Способ получения белков семейства цистеиновых протеаз пшеницы (triticum aestivum) и препарат белка тритикаин-альфа, полученный этим способом



Способ получения белков семейства цистеиновых протеаз пшеницы (triticum aestivum) и препарат белка тритикаин-альфа, полученный этим способом
Способ получения белков семейства цистеиновых протеаз пшеницы (triticum aestivum) и препарат белка тритикаин-альфа, полученный этим способом
Способ получения белков семейства цистеиновых протеаз пшеницы (triticum aestivum) и препарат белка тритикаин-альфа, полученный этим способом
Способ получения белков семейства цистеиновых протеаз пшеницы (triticum aestivum) и препарат белка тритикаин-альфа, полученный этим способом
Способ получения белков семейства цистеиновых протеаз пшеницы (triticum aestivum) и препарат белка тритикаин-альфа, полученный этим способом
Способ получения белков семейства цистеиновых протеаз пшеницы (triticum aestivum) и препарат белка тритикаин-альфа, полученный этим способом

 


Владельцы патента RU 2603054:

Федеральное государственное бюджетное образовательное учреждение высшего образования Первый Московский государственный медицинский университет имени И.М. Сеченова Министерства здравоохранения Российской Федерации (ФГБОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава России) (RU)

Изобретение относится к биотехнологии и представляет собой способ получения усеченной формы тритикаина-альфа пшеницы, имеющей последовательность SEQ ID NO: 2 (shortTRIT-α), рекомбинантно экспрессирующейся в бактериальной системе, заключающийся в том, что проводят культивирование клеток E. coli JM109, трансформированных плазмидой pQE80L_shortTRIT-α, содержащей последовательность ДНК, кодирующей белок shortTRIT-α, в среде LB с добавлением ампициллина при 37°С в аэробных условиях в течение 12-14 ч, посевным материалом инокулируют питательную среду, растят культуру до достижения оптической плотности А600 0.6-0.8, индуцируют 1 мМ изопропилтио-β-D-галактозидом и растят еще 2.5-3 часа; очистку целевого белка shortTRIT-α проводят методом аффинной металл-хелатной хроматографии: осажденную центрифугированием клеточную биомассу экспрессионной культуры ресуспендируют в буфере, содержащем 0.01 М Трис-HCl, рН 8.0 и гомогенизируют на ультразвуковом дезинтеграторе в течение 1 мин при 4°С, полученный после центрифугирования лизата осадок промывают исходным буфером и растворяют в буфере А, состоящем из 6 М гуанидин-хлорида и 0.05 М Трис-HCl, рН 7.8, раствор осветляют центрифугированием и наносят на колонку с активированной ионами никеля иминодиацетат-сефарозой, уравновешенную буфером А, сорбент последовательно промывают уравновешивающим буфером А и тем же буфером с содержанием 8 М мочевины и 0.005 М имидазола, белок элюируют буфером А с содержанием 8 М мочевины и 0.25 М имидазола, затем элюат добавляют в охлажденный буфер 0.05 М Трис-HCl, 0.5 М аргинин-хлорид, 2 М мочевина, рН 7.8 в соотношении 1:5 и перемешивают 1 ч при 4°С, раствор диализуют против 0.05 М Трис-HCl, рН 7.8 при 4°С, супернатант, полученный после центрифугирования диализата, концентрируют на ячейке Amicon с мембраной РМ-10 (Millipore), с последующим диализом против фосфатно-солевого буфера PBS, рН 7.4, при 4°С, определяют концентрацию белка shortTRIT-α, аликвотируют по стеклянным флаконам, замораживают и лиофилизуют. Изобретение позволяет получить чистый белковый препарат с активностью тритикаина-альфа пшеницы с высокой степенью эффективности. 2 н. и 1 з.п. ф-лы, 6 ил., 4 пр.

 

Изобретение относится к области молекулярной биологии, препаративной биохимии, биотехнологии, биофармакологии, а именно к созданию способа получения рекомбинантных белков семейства цистеиновых протеаз пшеницы (Triticum aestivum) и препарат белка тритикаина-альфа, состоящий из усеченной формы тритикаина-альфа пшеницы. Изобретение может быть использовано в медицине для разработки ферментных терапевтических препаратов.

Тритикаины (triticain-α, -β, -γ) - высококонсервативные папаин-подобные цистеиновые эндопротеазы пшеницы, состоящие из сигнального (лидерного) пептида, удаляющегося при активации про-пептидного домена, гранулин-подобного домена [GenBank АВ267407] и каталитического домена с каталитической триадой Cys-His-Asn [1]. Цистеиновые протеазы распространены в растениях и экспрессируются в их различных органах [2, 3]. Предполагается, что эти ферменты участвуют в стадиеспецифическом расщеплении и пост-трансляционных модификациях запасающих белков [4, 5]. Среди папаин-подобных цистеиновых протеаз растений наиболее широко изучены ферменты риса и ячменя - оризаины (oryzain-α, -β, -γ) и эндопептидазы ЕРВ (barley cysteine proteinase B-1, -2) [6, 7], однако протеазы пшеницы начали изучать относительно недавно [1, 8].

Основным преимуществом папаин-подобных цистеиновых протеиназ из семян растений на данный момент являетя их эндопептидазная активность, в частности глютеназная активность - способность эффективно гидролизовать пептиды глютена (запасного белка пшеницы, состоящего из смеси мономерных глиадинов и полимерных глютенинов) или родственных запасных белков ржи и ячменя. Это свойство растительных ферментов позволяет считать их перспективными объектами при разработке лекарственных средств для борьбы с целиакией. Целиакия (глютеновая энтеропатия) представляет собой комплексное воспалительное заболевание человека, которое развивается при наличии соответствующей генетической предрасположенности в ответ на обогащенные остатками пролина и глутамина пептиды, являющиеся продуктами происходящего в пищеварительном тракте частичного протеолиза глютена [9, 10]. Распространенность глютеновой энтеропатии во взрослой популяции большинства стран мира оценена как 1:100 - 1:250 или 0.5-1% от общей популяции [11]. Доказанной эффективной терапией целиакии является пожизненная строгая безглютеновая диета, позволяющая предотвратить развитие осложнений и исключить клинические симптомы заболевания [12]. Однако главным недостатком безглютеновой диеты является сложность ее соблюдения из-за ее ограничительного характера, обусловленного как высокой стоимостью, так и сложностью подбора глютен-несодержащих продуктов питания.

В связи с этим, исследование и разработка способов получения высокоспецифичных протеаз, стабильных и активных в присутствии эндогенных ферментов желудочно-кишечного тракта человека (т.е. в месте предполагаемого действия лекарственного препарата на их основе), имеет большое значение в терапевтических целях. В рамках данного изобретения была выбрана протеаза пшеницы Triticum aestivum - тритикаин-альфа, т.к. пшеница играет существенную роль как источник питания в России, а значит, наиболее подходящую для разработки отечественных терапевтических препаратов для лечения целиакии.

Молекула полноразмерного тритикаина-альфа состоит из 461 аминокислотного остатка с молекулярным весом 50.4 кДа. Впервые фермент был клонирован и экспрессирован в зародыше и алейроновом слое пшеницы для выяснения его роли в процессе созревания семян [1].

Однако биосинтез рекомбинантного тритикаина-альфа для исследования его протеолитических функций до сих пор не был осуществлен. Обеспечение эффективного источника получения высокоочищенного и активного белка является одной из важных задач, возникающих при создании ферментных препаратов. Поэтому возникает необходимость разработки новых технологий получения таких белков и получения высококачественных целевых препаратов. В связи с этим, нами был разработан способ получения усеченной формы полноразмерного тритикаина-альфа, соответствующей его каталитическому домену (т.е. без лидерного пептида и гранулин-подобного домена) с высоким выходом и уровнем протеолитической активности.

Известны работы по разработке метода получения проэнзимной формы ЕР-В2 (proEP-В2) [13, патент WO 2008115428 А2], который можно считать наиболее близкой по технической сущности к заявленному изобретению. В данной работе решалась задача получения проэнзима цистеиновой протеазы ячменя Hordeum vulgare ЕР-В2 в E. coli.

Технической задачей настоящего изобретения является разработка способа получения белков семейства цистеиновых протеаз пшеницы (Triticum aestivum) в препаративных количествах для исследовательских целей и высокоочищенного препарата тритикаина-альфа, состоящего из усеченной формы тритикаина-альфа пшеницы, для использования в составе ферментных терапевтических средств.

Поставленная задача решается следующим образом:

1. Способ получения усеченной формы тритикаина-альфа пшеницы, имеющей последовательность SEQ ID NO: 2 (shortTRIT-α), рекомбинантно экспрессирующейся в бактериальной системе, заключающийся в том, что проводят культивирование клеток E. coli JM109, трансформированных плазмидой pQE80L_shortTRIT-α, содержащей последовательность ДНК, кодирующей белок shortTRIT-α, в среде LB с добавлением ампициллина при 37°С в аэробных условиях в течение 12-14 ч, посевным материалом инокулируют питательную среду, растят культуру до достижения оптической плотности А600 0.6-0.8, индуцируют 1 мМ изопропилтио-β-D-галактозидом, и растят еще 2.5-3 часа; очистку целевого белка shortTRIT-α проводят методом аффинной металл-хелатной хроматографии: осажденную центрифугированием клеточную биомассу экспрессионной культуры ресуспендируют в буфере, содержащем 0.01 М Трис-HCl, рН 8.0 и гомогенизируют на ультразвуковом дезинтеграторе в течение 1 мин при 4°С, полученный после центрифугирования лизата осадок промывают исходным буфером и растворяют в буфере А, состоящем из 6 М гуанидин-хлорида и 0.05 М Трис-HCl, рН 7.8, раствор осветляют центрифугированием и наносят на колонку с активированной ионами никеля иминодиацетат-сефарозой, уравновешенную буфером А, сорбент последовательно промывают уравновешивающим буфером А и тем же буфером с содержанием 8 М мочевины и 0.005 М имидазола, белок элюируют буфером А с содержанием 8 М мочевины и 0.25 М имидазола, затем элюат добавляют в охлажденный буфер 0.05 М Трис-HCl, 0.5 М аргинин-хлорид, 2 М мочевина, рН 7.8 в соотношении 1:5 и перемешивают 1 ч при 4°С, раствор диализуют против 0.05 М Трис-HCl, рН 7.8 при 4°С, супернатант, полученный после центрифугирования диализата, концентрируют на ячейке Amicon с мембраной РМ-10 (Millipore), с последующим диализом против фосфатно-солевого буфера PBS рН 7.4 при 4°С, определяют концентрацию белка shortTRIT-α, аликвотируют по стеклянным флаконам, замораживают и лиофилизуют.

2. Способ по п. 1, отличающийся тем, что плазмида pQE80L_shortTRIT-α, содержащая последовательность ДНК, кодирующую белок shortTRIT-α, может быть модифицирована добавлением последовательности, кодирующей лидерный пептид и/или гранулин-подобный домен тритикаина-альфа.

3. Биологически активный белковый препарат, полученный способом по п. 1, чистота которого составляет не менее 85% с выходом не менее 55 мг с литра бактериальной культуры, характеризующийся тем, что он обладает высокой специфической ферментативной активностью и имеет аминокислотную последовательность SEQ ID NO: 2.

Требуемый технический результат заявленного изобретения заключается в разработке способа получения белка семейства цистеиновых протеаз пшеницы (Triticum aestivum) путем создания последовательности ДНК, кодирующей фрагмент полноразмерного тритикаина-альфа пшеницы (так называемой усеченной формы) в бактериальной системе экспрессии (SEQ ID NO: 2), биосинтеза усеченной формы тритикаина-альфа пшеницы в клетках E. coli, а также получении препарата тритикаина-альфа, состоящего из усеченной формы тритикаина-альфа пшеницы, с высоким выходом, уровнем очистки и протеолитической активности.

Изобретение иллюстрируется следующими чертежами:

на фиг. 1 - аминокислотная и нуклеотидная последовательности рекомбинантного полноразмерного тритикаина-альфа, экспрессирующегося в E. coli (TRIT-α, курсивом выделена последовательность от экспрессионной плазмиды рЕТ-42а(+); курсивом и подчеркиванием выделены сайты узнавания рестриктазами; подчеркиванием выделен лидерный пептид; курсивом и цветом выделена каталитическая триада Cys-His-Asn, определяющая принадлежность белка к цистеиновым протеазам; цветом выделен гранулин-подобный домен; подчеркиванием выделены сайты узнавания рестриктазами);

на фиг. 2 - аминокислотная и нуклеотидная последовательности рекомбинантного усеченного тритикаина-альфа, экспрессирующегося в E. coli (shortTRIT-α; курсивом выделена последовательность от экспрессионной плазмиды pQE-80L; подчеркиванием выделены сайты узнавания рестриктазами);

на фиг. 3 - электрофореграмма лизатов клеток штамма-продуцента E. coli JM109/pQE_shortTRIT-α до индукции (дорожка 1), лизатов клеток штамма-продуцента E. coli JM109/pQE_shortTRIT-α после индукции изопропилтио-β-D-галактозидом (дорожка 2), в 12% полиакриламидном геле в присутствии SDS (М - белковые маркеры молекулярной массы, кДа; стрелкой указан рекомбинантный усеченный тритикаин-альфа, shortTRIT-α);

на фиг. 4 - рекомбинантный усеченный тритикаин-альфа (shortTRIT-α, экспрессированный в клетках E. coli) после хроматографического выделения в 14% полиакриламидном геле в присутствии SDS (М - белковые маркеры молекулярной массы, кДа);

на фиг. 5 - электрофореграмма протеолитического расщепления глютена (дорожка 2) рекомбинантным усеченным тритикаином-альфа (shortTRIT-α, дорожка 1) при условиях реакции: 37°С, рН 5.6, 10 мин (дорожка 3), в 14% полиакриламидном геле в присутствии SDS (М - белковые маркеры молекулярной массы, кДа; стрелкой указан рекомбинантный усеченный тритикаин-альфа, shortTRIT-α);

на фиг. 6 - электрофореграмма протеолитического расщепления коллагена (дорожка 2) рекомбинантным усеченным тритикаином-альфа (shortTRIT-α, дорожка 1) при условиях реакции: 37°С, рН 5.6, 10 мин, в 14% полиакриламидном геле в присутствии SDS (М - белковые маркеры молекулярной массы, кДа; стрелкой указан рекомбинантный усеченный тритикаин-альфа, shortTRIT-α);

Изобретение иллюстрируется следующими примерами.

Пример 1. Клонирование гена тритикаин-альфа пшеницы и его усеченного фрагмента

На основе известной последовательности мРНК пшеницы (Triticum aestivum), кодирующей полноразмерный ген тритикаина-альфа (GeneBank АВ267407), синтезируют комплементарную ДНК (кДНК) с использованием обратной транскриптазы мышиного вируса лейкемии Молони и праймера на 3′-нетранслируемую область мРНК 5′-gggggatccttacgcgctacttttcttgccg. Амплификацию кодирующей транслируемую область гена полноразмерного тритикаина-альфа ДНК, фланкированную сайтами рестрикции NdeI и BamHI (фиг. 1), проводят с использованием следующих прямого и обратного праймеров: 5′-ccccatatgcatcatcatcatcatcatgccatgaggagctccatggccctc и 5′-gggggatccttacgcgctacttttcttgccg (сайты рестрикции NdeI и BamHI выделены подчеркиванием). Продукт амплификации и плазмидную ДНК рЕТ-42а(+) обрабатывают рестриктазами NdeI и BamHI, соединяют при помощи лигазной реакции, после чего реакционную смесь трансфицируют в компетентные клетки E. coli BL21-CodonPlus(DE3)-RIL. Трансформированные клетки высевают на агаризованную среду LB, содержащую канамицин (до конечной концентрации 50 мг/мл). Из отобранных методом ПЦР (с помощью универсальных праймеров для рЕТ-векторов) клонов выделяют целевую плазмидную ДНК (pET_TRIT-α). Нуклеотидную последовательность встроенного фрагмента подтверждают секвенированием по Сенгеру. Отобранные клоны наращивают для оценки продуктивности, устойчивости к антибиотикам и стабильности трансформации.

Конструирование новой последовательности ДНК, кодирующей усеченный фрагмент гена тритикаина-альфа (shortTRIT-α, без лидерного пептида и гранулин-подобного домена, фиг. 2) для экспрессии в бактериальной системе, осуществляют на основе плазмидной ДНК pET_TRIT-α в качестве матрицы и праймеров: 5′-atggatccatcgtgtcgtacggggag (сайт рестрикции BamHI выделен подчеркиванием) и 5′-tattaagcttttagcccgtcttcgtcggg (сайт рестрикции HindIII выделен подчеркиванием). Продукт амплификации клонируют в экспрессионную плазмиду pQE-80L по сайтам рестрикции BamHI и HindIII, используя штамм E. coli JM109. Скрининг колоний проводят методом рестрикционного анализа и последующего секвенирования.

Пример 2. Синтез усеченной формы тритикаина-альфа пшеницы (рекомбинантного усеченного тритикаина-альфа, препарата shortTRIT-α) в клетках E. coli

Штамм E. coli JM109, трансформированный плазмидой pQE80L_shortTRIT-α, выращивают в среде LB при 37°С в аэробных условиях с добавлением ампициллина (до конечной концентрации 100 мг/мл) в течение 12-14 ч (посевной материал), инокулируют новую порцию питательной среды в соотношении 1:50, растят культуру до достижения оптической плотности А600 0.6-0.8, индуцируют 1 мМ изопропилтио-β-D-галактозидом (ИПТГ) и растят еще 2.5-3 часа. При индукции ИПТГ происходит биосинтез рекомбинантного shortTRIT-α (37.45 кДа, фиг. 3), который накапливается в клетках в нерастворимой форме. Отбирают пробы клеточной суспензии до и после индукции в количестве, соответствующем 0.1 оптических единиц (о.е.), осаждают центрифугированием, суспендируют в лизирующем буфере (0.03 М Трис-HCl, рН 6.8, 10% глицерин, 1% додецилсульфат натрия, 3% меркаптоэтанол, 0.005% бромфеноловый синий), нагревают 5 мин при 95°С, и образцы объемом 20 мкл анализируют электрофорезом в 12% полиакриламидном геле с додецилсульфатом натрия. Гель прокрашивают кумасси R-250 по стандартной методике и сканируют для определения относительного количества белка в полосе целевого белка (фиг. 3). По данным сканирования содержание рекомбинантного shortTRIT-α составляет 15-20% от всех клеточных белков.

Пример 3. Очистка препарата рекомбинантного shortTRIT-α из E. coli

Очистку целевого белка shortTRIT-α проводят методом аффинной (металл-хелатной) хроматографии. Получение рекомбинантного shortTRIT-α из клеток штамма-продуцента JM109/pQE80L_shortTRIT-α включает несколько стадий. Осажденную центрифугированием клеточную биомассу экспрессионной культуры ресуспендируют в буфере, содержащем 0.01 М Трис-HCl, рН 8.0, и гомогенизируют на ультразвуковом дезинтеграторе в течение 1 мин при 4°С. Полученный после центрифугирования лизата (16000х g, 4°С, 10 мин) осадок промывают исходным буфером и растворяют в буфере А, состоящем из 6 М гуанидин-хлорида и 0.05 М Трис-HCl, рН 7.8. Раствор осветляют центрифугированием (16000х g, 4°С, 1 ч) и наносят на колонку (диаметр 1.5 см) с активированной ионами никеля иминодиацетат-сефарозой, уравновешенную буфером А. Процесс хроматографии проводят на системе BioLogic (BioRad) с детекцией при 280 нм. Сорбент последовательно промывают уравновешивающим буфером А и тем же буфером с содержанием 8 М мочевины и 0.005 М имидазола. Белок элюируют буфером А с содержанием 8 М мочевины и 0.25 М имидазола, добавляют в охлажденный 0.05 М Трис-HCl, рН 7.8 с 0.5 М аргинин-хлорида и 2 М мочевиной в соотношении 1:5 и перемешивают 1 ч при 4°С. Раствор диализуют против 0.05 М Трис-HCl, рН 7.8 при 4°С в течение 18 ч, трижды производя замену буфера на свежий. Супернатант, полученный после центрифугирования диализата (10000х g, 4°С, 30 мин), концентрируют на ячейке Amicon с мембраной РМ-10 (Millipore) с последующим диализом против фосфатно-солевого буфера (PBS, рН 7.4, 4°С, 18 ч). Концентрацию целевого белка определяют с помощью ВСА-реагента (бицинхониновой кислоты), аликвотируют по стеклянным флаконам, замораживают и лиофилизуют.

Выход полученного таким способом рекомбинантного shortTRIT-α составляет не менее 55 мг с 1 л бактериальной культуры с чистотой не менее 85% (по данным электрофоретического анализа). Следует отметить, что целевой белок shortTRIT-α, проявляющий протеазную активность, подвергается автопротеолизу в процессе выделения и вследствие этого детектируется в электрофорезном геле в виде мажорной полосы размером около 31 кДа (так называемая процессированная форма) и низкомолекулярных фрагментов (фиг. 4).

Пример 4. Определение протеолитической активности рекомбинантного shortTRIT-α

Ферментативную (протеолитическую) активность рекомбинантного усеченного тритикаина-альфа shortTRIT-α определяют по способности расщепления белковых субстратов. В качестве субстратов используют глютен пшеницы (Sigma) и выделенный из дермы крупного рогатого скота коллаген. Расщепление указанных белков имеет большое значение в терапевтических (лечение целиакии, ферментативного очищения некротических тканей, коллаген-индуцированного артрита и др. [12, 14, 15]), диагностических [16] и некоторых технологических (гидролиз белков соединительных тканей [17]) целях. Протеолитическую реакцию проводят путем инкубирования глютена или коллагена с препаратом shortTRIT-α в массовом соотношении 20:1 при 25 и 37°С в течение 10-15 мин в 0.2 М глициновом (рН 3.4), 0.2 М ацетатном (рН 5.6) или 0.2 М фосфатном (рН 7.0) буферах. Результаты протеолиза анализируют электрофорезом белков в 14% полиакриламидном геле с додецилсульфатом натрия (фиг. 5, 6). Рекомбинантный shortTRIT-α проявляет оптимальную активность при значениях рН 5-7 всего за 10 мин в диапазоне указанных температур.

Преимуществами заявленного технического решения являются, во-первых, возможность получения усеченного фрагмента тритикаина-альфа в бактериях за счет создания соответствующей конструкции плазмидной ДНК; во-вторых, упрощенная методика выделения рекомбинантного белка из E. coli за счет введения в состав полипептидной цепи шести остатков гистидина; в-третьих, получение протеолитически активного препарата тритикаина-альфа, состоящего из усеченной формы полноразмерного тритикаина-альфа, который может быть основой для создания ферментных лекарственных средств в терапии некоторых заболеваний (в частности, целиакии).

Источники информации

1. Т. Kiyosaki, Т. Asakura, I. Matsumoto, et al. J Plant Physiol, 2009, 1, 166(1), 101-106.

2. K. Muntz, M.A. Belozersky, Y.E. Dunaevsky, et al. J Exp Bot, 2001, 52, 1741-1752.

3. J.Q. Ling, T. Kojima, M. Shiraiwa, et al. Biochim Biophys Acta, 2003, 1627, 129-139.

4. A. Capocchi, M. Cinollo, L. Galleschi, et al. JAgric Food Chem, 2000, 48, 6271-6279.

5. T. Okamoto, T. Shimada, I. Hara-Nishimura, et al. Plant Physiol, 2003, 132, 1892-1900.

6. A. Mikkonen, I Porali, M. Cercos, et al. Plant Mol Biol, 1996, 31 (2), 239-254.

7. H. Kondo, K. Abe, I. Nishimura, et al. J Biol Chem, 1990, 15, 265(26), 15832-15837.

8. T. Kiyosaki, I. Matsumoto, T. Asakura, et al. FEBS J, 2007, 274, 1908-1917.

9. N. McGough, J.H. Cummings. Proc Nutr Soc, 2005, 64(4), 434-450.

10. J.S. Leeds, A.D. Hopper, D.S. Sanders. Br Med Bull, 2008, 88(1), 157-170.

11. WGO - OMGE: Practice guidelines. World Gastroenterology News, 10 (2, 2), 2005, 1-8.

12. S. Rashtak, J.A. Murray. Aliment Pharmacol Ther, 2012, 35(7), 768-781.

13. H. Vora, J. McIntire, P. Kumar, et al. Biotechnol Bioeng, 2007, 1, 98(1), 177-185.

14. D.P. Orgill, P.Y. Liu, L.S. Ritterbush, et al. J Burn Care Rehabil, 1996, 17, 311-322.

15. S. Khare, С. Krco, M. Griffiths, et. al. J Immunol, 1995, 155, 3653-3659.

16. T. Mazda, K. Makino, R. Yabe, et al. Transfus Med, 1995, 5, 43-50.

17. R.A. Lawrie, Meat Science, Pergamon Press, Oxford, 1991, p. 212.

1. Способ получения усеченной формы тритикаина-альфа пшеницы, имеющей последовательность SEQ ID NO: 2 (shortTRIT-α), рекомбинантно экспрессирующейся в бактериальной системе, заключающийся в том, что проводят культивирование клеток E. coli JM109, трансформированных плазмидой pQE80L_shortTRIT-α, содержащей последовательность ДНК, кодирующей белок shortTRIT-α, в среде LB с добавлением ампициллина при 37°С в аэробных условиях в течение 12-14 ч, посевным материалом инокулируют питательную среду, растят культуру до достижения оптической плотности А600 0.6-0.8, индуцируют 1 мМ изопропилтио-β-D-галактозидом и растят еще 2.5-3 часа; очистку целевого белка shortTRIT-α проводят методом аффинной металл-хелатной хроматографии: осажденную центрифугированием клеточную биомассу экспрессионной культуры ресуспендируют в буфере, содержащем 0.01 М Трис-HCl, рН 8.0 и гомогенизируют на ультразвуковом дезинтеграторе в течение 1 мин при 4°С, полученный после центрифугирования лизата осадок промывают исходным буфером и растворяют в буфере А, состоящем из 6 М гуанидин-хлорида и 0.05 М Трис-HCl, рН 7.8, раствор осветляют центрифугированием и наносят на колонку с активированной ионами никеля иминодиацетат-сефарозой, уравновешенную буфером А, сорбент последовательно промывают уравновешивающим буфером А и тем же буфером с содержанием 8 М мочевины и 0.005 М имидазола, белок элюируют буфером А с содержанием 8 М мочевины и 0.25 М имидазола, затем элюат добавляют в охлажденный буфер 0.05 М Трис-HCl, 0.5 М аргинин-хлорид, 2 М мочевина, рН 7.8 в соотношении 1:5 и перемешивают 1 ч при 4°С, раствор диализуют против 0.05 М Трис-HCl, рН 7.8 при 4°С, супернатант, полученный после центрифугирования диализата, концентрируют на ячейке Amicon с мембраной РМ-10 (Millipore), с последующим диализом против фосфатно-солевого буфера PBS, рН 7.4, при 4°С, определяют концентрацию белка shortTRIT-α, аликвотируют по стеклянным флаконам, замораживают и лиофилизуют.

2. Способ по п. 1, отличающийся тем, что плазмида pQE80L_shortTRIT-α, содержащая последовательность ДНК, кодирующую белок shortTRIT-α, может быть модифицирована добавлением последовательности, кодирующей лидерный пептид и/или гранулин-подобный домен тритикаина-альфа.

3. Биологически активный белковый препарат, полученный способом по п. 1, чистота которого составляет не менее 85% с выходом не менее 55 мг с литра бактериальной культуры, характеризующийся тем, что он обладает высокой специфической ферментативной активностью и имеет аминокислотную последовательность SEQ ID NO: 2.



 

Похожие патенты:

Группа изобретений относится к медицине и касается способа активации теломеразы, удлинения теломер и увеличения потенциала клеточного деления, включающего введение композиции, содержащей соединение, такое как циклоастрагенол, и, по меньшей мере, один пептид тимуса, выбранный из группы дипептида, трипептида, тетрапептида или пентапептида, и/или пептид эпифиза, выбранный из группы дипептида, трипептида, тетрапептида или пентапептида.

Изобретение относится к медицине и заключается в безводной композиции для обработки ран, композиция содержит гидрофильную дисперсную фазу, включающую ПЭГ 400 и коллагеназу; и гидрофобную непрерывную фазу, включающую гидрофобную основу; при этом гидрофильная дисперсная фаза диспергирована в гидрофобной непрерывной фазе; количество ПЭГ 400 составляет 13-27% масс.
Изобретение относится к биотехнологии, в частности, к способу улучшения каталитических свойств пенициллинацилазы. Заявленный способ включает изменение структуры пенициллинацилазы из Escherichia coli путем замены аминокислотного остатка 145 альфа-цепи на лейцин или аминокислотного остатка 71 бета-цепи на лейцин или аргинин.
Изобретение относится к биотехнологии. Изобретение представляет собой мутант пенициллинацилазы (Penicillin G acylase) из E.coli, содержащий замену остатка аспарагиновой кислоты бета-цепи фермента в позиции 484 (нумерация начинается с первого аминокислотного остатка бета-цепи, содержащей 557 аминокислотных остатков) остатком аспарагина.

Изобретение относится к области биохимии, в частности к изолированной молекуле нуклеиновой кислоты, кодирующей полипептид, обладающий дельта-9-элонгазной активностью, а также к очищенному полипептиду, обладающему дельта-9-элонгазной активностью, кодируемому вышеуказанной изолированной молекулой нуклеиновой кислоты.

Изобретение относится к области автоматизации биотехнологических процессов. Предложен способ управления процессом получения капсулированных ферментных препаратов.

Изобретение относится к биотехнологии, а именно к ферментационной среде и способу получения рекомбинатных белков с использованием данной среды. Ферментационная среда для получения рекомбинантных белков, выбранных из группы, включающей Г-КСФ, стрептокиназу и липазу, с использованием микроорганизмов, выбранных из группы, включающей: E.

Изобретение относится к области биотехнологии. Представлена нуклеиновая кислота, кодирующая белок, обладающий ацетил-СоА- карбоксилазной активностью, компенсирующей недостаток ацетил-СоА-карбоксилазной активности в дрожжах, где нуклеотидная последовательность выбрана из группы, состоящей из нуклеиновой кислоты, которая содержит нуклеотидную последовательность: (a) кодирующую белок, состоящий из аминокислотной последовательности SEQ ID NO:2; (b) которая гибридизуется в жестких условиях с нуклеиновой кислотой, комплементарной SEQ ID NO:1; (c) SEQ ID NO:1; и (d) которая гибридизуется в жестких условиях с нуклеиновой кислотой, состоящей из комплементарной нуклеотидной последовательности, кодирующей белок SEQ ID NO:2; где SEQ ID NO:1 и 2 раскрыты в описании.

Изобретение относится к биотехнологии, в частности к микробиологической промышленности, и представляет собой способ получения комплексных мультиферментных препаратов с целлобиогидролазной, эндоглюканазной, β-глюкозидазной (целлобиазной) активностями путем культивирования рекомбинантных штаммов мицелиальных грибов рода Penicillium verruculosum, трансформированных линейной фьюжн-конструкцией, представляющей собой последовательно соединенные через линкер гомологичные и гетерологичный гены карбогидраз, таких как целлобиогидролаза I, эндоглюканаза и бета-глюкозидаза.

Группа изобретений относится к биотехнологии, в частности к биосинтезу гидролазы пептидогликана, и представляет собой белок с активностью гидролазы пептидогликана, плазмиду, содержащую фрагмент, кодирующий гидролазу пептидогликана, бактерию-продуцент, способ микробиологического синтеза гидролазы пептидогликана, а также фармацевтическую композицию, содержащую полученную гидролазу пептидогликана, для терапии заболеваний, вызванных грамотрицательной микрофлорой.

Изобретение относится к фармацевтической промышленности, а именно к способу получения микрокапсулированной формы терапевтического пептида для перорального применения.

Заявленная группа изобретений относится к области иммунологии. Штаммы вида Streptococcus pneumoniae депонированы в Государственной коллекции патогенных микроорганизмов III-IV групп патогенности ФГБУ «Научный центр экспертизы средств медицинского применения» Минздрава России под регистрационными номерами 296, 297, 298.

Настоящее изобретение относится к биохимии, в частности к применению композиции, содержащей агент, ингибирующий MASP-2, в количестве, эффективном для ингибирования или предупреждения образования бляшек в сосудистой системе пациента, для приготовления лекарственного средства для лечения указанного пациента, страдающего или подверженного риску развития комплемент-опосредованного нарушения свертывания крови, такого как диссеминированное внутрисосудистое свертывание крови (ДВС).

Группа изобретений относится к медицине. Описано состоящее из частиц вещество, содержащее: частицы керамической матрицы, несущие функциональную группу, способную стимулировать проникновение частиц в клетки; и биомолекулу, находящуюся в порах частиц, где указанная биомолекула может высвобождаться из частиц при растворении керамической матрицы.

Группа изобретений раскрывает лекарственную форму препарата для индукции специфического имунного ответа против поверхностного гликопротеина вируса ВИЧ gp120, содержащую в качестве активного вещества смесь искусственного рекомбинантного полипептида, получаемого в микроорганизме E.

Изобретение относится к области ветеринарии и предназначено для лечения гепатоза молочных коров в условиях техногенных провинций. Способ включает внутримышечное двукратное введение препарата Габивит-Se в дозе 15-20 мл с интервалом 6-8 суток.

Представленные изобретения касаются применения средства, стимулирующего регенерацию тканей, и способа стимуляции регенерации мезенхимальных, эпителиальных или неврологических тканей путем введения такого средства.
Изобретение относится к области медицины, а именно к онкологии, и может быть использовано для лечения опухолей мозга и меланомы. Для этого пациенту интратуморально вводят раствор белка теплового шока 70 человека, полученного по технологии с использованием штамма-продуцента Escherichia coli BB 1553, трансформированного векторной плазмидой pMSHsp70 в дозе 0,5 мг белка.

Изобретение относится к области биотехнологии, конкретно к антагонистам Wnt, и может быть использовано в медицине. С использованием сигнальной последовательности получают Wnt-связывающие полипептиды на основе домена Fri из FZD8 человека и Fc-фрагмента.

Изобретение относится к области биотехнологии, конкретно к получению нетоксичной мутантной формы гена Cholix (ntCholix) Vibrio cholera, и может быть использовано в медицине. Получают вариант Cholix, усеченный по аминокислоте A386 (Cholix386) или с удаленным остатком Glu581.

Группа изобретений относится к области биохимии. Предложен способ снижения количества CO2 в потоке газообразных веществ, а также аппарат для удаления CO2 из потока газообразных веществ. Способ включает контактирование газообразных веществ, содержащих CO2, с первым потоком водной поглощающей жидкости, содержащей карбонат ангидразу, поглощение CO2 указанной жидкостью и превращение его в более растворимый неорганический углерод. Осуществление разделения первого потока жидкости на второй и третий потоки жидкости, где второй поток содержит более высокую концентрацию карбонат ангидразы относительно третьего потока. Осуществление контактирования третьего потока жидкости с микроорганизмом, способным превращать растворенный в жидкости неорганический углерод в кислород и/или биомассу. Аппарат содержит первую и вторую системы циркуляции текучего вещества. Первая система содержит поглощающий блок с внутренним пространством, ниже по потоку от поглощающего блока - фильтровальный блок с фильтром. Вторая система содержит биореактор или водоем для культивирования микроорганизмов. Изобретения обеспечивают повышение эффективности захвата CO2, снижение удельной площади поверхности водоема, а также снижение потребляемой энергии при регенерации поглощающей жидкости. 2 н. и 25 з.п. ф-лы, 4 ил.
Наверх