Способ биохемилюминесцентной оценки токсичности рубцовой жидкости in vitro



Способ биохемилюминесцентной оценки токсичности рубцовой жидкости in vitro
Способ биохемилюминесцентной оценки токсичности рубцовой жидкости in vitro
Способ биохемилюминесцентной оценки токсичности рубцовой жидкости in vitro
Способ биохемилюминесцентной оценки токсичности рубцовой жидкости in vitro

 


Владельцы патента RU 2603104:

Государственное научное учреждение Всероссийский научно-исследовательский институт мясного скотоводства Российской академии сельскохозяйственных наук (RU)

Изобретение относится к области лабораторной диагностики и касается способа биохемилюминесцентной оценки токсичности рубцовой жидкости in vitro. Представленный способ включает измерение интенсивности свечения бактерий штамма E. coli K12 TG1 с клонированными luxCDABE генами Photobacterium leiognathi 54D10 «Эколюм-9» в опытной пробе, содержащей рубцовую жидкость, по сравнению с контрольной пробой, содержащей физиологический раствор, и учет значений токсичности рубцовой жидкости (ТРЖ) по формуле

где - уровень люминесценции контрольной пробы на 0 минуте; - уровень люминесценции контрольной пробы на 0,5 минуте; - уровень люминесценции опытной пробы на 0 минуте; - уровень люминесценции опытной пробы на 0,5 минуте. При значении ТРЖ менее 5% образец считается нетоксичным, от 5 до 19% малотоксичным, от 20 до 49% среднетоксичным, от 50 до 100% высокотоксичным. Изобретение может быть использовано в лабораториях ветеринарного профиля, решающих вопросы оценки эффективности кормления сельскохозяйственных животных с целью выявления возможных нарушений и контроля эффективности соответствующих коррекционных мероприятий. 3 ил., 2 табл.

 

Изобретение относится к области лабораторной диагностики и может быть использовано для определения токсичности рубцовой жидкости in vitro.

Способ предназначен для использования в лабораториях ветеринарного профиля, решающих вопросы оценки эффективности кормления сельскохозяйственных животных с целью выявления возможных нарушений и контроля эффективности соответствующих коррекционных мероприятий.

Сущностью изобретения является проведение оценки токсичности рубцовой жидкости in vitro по выраженности ингибирующего влияния рубцовой жидкости (РЖ) на интенсивность свечения Escherichia coli K12 TG1 с клонированными luxCDABE генами Photobacterium leiognathi 54D10 по сравнению с контролем - интенсивностью свечения тех же люминесцирующих бактерий, не имевших контакта с РЖ, после чего рассчитывают значение токсичности рубцовой жидкости по формуле

где ТРЖ - токсичность рубцовой жидкости, %;

- уровень люминесценции контрольной пробы на 0 минуте;

- уровень люминесценции контрольной пробы на 0,5 минуте;

- уровень люминесценции опытной пробы на 0 минуте;

- уровень люминесценции опытной пробы на 0,5 минуте.

Критерием токсического действия является изменение интенсивности биолюминесценции тест-объекта в исследуемой пробе по сравнению с таковой для пробы с раствором, не содержащим токсических веществ. Уменьшение интенсивности биолюминесценции пропорционально токсическому эффекту.

Предлагаемый нами способ исключает необходимость применения питательных сред, позволяет быстро и достоверно оценить токсичность компонентов рациона или жидкости. Достигаемый технический результат заключается в упрощении, снижении продолжительности и трудоемкости способа биохемилюминесцентной оценки токсичности рубцовой жидкости in vitro.

Известен биохемилюминесцентный способ определения фагоцитарной активности нейтрофилов, где в качестве объектов фагоцитоза используют рекомбинантные люминесцирующие бактерии, а именно микроорганизмы Escherichia coli K12 TG1 с клонированными luxCDABE генами Photobacterium leiognathi 54D10 [1].

Известен способ определения биотоксичности наноуглерода путем исследования влияния на интенсивность свечения рекомбинантного люминесцирующего штамма Escherichia coli K12 с генами люминесцентной системы Photobacterium leiognathi [2].

Известен способ определения бактерицидной активности сыворотки крови по выраженности ее ингибирующего влияния на интенсивность свечения серочувствительных люминесцирующих бактерий [3].

Известные перечисленные выше способы применимы в медицине и токсикологии, отличаются высокой точностью и чувствительностью, но не характеризуют подходов по оценке токсичности рубцовой жидкости.

Состав корма оказывает прямое влияние на видовое разнообразие и сохранность микробиоты рубца, но в то же время может выступать в качестве токсиканта, оказывая угнетающее действие на микрофлору рубца и, как следствие, на организм животного.

Изучение влияния токсичности рубцовой жидкости при использовании различных типов кормов представляется актуальной задачей, поскольку именно бактериальное звено этого биоценоза первым вступает во взаимодействие с поступившим в рубец кормом. Один из возможных путей решения данной проблемы - это биотестирование, позволяющее осуществить определение степени токсичности окружающей среды по степени жизнеспособности биосенсоров.

При проведении исследований использовали рекомбинантный штамм E. coli K12 TG1 с клонированными luxCDABE генами Photobacterium leiognathi 54D10 [5], выпускаемый в виде лиофилизированного препарата под коммерческим названием «Эколюм», выпускаемый НЕЮ «Иммунотех» (Москва).

В качестве базового оборудования для проведения исследований нами были использованы «Искусственный рубец» KPL-01 [5, 4], люминометр LM-01Т (Immunotech, Чехия), pH-метр-иономер Эксперт-001 (Эоникс-Эксперт, Россия), центрифуга лабораторная СМ-6М (Элми, Россия).

Объектами исследования являлись:

- рубцовая жидкость мясного крупного рогатого скота казахской белоголовой породы;

- модельная рубцовая жидкость, полученная на основе фосфатного буфера, пропионовой - 17-21%, молочной - 5%, масляной - 14-34%, уксусной кислот - 49-69%, глюкозы и 10-% раствора аммиака;

- трофические субстраты на основе пшеничных отрубей, экструдированных с добавлением Fe2+;

- фосфатный буфер (pH 7,0) путем смешивания 48,8 мл раствора 0,2 М KH2PO4 и 51,2 мл раствора 0,2 М Na2HPO4.

В каждый из контейнеров «искусственного рубца» вносили по 128 мл рубцовой и модельной жидкости и 500 мг трофического субстрата и инкубировали в течение 24 часов при 37°C. Временной интервал отбора проб составлял 3, 6, 12, 24 ч.

После 24 часов инкубации в условиях «искусственного рубца» отделяли рубцовую жидкость от субстрата и от бактерий центрифугированием в течение 10 минут при 3000 об/мин и отбирали надосадочную жидкость, в которой определяли возможное присутствие токсиканта.

Содержанием первого этапа является подготовка люминесцирующего бактериального биосенсора E. coli K12 TG1 с клонированными luxCDABE генами Photobacterium leiognathi 54D10 с проверкой его светимости. При этом в настоящее время данная задача решается достаточно простыми средствами, так как существующие коммерческие тест-системы обычно содержат их в готовом к использованию лиофилизированном виде. В результате этого отпадает необходимость самостоятельного контроля плотности бактериальной популяции перед проведением каждого исследования, ныне осуществляемого еще на этапе производства биотестов, а также потребность поддержания постоянства характеристик люминесцирующих бактерий в музейных культурах. Последнее особенно актуально, так как нередко способность к люминесценции утрачивается спустя три года после выделения бактерий из природных экосистем и ряда пассажей на искусственных питательных средах.

Для изучения токсичности рубцовой жидкости процедуры выполняли согласно разработанному алгоритму (фиг. 1). Для этого препарат «Эколюм» восстанавливали из лиофилизированного состояния путем добавления 10 мл дистиллированной воды, после чего выдерживали флакон в течение 30 минут при 4°C. Затем формировали смесь в лунках планшета, состоящую из 100 мкл испытуемой рубцовой жидкости (опытная проба) или 100 мкл 0,9% раствора NaCl (контрольная проба), и 100 мкл бактерий. Наблюдалось резкое тушение свечения штамма E. coli K12 TG1 с клонированными luxCDABE генами Photobacterium leiognathi 54D10 с первых секунд контакта, причем уровень свечения биосенсора в пробах с меньшей концентрацией рубцовой жидкости был выше, чем в пробах с большей концентрацией (фиг. 2), а пробы, содержащие менее 3,125% рубцовой жидкости, обеспечивали индукцию свечения.

Исходя из предварительных результатов эксперимента, было предположено, что вероятной причиной такого явления может быть влияние на бактериальную биолюминесценцию какого-либо одного или нескольких компонентов, входящих в состав рубцовой жидкости. Чтобы подтвердить или опровергнуть данное предположение, на следующем этапе работы была создана модельная смесь (модельная рубцовая жидкость), на основе фосфатного буфера, в состав которого входили пропионовая, молочная, масляная, уксусная кислота, глюкоза и 10% водный раствор аммиака, взятые в физиологических концентрациях, для того, чтобы в дальнейшем выяснить влияние отдельных компонентов реальной рубцовой жидкости на биосенсор «Эколюм».

В целом, полученные данные свидетельствуют, что реальная (нативная) рубцовая жидкость и модельная смесь давали сходные эффекты подавления уровня биолюминесценции в начале эксперимента (имели сходный характер), не проявляя, однако, токсического действия. Полученные результаты позволили нам судить о некоторой идентичности обеих жидкостей, и, следовательно, заняться изучением влияния отдельных компонентов на рекомбинантный штамм Е. coli.

Анализируя данные о влиянии отдельных компонентов модельной рубцовой жидкости на рекомбинантный штамм Е. coli, можно сделать предварительный вывод, что ни один из компонентов не оказал сколько-нибудь выраженного токсического действия на данный штамм (фиг. 3).

Пример конкретного исполнения: рубцовое пищеварение способствует увеличению эффективности использования питательных веществ корма, за счет эффективного энергетического, азотистого обменов, в то же время скармливание рационов с высокой долей зерновой части приводит к нарушению пищеварительных процессов. В этой связи были проведены исследования токсичности рубцовой жидкости при включении различных видов зернового корма.

При проведении исследований использован рекомбинантный штамм E. coli K12 TG1 с клонированными luxCDABE генами Photobacterium leiognathi 54D10. Объектами исследования явилась рубцовая жидкость крупного рогатого скота; трофические субстраты - измельченное зерно ячменя (Hordeum vulgare), пшеницы (Triticum aestivum), ржи (Secale cereale). Схема эксперимента предусматривала приготовление навесок: ячмень (Н) - 100 мг, рожь (S) - 100 мг, пшеница (Т) - 100 мг). Далее навески были помещены в пробирки, в которые внесено по 1 мл рубцовой жидкости, одна из которых являлась контрольной. Полученные смеси инкубировали в термостате при 37°C с единичным встряхиванием в течение 3 часов. Для изучения токсичности (активности) рубцовой жидкости использовали люминесцирующий штамм «Эколюм», который восстанавливали из лиофилизированного состояния путем добавления 10 мл дистиллированной воды, после чего выдерживали флакон в течение 30 минут при 4°C. В лунках планшета были серийно разведены физиологическим раствором инкубированные образцы (лунки 2-11, при этом в 11 лунке - максимальная 100% концентрация), лунка 1 содержала только 0,9% раствора NaCl. Объем жидкости в каждой лунке составил 100 мкл. Во все лунки внесено по 100 мкл восстановленного биосенсора «Эколюм», таким образом, соотношение анализируемой жидкости и биосенсора составило 1:1.

Свечение измеряли на 0,5 минуте на люминометре. В качестве базового оборудования для проведения исследований были использованы «Искусственный рубец» KPL-01, люминометр LM-01T (Immunotech, Чехия), pH-метр-иономер Эксперт-001 (Эоникс-Эксперт, Россия), центрифуга лабораторная СМ-6М (Элми, Россия).

По результатам исследований установлено, что все образцы оказались высокотоксичными.

Итоговый расчет проводят по формуле

где ТРЖ- токсичность рубцовой жидкости, %;

- уровень люминесценции контрольной пробы на 0 минуте;

- уровень люминесценции контрольной пробы на 0,5 минуте;

- уровень люминесценции опытной пробы на 0 минуте;

- уровень люминесценции опытной пробы на 0,5 минуте,

и при значении ТРЖ менее 5% образец считается нетоксичным, от 5 до 19% малотоксичным, от 20 до 49% среднетоксичным, от 50 до 100% высокотоксичным.

Источники информации

1. Патент на изобретение РФ №2366953. Биохемилюминесцентный способ определения фагоцитарной активности нейтрофилов // Д.Г. Дерябин, И.Ф. Каримов. Опубликовано 27.04.2009. Бюл. №25.

2. Патент на изобретение РФ №2437938. Способ определения биотоксичности наноуглерода // Д.Г. Дерябин, Е.Г. Алешина. Опубликовано 20.08.2011. Бюл. №36.

3. Патент на изобретение РФ №2247987. Способ определения бактерицидной активности сыворотки крови // Д.Г. Дерябин, В.А. Гриценко, Е.Г. Поляков. Опубликовано 22.01.2003. Бюл. №7.

4. Патент на полезную модель РФ №106956. Устройство для исследований in vitro // К.Г. Логачев, С.А. Мирошников, А.Г. Мещеряков. Опубликовано 27.07.2011 г.

5. Попов В.В., Рыбина Е.Т. Методика определения переваримости сухого вещества «in vitro» // Животноводство. - 1983. - №8. - С. 37-39.

Способ биохемилюминесцентной оценки токсичности рубцовой жидкости in vitro, основанный на биолюминесцентной реакции штамма E. coli K12 TG1 с клонированными luxCDABE генами Photobacterium leiognathi 54D10 «Эколюм-9» путем измерения интенсивности свечения бактерий в опытной пробе, содержащей рубцовую жидкость, по сравнению с контрольной пробой, содержащей физиологический раствор, и учета значений токсичности рубцовой жидкости (ТРЖ) по формуле

где - уровень люминесценции контрольной пробы на 0 минуте;
- уровень люминесценции контрольной пробы на 0,5 минуте;
- уровень люминесценции опытной пробы на 0 минуте;
- уровень люминесценции опытной пробы на 0,5 минуте,
при значении ТРЖ менее 5% образец считается нетоксичным, от 5 до 19% малотоксичным, от 20 до 49% среднетоксичным, от 50 до 100% высокотоксичным.



 

Похожие патенты:

Группа изобретений относится к области медицины и может быть использована для определения концентрации глюкозы. Способ определения концентрации глюкозы содержит этапы, на которых прикладывают первое тестовое напряжение между контрольным электродом и вторым рабочим электродом и прикладывают второе тестовое напряжение между контрольным электродом и первым рабочим электродом; измеряют первый тестовый ток, второй тестовый ток, третий тестовый ток и четвертый тестовый ток на втором рабочем электроде после нанесения пробы крови, содержащей аналит, на тест-полоску; измеряют пятый тестовый ток на первом рабочем электроде; отображают концентрацию глюкозы, рассчитанную на основании первого, второго, третьего, четвертого и пятого тестовых токов.

Изобретение относится к медицине, а именно к способу прогнозирования тяжести клинического течения красного плоского лишая слизистой оболочки рта (КПЛ СОР). Сущность способа состоит в том, что в ротовой жидкости определяют концентрацию цинка и меди методом атомно-абсорбционной спектрофотометрии.

Группа изобретений относится к обнаружению аналитов в биологических жидкостях. Способ определения электрической емкости электрохимической биосенсорной испытательной камеры тест-полоски содержит этапы, на которых: пробу текучей среды помещают в электрохимическую испытательную камеру; к электрохимической испытательной камере прикладывают осциллирующий сигнал предварительно заданной частоты; определяют фазовый угол между выходным сигналом и осциллирующим сигналом от электрохимической испытательной камеры; измеряют амплитуду выходного сигнала от электрохимической испытательной камеры с подтверждением первого временного интервала выборки для измерения выходного сигнала на основании предварительно заданной скорости выборки на цикл выходного сигнала с предварительно заданной частотой и получением выборки выходного сигнала от камеры со вторым временным интервалом выборки, отличным от первого временного интервала выборки, так что амплитуда каждого выбранного выходного сигнала измеряется по истечении каждого второго временного интервала выборки вместо первого временного интервала; преобразуют измеренную амплитуду в комплексный импеданс электрохимической испытательной камеры на основе осциллирующего сигнала, фазового угла и электрического сопротивления между испытательной камерой и разъемами; и определяют электрическую емкость электрохимической испытательной камеры на основе комплексного импеданса и предварительно заданной частоты электрохимической испытательной камеры с оценкой выходного сигнала для определения продолжительности временного интервала между каждым пошаговым изменением выходного сигнала и установкой первого временного интервала выборки, который по существу равен продолжительности по времени.

Изобретение относится к области медицины, а именно к стоматологическим методам экспериментального моделирования процессов, протекающих в полости рта человека, в частности образования зубного камня.

Группа изобретений относится к биосенсорам с системой распознавания недостаточного заполнения. Способ оценки объема образца в биосенсоре содержит подачу регулярной последовательности опроса, обнаружение наличия образца, подачу расширенной последовательности опроса и определение того, является ли объем образца достаточным для анализа.

Изобретение относится к медицине, а именно к стоматологии, и может быть использовано для диагностики заболеваний тканей пародонта на разных стадиях. Для осуществления способа исследуют слюну, в качестве показателя воспалительного процесса определяют концентрацию свободного оксипролина спектрофотометрическим методом.

Группа изобретений относится к области медицины и может быть использована при проведении анализа тонких слоев, в частности монослоев клеток. Устройство для получения слоев, содержащих монослой из клеток, для анализа имеет двумерную матрицу из аналитических камер (45) и разветвленную конфигурацию входных каналов (25), соединенных с каждой из аналитических камер в матрице, для возможности заполнения аналитических камер в параллельном режиме.

Изобретение относится к диагностической медицине, а именно к измерению водного баланса организма человека. Для этого определяют количество воды, поступившей с пищей в организм человека к моменту времени ti, как величину, пропорциональную общему количеству глюкозы, поступившей в кровь человека к моменту времени ti, определяемому как сумма упомянутого количества глюкозы, поступившей в кровь человека за каждый интервал времени от первого - Δt1 до i-го - Δti.

Изобретение касается способа определения правильности проведения теста в отношении образца биологической жидкости и/или составляющей биологической жидкости, внесенного для проведения теста в проточном тестовом элементе.

Настоящее изобретение относится к контейнеру, предназначенному для хранения множества тест-полосок, пригодных для анализа биологической жидкости, например крови.

Предложен способ определения антиоксидантной активности вещества, предусматривающий приготовление контрольных проб, содержащих буферный раствор и биолюминесцентный сенсор, определения исходной интенсивности биолюминесценции.

Изобретение относится к способам анализа и устройствам, пригодным для детектирования электрохемилюминесценции. Изобретение применимо, в особенности, для быстрой количественной диагностики при децентрализованном анализе, когда требуются особенно дешевые материалы для электродов, ячейки, одноразовые диагностические чипы и кассеты.

Изобретение относится к экологии, в частности к экспресс-определению фальсификации бутилированных питьевых вод из подземных источников (скважин) и загрязнения питьевой, бутилированной и природной воды.
Изобретение относится к ветеринарии, а именно к иммунологической диагностике заболеваний крупного рогатого скота (КРС) в общем комплексе противотуберкулезных мероприятий.

Изобретение относится к медицине, а именно к диагностике в стоматологии, и может быть использовано для дифференциальной диагностики процессов повышенного ороговения эпителия у лиц в возрасте от 15 до 45 лет, проживающих в регионе с неблагоприятными факторами окружающей среды.

Изобретение относится к новому полимерному композитному материалу на основе поливинилхлорида, обладающему оптическими хемосенсорными свойствами для определения катионов меди (II), и может быть использовано для создания оптических датчиков, позволяющих количественно определять содержание катионов Cu(II) на уровне их ПДК в водных средах: в биологических жидкостях, питьевой воде, в промышленных водах и стоках, в частности, для контроля за состоянием окружающей среды.

Изобретение относится к аналитической химии органических соединений, а именно к способу определения в воздухе летучих аминов. Предлагается способ детектирования этих соединений, основанный на использовании сенсорных слоев с адсорбированным цинковым комплексом тетрафенилпорфирина (Zn(II)ТФП).

Изобретение относится к области физиологии, нейрофизиологии, биохимии, в частности к характеристике про- и антиоксидантного статуса головного мозга, и может быть использовано для исследования влияния различных факторов на локализацию и степень нейродегенеративных изменений в головном мозге животного.

Изобретение относится к пищевой промышленности, а именно к методам оценки качества и биологической ценности кисломолочных продуктов. Проводят азодиизобутиронитрил-индуцированную хемилюминесценцию добавлением к 10 мл кумыса 1 мл 1·10-1 М раствора азодиизобутиронитрила, измерение светосуммы свечения и максимальной светимости продукта реализуют методом хемилюминесцентного анализа на «Хемилюминомере ХЛ-003» в течение 5 минут, при температуре 20°С, значениях кислотности кумыса от 80 до 110°Т.

Изобретение относится к области аналитической химии и может быть использовано для концентрирования и определения микроколичеств металлов в питьевой воде с использованием твердых сорбентов, содержащих органический материал.

Изобретение относится к микробиологии и биотехнологии, а именно технологии производства препаратов, предназначенных для очистки почв от нефтезагрязнений. Препарат содержит биомассу углеводородокисляющих микроорганизмов Rhodococcus sp.
Наверх