобретение относится медицине, а именно к экспериментальной фармакологии, и касается выявления и изучения средств для повышения физической работоспособности у лабораторных животных в эксперименте.

Изобретение относится к медицине, в частности к экспериментальной и гнойной хирургии, и может быть использовано для поиска новых способов лечения абсцессов мягких тканей.

Изобретение относится к области медицины, а именно к патологической анатомии. Для изготовления анатомического препарата полый орган или его фрагмент выделяют из эвисцерированного комплекса органов, промывают полость проточной водой, препарируют, после чего его полость заполняют универсальным водостойким клеем на основе акриловой водной дисперсии, например клеем «Момент монтаж», до тех пор, пока внешний рельеф полого органа, его консистенция и степень наполнения не будут соответствовать аналогичным прижизненным характеристикам.

Изобретение относится к экспериментальной медицине и касается исследований соединений с психотропными и актопротекторными свойствами на доклиническом этапе наблюдения.

Изобретение относится к медицине, а именно к экспериментальной хирургии и патофизиологии, и может быть использовано для изучения механизмов развития ранних и поздних осложнений после выполнения атипичной предельно допустимой резекции печени.

Изобретение относится к медицине, а именно к фтизиатрии, и может быть использовано для моделирования туберкулеза женских половых органов. Для этого кроликам вводят суспензию культуры Mycobacterium tuberculosis Erdman в дозе 107 КОЕ/0.2 мл под серозную оболочку маточной трубы на расстоянии 5 см от маточного рога.

Изобретение относится к медицине, а именно к нейрохимии, патофизиологии, неврологии и психиатрии. На модели острых генерализованных судорог, вызванных пентилентетразолом у крыс самцов линии Вистар, разработан способ противосудорожного воздействия при совместном использовании цитиколина и вальпроата натрия.
Изобретение относится к медицине, а именно к экспериментальной гепатологии, и может быть использовано для моделирования неалкогольной жировой дистрофии печени для последующей разработки новых лечебных подходов к коррекции данного патологического состояния.

Группа изобретений относится к экспериментальной медицине и предназначена для получения модели электротермохимического ожога верхних отделов желудочно-кишечного тракта.

Изобретение относится к медицине, экспериментальной биологии, ветеринарии и может быть использовано для моделирования неалкогольного стеатогепатита. Для этого используют лабораторных крыс.

Группа изобретений относится к медицинской технике. Обучающая адаптерная система для дефибриллятора содержит пару электродов пациента, детектор, выполненный с возможностью детектировать надлежащее размещение пары электродов пациента на имитации пациента, соединитель, расположенный для электрического соединения с дефибриллятором, имитатор ЭКГ, шунтирующий резистор дефибрилляционной энергии и контроллер. Контроллер соединен с парой электродов пациента и находится в соединении с детектором. Контроллер выполнен с возможностью электрически соединять соединитель с имитатором ЭКГ и шунтирующим резистором в ответ на сигнал от детектора. Раскрыты обучающий адаптер и способ использования дефибриллятора. Изобретения обеспечивают безопасное использование внешнего дефибриллятора для обучения. 3 н. и 16 з.п. ф-лы, 6 ил.
Изобретение относится к медицине, в частности к экспериментальной хирургии, и может быть использовано для оценки биоинертности материалов для изготовления медицинских имплантов. Для этого имплантируют в печень и почки крыс по два образца исследуемого материала с последующим послойным ушиванием раны без дренажа. Затем на 14 и 30 сутки животных выводят из эксперимента и берут образцы ткани для гистологического исследования, вырезая поперечно к направлению имплантата через всю толщу органа. Измеряют толщину формирующихся реактивных тканевых зон и капсул, после чего проводят подсчет относительного количества клеточных элементов, характеризующих различные стадии раневого процесса. Для этого исследуют полиморфноядерные лейкоциты всех типов, лимфоциты, гистиоциты, фибробласты. Устанавливают биологическую инертность материала на основании выраженности лейкоцитарной инфильтрации, отсутствии в инфильтратах полиморфноядерных лейкоцитов, определяемой толщине соединительнотканной капсулы и завершенности коллагеногенеза. 1 пр.

Изобретение относится к медицине, а именно к экспериментальной хирургии и патофизиологии, и касается моделирования язвенного колита. Самцам крыс линии «Wistar выполняют ишемизацию стенки толстой кишки. Для этого на уровне нисходящего отдела толстой кишки, на протяжении 3 см от основания мочевого пузыря, пристеночно выделяют, перевязывают и пересекают с сопровождающими венами прямые ветви левой артерии толстой кишки и краниальной прямокишечной артерии. После этого в течение семи послеоперационных суток обеспечивают свободный доступ к пище и к 1%-ному водному раствору декстрана сульфата натрия. Способ позволяет получить модель язвенного колита толстой кишки, приближенную к клиническому течению заболевания, воспроизводимость модели при этом составляет 90%. 7 ил.
Изобретение относится к физиологии и фармакологии поведения, в частности экспериментальному исследованию высших функций мозга, а именно когнитивных способностей животных, а также в психофармакологии для тестирования когнотропных препаратов, которые улучшают умственные способности. Оценку когнитивных способностей крыс осуществляют в проблемной камере Григорьева, состоящей из шести циклов тестирования - 6-ти помещений крысы в камеру, пока без ошибок или с ошибками будут найдены все 6 выходов. При этом правильные безошибочные побежки всегда оценивают в 100%, независимо от номера поискового цикла, а ошибочные побежки во втором поисковом цикле оценивают 16,6%, в третьем - 33,3%, в четвертом цикле - 50%, пятом - 66,6%, в шестом последнем цикле - 83,3%, принимая во внимание уменьшение числа неблокированных выходов из камеры. Когнитивные способности крысы рассчитывают, суммируя в % результаты правильных побежек и неправильных побежек. Причем при допущении неправильных побежек, соответствующий процент умножают на количество неправильных побежек, а затем сумму делят на количество всех побежек. При этом результат ниже 50% свидетельствует о рефлекторном характере поведения, выше 50%, но не достигая 100% - на тенденцию к обучению и приобретению опыта, 100% уровень указывает на высокий уровень когнитивных способностей тестируемой крысы. Способ позволяет с высокой степенью достоверности оценить когнитивные способности крыс в ПК Григорьева за счет того, что вероятность случайного выбора является переменной от начала и до конца тестирования. Это тот самый рубеж, с которого стоимость ошибки начнет увеличиваться до 66,6% на пятом цикле и до 83,3% на шестом, где потребность в когнитивных способностях максимально увеличена. Тестирование при полной блокаде всех дверок запрещено, поскольку нет выбора и нет возможности решения проблемы. Поэтому 7-го цикла, когда все дверки заблокированы, нет. У тестируемых животных в такой безвыходной ситуации возникает и развивается поведенческая депрессия и формируется состояние «learned helplessness (выученной беспомощности)» и наступает смерть (7). По данным наших публикаций, высокий индивидуальный уровень когнитивных способностей имеют только 10-12% тестируемых крыс. Именно их и можно причислить к статусу «интеллектуально одаренных» животных, другим этого не дано. Возможно, ввиду малочисленности этой группы животных проблема наличия или отсутствия когнитивных способностей до настоящего времени является дискуссионной. Когнитивные способности являются самыми главными в высшей нервной деятельности, это - память, внимание, планирование и прогнозирование, умение решать проблемы и осуществлять целенаправленную деятельность. Создание и тестирование когнотропных лекарств является одной из самых актуальных задач в психофармакологии и психиатрии. Использование этого способа может стать значимым и валидным тестом в экспериментальных исследованиях при поиске когнотропных лекарств.

Изобретение относится к медицине, в частности к экспериментальной онкологии и маммологии, и может быть использовано в качестве модели фиброзно-кистозной болезни молочной железы. Способ включает внутримышечное введение девственным самкам крыс синэстрола в дозе 0,5 мл 2% масляного раствора в комбинации с 0,5 мл 2,5% масляного раствора прогестерона. Введение осуществляют в 1, 7, 14, 21, 28 и 35 дни эксперимента. Способ обеспечивает получение морфологических изменений молочной железы, подобных таковым изменениям у женщин, что позволяет детально изучать патогенез заболевания и способствовать разработке путей первичной профилактики рака молочной железы. 4 ил.

Изобретение относится к медицине, в частности к экспериментальной фармакологии, акушерству и гинекологии, и касается моделирования преэклампсии. Для этого лабораторным крысам на 14 сутки беременности накладывают серебряные клипсы с просветом 0,1 мм на сосуды, кровоснабжающие матку. При этом одну клипсу накладывают только на правую яичниковую артерию, а вторую только на правую подвздошную артерию. Способ обеспечивает создание условий нарушения кровотока в плаценте левого рога матки за счет гуморальных факторов ишемического генеза, выделяемых плацентой правого рога матки. 1 пр., 3 ил.

Изобретение относится к медицине, а именно к экспериментальной патофизиологии, и касается моделирования вторичного постгипоксического иммунодефицита по дисрегуляторному типу с транзиторной недостаточностью CD4-позитивных лимфоцитов. Для этого животных помещают на 40-45 минут в условия интервальной нормобарической гипоксической гипоксии с гиперкапнией до появления предагонального состояния. Указанное воздействие проводят в течение 17 дней с интервалами 24-48 часов. Способ обеспечивает значимые нарушения между клетками основных субпопуляций Т-лимфоцитов, с преимущественной недостаточностью CD4-позитивных клеток в периферической крови, наиболее часто встречающиеся в структуре вторичных иммунодефицитных состояний. 3 табл., 12 ил.

Изобретение относится к экспериментальной медицине и может быть использовано в качестве модели для изучения патогенеза разных форм тромбоэмболии легочной артерии и для доклинических испытаний потенциальных антиагрегантов, антикоагулянтов и тромболитиков. Для моделирования тромбоэмболии легочной артерии перекрывают кровоток в нижней полой вене крысы. При этом для развития тромбоэмболии мелких ветвей легочной артерии на уровне сегментарных артерий окклюзию вены сохраняют в течение 1,5-3,0 часов. Для формирования тромбоэмболии на уровне долевых артерий окклюзию вены сохраняют в течение 3,1-6,0 часов с последующим открытием кровотока. Способ обеспечивает повышение точности моделирования за счет формирования патогенетической модели тромбоэмболии легочной артерии от уровня мелких ветвей до долевых артерий легочной артерии с развитием массивной тромбоэмболии. 16 ил., 4 пр.

Изобретение относится к медицине, в частности к экспериментальной хирургии, а также к ветеринарии, и касается проведения газоплазменной контактной монополярной электрокоагуляции тканей мелких грызунов. При проведении такой электрокоагуляции животного, находящегося в наркозе, размещают так, чтобы его спинка находилась в 100 мл 0,9% хлорида натрия в лотке из нержавеющей стали. При этом лоток располагают на пластине нейтрального электрода с прослойкой электропроводного контактного геля между ними, а также с рабочим покрытием с вырезанным в середине лотка ложе из неэлектропроводного материала. Способ позволяет обезопасить проведение электрокоагуляции за счет рассеивания отводимого высокочастотного тока, а также за счет обеспечения большей контактной поверхности с нейтральным электродом посредством контакта с ним относительно широкого дна металлического лотка через прослойку контактного электропроводного геля. 1 пр., 4 ил.

Изобретение относится к медицине, в частности к экспериментальной хирургии и касается моделирования аутотрансплантации селезеночной ткани в печень. Для этого после лапароскопической спленэктомии и фрагментации декапсулированной селезеночной ткани приготавливают гомогенат путем добавления физиологического раствора к измельченной селезеночной ткани в соотношении 2:1. Затем полученный гомогенат вводят субкапсулярно в передненаружную поверхность правой доли печени в объеме от 1/14 до 1/20 первоначальной массы селезеночной ткани. Способ позволяет изучать жизнеспособность аутолиентрансплантата под капсулой печени для предупреждения послеоперационного гипоспленизма при возможности использования такого приема трансплантации в лапароскопической хирургии. 2 пр., 4 табл. 8 ил.
Наверх