Способ определения предела выносливости металлических материалов

Изобретение относится к области исследования прочностных свойств твердых материалов и может быть использовано для определения усталостной прочности конструкционных материалов, работающих в условиях циклического нагружения. Сущность: осуществляют циклическое нагружение образца в условиях консольного или четырехточечного изгиба в одной плоскости с заданным коэффициентом асимметрии цикла нагружения R на базе заданного количества циклов нагружения N. Используют образец металлического материала, который имеет клиновидную форму рабочего сечения, с концентратором напряжений цилиндрической формы, ось которого ориентирована перпендикулярно плоскости изгиба, причем момент сопротивления рабочего сечения образца асимметричен. Технический результат: определение предела выносливости металлического материала при симметричных и любых асимметричных циклических нагрузках, включая область сжатия. 1 табл., 1 ил.

 

Изобретение относится к области исследования прочностных свойств твердых материалов и может быть использовано для определения усталостной прочности конструкционных материалов, работающих в условиях циклического нагружения.

Для расчета ресурса конструкций, определения срока их эксплуатации, сравнения и выбора материалов и технологий их производства на этапе конструирования, а также для установления периодичности неразрушающего контроля конструкций необходимо определять предел выносливости материалов, характеризующий способность материала сопротивляться длительным циклическим нагрузкам. Предел выносливости в условиях многоцикловой усталости σ определяется по ГОСТ 25.502-79 как максимальное напряжение в цикле нагружения с коэффициентом асимметрии R, при котором не происходит усталостного разрушения до базы испытаний N циклов. Коэффициент асимметрии цикла нагружения определяется отношением минимального значения напряжения в цикле нагружения к максимальному: R=σminmax.

Для повышения предела выносливости конструкционных материалов применяют упрочняющую поверхностную обработку, например обработку стальными шариками, химико-термическую обработку и другие виды упрочнения поверхности. В результате поверхностного упрочнения возрастает твердость поверхностных слоев и создаются сжимающие напряжения, которые частично компенсируют напряжения растяжения, возникающие в процессе циклического нагружения. Для элементов конструкции, работающих в условиях циклического сжатия, сжимающие напряжения упрочненной поверхности накладываются на сжимающие циклические напряжения от внешней нагрузки и могут приводить к снижению усталостной прочности. В этой связи исследование многоцикловой усталости высокопрочных материалов в условиях преимущественного сжатия имеет первостепенное значение.

Известные способы определения предела выносливости, описанные в стандарте ГОСТ 25.502-79 (прототип), не предусматривают усталостных испытаний металлических конструкционных материалов в области преимущественного сжатия. Определение предела выносливости в условиях осевого сжатия на образцах, изготовленных согласно требованиям ГОСТ 25.502-79, приводит к потере устойчивости образца, в результате чего происходит неравномерное упругопластическое деформирование или разрушение образца. Такие результаты признаются недействительными.

Наиболее близким к предложенному является способ определения предела выносливости металлических материалов в условиях изгиба в одной плоскости, включающий циклическое консольное или четырехточечное нагружение образцов. Используемые в таких испытаниях по ГОСТ 25.502-79 образцы (тип I, V, VI) имеют сечение рабочей зоны в форме круга или прямоугольника, что не позволяет реализовать цикл нагружения в области преимущественного сжатия: при симметричном и асимметричном цикле нагружения в условиях изгиба в одной плоскости сжимающие напряжения с одной стороны образцов всегда равны растягивающим напряжениям с противоположной стороны.

В связи с тем, что предел выносливости конструкционных материалов при растяжении меньше предела выносливости при сжатии (Орлов М.Р., Оспенникова О.Г., Наприенко С.А., Морозова Л.В., «Исследование усталостного разрушения конических шестерен редуктора центрального привода газотурбинного двигателя, изготовленных из стали 20Х3МВФ», Деформация и разрушение материалов, 2014 г., №7, с. 18-26), усталостная трещина всегда начинает развиваться со стороны действия растягивающих напряжений, то есть в результате испытаний по ГОСТ 25.502-79 получают значения предела выносливости материала в условиях симметричного цикла нагружения (R=-1) и асимметричного цикла нагружения с преимущественным растяжением (R=0; 0,5 и др.).

Техническая задача, на решение которой направлено изобретение, - определение предела выносливости металлического материала при симметричных и любых асимметричных циклических нагрузках, включая область сжатия.

Предлагаемый способ определения предела выносливости металлических материалов позволяет при стандартной процедуре нагружения образца в условиях изгиба в одной плоскости реализовать условия преимущественно растяжения и преимущественно сжатия образца за счет изменения формы образца.

Способ определения предела выносливости σRN металлического материала включает циклическое нагружение образца в условиях консольного или четырехточечного изгиба в одной плоскости с заданным коэффициентом асимметрии цикла нагружения R на базе заданного количества циклов нагружения N и отличается тем, что используют образец металлического материала, который имеет клиновидную форму рабочего сечения, с концентратором напряжений цилиндрической формы, ось которого ориентирована перпендикулярно плоскости изгиба, причем момент сопротивления рабочего сечения образца асимметричен.

Асимметрия момента сопротивления рабочего сечения обеспечивает необходимую концентрацию напряжений сжатия в зоне концентратора, величина которых существенно превосходит величину напряжений растяжения на противоположной стороне образца, и этим предопределяет зарождение и развитие усталостной трещины не в зоне действия напряжений растяжения, а в зоне действия максимальных напряжений сжатия. Таким образом, при симметричном (R=-1) и асимметричных циклах нагружения образцов с асимметричным моментом сопротивления рабочего сечения образца определяют предел выносливости конструкционных материалов, в том числе и на образцах с упрочненной поверхностью, в условиях как преимущественного растяжения, так и преимущественного сжатия.

Величина радиуса концентратора напряжений r в пределах значений от 1,0 до 40 мм определяется требованиями подобия испытуемого образца элементу детали или конструкции. Требования к размеру образца и параметры шероховатости рабочей части образцов соответствуют ГОСТ 25.502-79.

Для реализации предлагаемого способа определения предела выносливости были использованы образцы из стали 20ХЗМВФ после серийной термической обработки по режиму: закалка в масло после аустенитизации при температуре 910°С в течение 30 минут и отпуск при температуре 300°С в течение 3 часов. Для усталостных испытаний были изготовлены образцы с клиновидным сечением рабочей зоны по чертежу, приведенному на фигуре 1.

В соответствии с чертежом образца заготовкой для получения профильной поверхности рабочей зоны является шлифованный цилиндр длиной 55 мм и диаметром 10 мм с шероховатостью поверхности не хуже Ra 0,32 мкм. В рабочей зоне заготовки выполняются две выборки радиусом 40 мм, расположенные под углом 60° друг относительно друга. В центральной зоне образца согласно чертежу выполняется концентратор радиусом r=2,5 мм. Шероховатость поверхностей выборок и концентратора должна быть не хуже Ra 0,32 мкм. Плоскости вращения шлифовального круга при обработке поверхностей выборок и концентратора r должны быть перпендикулярны оси образца.

Усталостные испытания образцов стали 20ХЗМВФ с целью определения предела выносливости σRN осуществляют при высокочастотном циклическом нагружении на базе N=106 циклов нагружения в условиях продольного консольного изгиба образца в вертикальной плоскости с контролем изгибающего момента М. Образцы устанавливают в захваты резонансной испытательной установки CRACKTRONIC таким образом, чтобы продольная плоскость симметрии клиновидной рабочей зоны была совмещена с вертикальной плоскостью изгиба.

Испытания проводят методом ступенчатого увеличения размаха изгибающего момента ΔM=Mmax-Mmin на величину 2 Н·м после отработки образца N=106 циклов на предыдущем уровне циклического нагружения. В качестве начального уровня нагружения для всех значений R был выбран размах изгибающего момента ΔΜ=20 Н·м.

В процессе испытаний образцов регистрируют амплитудные значения циклической нагрузки Mmax и Mmin. Амплитудные значения напряжений σmax и σmin в зоне концентратора вычисляют по известной формуле σ=M·Wz, где Wz - момент сопротивления рабочего сечения образца в зоне концентратора, рассчитанный методом конечных элементов с помощью программного комплекса ANSYS R15.0.

Предел выносливости σRN образцов стали 20Х3МВФ определяют как максимальное по модулю значение напряжения в цикле нагружения с коэффициентом асимметрии R, при котором не происходит усталостного разрушения образца при достижении N циклов нагружения. Одновременно регистрируют максимальное значение размаха напряжений в цикле нагружения: Δσ=σmaxmin.

Предложенным способом были определены предел выносливости σRN и предельная величина размаха напряжений в цикле нагружения Δσ стали 20Х3МВФ в диапазоне значений асимметрии цикла нагружения от преимущественного растяжения (R=0,5) до преимущественного сжатия (R=2,0). Результаты испытаний образцов 1а-7а с клиновидным сечением рабочей зоны в режимах 1-7, отличающихся коэффициентом асимметрии цикла нагружения, приведены в таблице.

Для оценки предела выносливости, определенного предложенным способом в области преимущественного растяжения, были испытаны в условиях изгиба в одной плоскости образцы стали 20Х3МВФ, изготовленные согласно ГОСТ 25.502-79, тип I, с диаметром рабочей зоны 5 мм. Результаты испытаний образцов 1б-4б по ГОСТ 25.502-79 для различных значений коэффициента асимметрии цикла нагружения также представлены в таблице. Очевидно, что значения предела выносливости в области преимущественного растяжения, определенные на клиновидных образцах и на стандартных образцах по ГОСТ 25.502-79, тип I, практически совпадают. На стандартных образцах по ГОСТ 25.502-79, тип I определить предел выносливости в области преимущественного сжатия (R=±∞; R=3,0; R=2,0) не представляется возможным в связи с усталостным разрушением этих образцов в зоне преимущественного растяжения.

Результаты усталостных испытаний образцов стали 20Х3МВФ по предлагаемому способу и ГОСТ 25.502-79.

На основании полученных данных можно заключить, что предлагаемый способ позволяет определить предел выносливости металлического материала в области преимущественного растяжения и преимущественного сжатия, причем в области преимущественного растяжения значения предела выносливости совпадают в пределах ошибки эксперимента со значениями, определенными по ГОСТ 25.502-79 на образцах типа I.

Способ определения предела выносливости σRN металлического материала, включающий циклическое нагружение образца в условиях консольного или четырехточечного изгиба в одной плоскости с заданным коэффициентом асимметрии цикла нагружения R на базе заданного количества циклов нагружения N, отличающийся тем, что используют образец металлического материала, который имеет клиновидную форму рабочего сечения, с концентратором напряжений цилиндрической формы, ось которого ориентирована перпендикулярно плоскости изгиба, причем момент сопротивления рабочего сечения образца асимметричен.



 

Похожие патенты:

Изобретение относится к испытательной технике, а именно к способам определения предела выносливости материала. Сущность: измеряют радиусы кривизны поверхности испытуемого материала в сечениях двумя плоскостями главных кривизн и радиус сферического индентора, по которым определяют приведенный радиус кривизны.

Изобретение относится к сельскому хозяйству и может быть использовано для изучения физико-механических свойств корнеклубнеплодов и определения уровня повреждаемости клубней картофеля при оптимизации работы картофелеуборочных машин, а также для оценки механических повреждений при селекции сортов картофеля, предназначенных для механизированного возделывания.
Изобретение относится к области гидравлических испытаний, в частности к способам проведения циклических испытаний натурных образцов труб внутренним давлением и изгибом с целью получения фактических данных по их прочности и долговечности.

Изобретение относится к испытательной технике, а именно к установкам для испытания образцов материалов на прочность, и может быть применено в заводской и исследовательской лабораториях.

Изобретение относится к испытательной технике, к устройствам для испытания материалов, в частности горных пород, при исследовании энергообмена в массиве горных пород с целью прогноза и предотвращения опасных динамических явлений.

Изобретение относится к испытательной технике, к устройствам для испытания образцов горных пород при моделировании энергообмена в массиве горных пород с целью прогноза и предотвращения опасных динамических явлений.

Изобретение относится к неразрушающему контролю несущей способности однопролетных железобетонных балок по критериям прочности арматуры и бетона. Сущность: на контролируемой железобетонной балке определяют места с наибольшими деформациями от эксплуатационной нагрузки и в этих местах устанавливают измерители деформаций.

Изобретение относится к машиностроению, в частности к способам определения прочности лопаточных дисков турбомашин с вильчатым соединением. Способ заключается в создании эксплуатационных условий нагружения одновременно в трех верхних крепежных отверстиях элементах обода диска.

Изобретение относится к испытательной технике, к испытаниям на прочность. Стенд содержит основание, установленные на нем маховик с приводом вращения, штанги по количеству точек нагружения по заданной поверхности образца с ударниками для взаимодействия с образцом, установленные с возможностью изменения положения по длине маховика, приспособления для создания фрикционного взаимодействия штанг с маховиком, приспособления для возврата штанг в исходное положение и устройство для размещения образца, выполненное с обеспечением взаимодействия образца с ударниками.

Изобретение относится к испытательной технике, а именно к устройствам для экспериментальных исследований прочностных свойств и процессов накопления усталостных повреждений в поверхностных слоях образцов из конструкционных материалов в зависимости от закона изменения на поверхности образца напряжения и его градиента.

Изобретение относится к области измерительной техники и может быть использовано при исследовании процессов разрушения материалов с образованием трещин. Сущность: измеряют начальную длину трещины. В процессе испытаний замеряют мощность теплового потока от образца, а скорость роста трещины определяют по формуле. Устройство содержит датчик, контактирующий с образцом, и устройство обработки информации с датчика, включающее источник постоянного напряжения, усилитель, микроконтроллер, персональный компьютер. Датчик содержит два элемента Пельтье, выполненных в виде в плоских пластин. Первый элемент Пельтье контактирует одной стороной пластины с образцом, а другой стороной со вторым элементом Пельтье. Устройство дополнительно содержит радиатор, контактирующий со второй стороной второго элемента Пельтье, а также две термопары, одна из которых расположена между элементами Пельтье, а вторая расположена в месте постоянной температуры. Устройство обработки информации дополнительно содержит полевой транзистор и шунтирующий резистор, причем усилитель связан с первым элементом Пельтье, с двумя термопарами, шунтирующим резистором, установленным между соединениями усилителя с первым элементом Пельтье и второй термопарой и с микроконтроллером. Полевой транзистор установлен в цепи соединения микроконтроллера со вторым элементом Пельтье и источником постоянного напряжения. Микроконтроллер выполнен с возможностью широтно-импульсной модуляции напряжения источника питания и соединен с персональным компьютером. Технический результат: повышение точности измерения, упрощение конструкции, расширение функциональных возможностей. 2 н.п. ф-лы, 4 ил.

Изобретение относится к области усталостных испытаний металлических материалов для определения их циклической долговечности. Сущность: осуществляют определение размера зерна стали в зависимости от режима технологической обработки и на основании выявленной корреляции (уравнения) между циклической долговечностью в диапазоне 105-106 циклов и размером величины зерна стали, определяют ожидаемую ее циклическую долговечность. Испытания проводят без записи параметров сигналов акустической миссии, по которым регистрируется момент возникновения трещины, и осуществления последующего монотонного растяжения испытываемого материала до разрушения, чтобы вскрыть поверхность трещины с целью анализа очага разрушения на поверхности излома с использованием электронного микроскопа. Технический результат: снижение трудоемкости и длительности экспериментального определения циклической долговечности. 1 ил.

Изобретение относится к неразрушающим методам и средствам дефектоскопии технически сложных элементов конструкции. Сущность: элемент конструкции, к которому есть доступ, нагружают переменной механической нагрузкой и вызывают его перемещения. Измеряют параметры процесса перемещения элемента конструкции, к которому есть доступ. Затем сравнивают с такими же параметрами элемента конструкции, уровень дефектов которой принимают за допустимый. Причем перед нагружением элемента конструкции, к которому есть доступ, устанавливают жесткую связь, обеспечивающую общий резонанс, с элементом конструкции, к которому нет доступа. Устройство содержит возбудитель и приемник свободных колебаний, каждый из которых имеет пьезоэлемент, подключенный к генератору колебаний или индикатору измерений. Возбудитель и приемник свободных колебаний состоят из расчлененных по длине стальных стержней и имеют комплект съемных элементов, которые имеют широкий диапазон рабочих частот. Технический результат: проведение неразрушающей дефектоскопии технически сложных элементов конструкции и осуществление неразрушающей дефектоскопии технически сложных элементов конструкции, находящихся в сборке, к которым нет доступа. 2 н.п. ф-лы, 1 ил.

Изобретение относится к испытательной технике, к испытаниям на прочность. Стенд содержит корпус, установленные на нем захваты образца, механизм нагружения, включающий две гибкие тяги, кинематически связанные с захватами, натяжной механизм тяг, платформу, привод вращения, установленный на платформе, возбудитель колебаний нагрузки в форме треугольника, установленного на валу привода вращения и расположенного между тягами, и привод перемещения платформы вдоль оси вала. Стенд снабжен платформой вращения с фиксатором поворота, ось вращения которой перпендикулярна оси вала, и разъемным соединением вала привода вращения с возбудителем колебаний нагрузки. Вторые концы тяг закреплены на поверхности платформы вращения с возможностью изменения точек закрепления. Технический результат: расширение функциональных возможностей стенда при пропорциональном изменении амплитуд чередующихся циклов и интервалов между циклами. 1 ил.

Изобретение относится к испытательной технике, а именно к установкам для испытания на усталость. Установка содержит основание, пассивный захват образца, установленный на основании, активный захват образца, одним концом связанный с активным захватом и установленный соосно с ним рычаг, электромагнитный возбудитель колебаний и измерительное устройство, фиксатор, выполненный с возможностью периодического соединения рычага с основанием, захваты установлены с возможностью фиксированного поворота вокруг своей оси, связь рычага с активным захватом выполнена в виде разъемного соединения, а возбудитель колебаний и измерительное устройство выполнены в виде двух П-образных магнитных систем, закрепленных на другом конце рычага одна симметрично другой относительно его оси и двух катушек, закрепленных на основании, каждая из которых выполнена с возможностью взаимодействия с соответствующей П-образной магнитной системой. Установка снабжена устройством индукционного нагрева, катушка которого расположена по периметру испытуемого образца и закреплена на основании. Технический результат: повышение достоверности результатов испытаний путем устранения влияния наклепа при испытании образцов на усталость. 1 ил.

Изобретение относится к области испытательной техники, в частности области исследования динамических характеристик низкомодульных полимерных материалов. Установка для определения динамических характеристик низкомодульных полимерных материалов содержит основание, на котором жестко закреплены составные образцы, каждый из которых выполнен в виде пластины из высокодобротного материала с закрепленным на ней исследуемым материалом, возбудитель колебаний в составном образце и система измерений колебаний. При этом каждый составной образец закреплен на основании таким образом, что исследуемый материал расположен на поверхности пластины, контактирующей с основанием, и закреплен на пластине методом заливки. Система измерения колебаний выполнена в виде бесконтактной лазерной системы измерения, включающей измерительную головку, обеспечивающую измерение параметров образцов на основе эффекта Доплера. Технический результат: повышение точности определения динамических характеристик низкомодульных полимерных материалов и увеличение количества резонансных частот, для которых определяются динамические характеристики низкомодульных полимерных материалов. 1 ил.

Изобретение относится к испытательной технике, в частности к стендам, и может быть использовано в авиационной испытательной технике для испытаний элементов беспилотного вертолета с соосными винтами. Устройство содержит фундамент стенда, силовой каркас, зажимные приспособления, раму монтажную, каркас фюзеляжа, амортизаторы, мотораму, двигатель внутреннего сгорания, подредукторную раму, редуктор, выходные соосные валы, автомат перекоса, соосные винты, муфту, рычаги, коромысла, нагрузочное устройство, устройство пилотирования с приводами управления автоматом перекоса, систему топливную, смазки, системы охлаждения, систему управления двигателем, устройство пожаротушения, систему приточно-вытяжной вентиляции, также устройство содержит пульт управления. Технический результат заключается в расширении функциональных возможностей и повышении безопасности. 18 ил.

Изобретение относится к геометрическим формам образцов для испытания материалов. Сборная конструкция образца (10) для испытаний содержит множество слоев, выполненных из армированного волокном полимерного материала, совместно образующих слоистый материал постоянной толщины. Слоистый материал имеет геометрию, включающую первую и вторую трапецеидальные части (16, 18), соединенные исследуемой областью, в которой указанный образец имеет минимальную ширину. Первая трапецеидальная часть, вторая трапецеидальная часть и исследуемая область образуют соответствующие части передней поверхности и соответствующие части задней поверхности образца для испытаний. Каждая из передней и задней поверхностей имеет профиль с формой наподобие "галстука-бабочки" и выполнена параллельной указанным слоям. Первый и второй выступы, приклеенные к первой трапецеидальной части на соответствующих первых частях передней и задней поверхностей. Третий и четвертый выступы, приклеенные ко второй трапецеидальной части на соответствующих вторых частях передней и задней поверхностей. Каждый из первого, второго, третьего и четвертого выступов выполнен из армированного волокном полимерного материала и имеет трапецеидальный профиль. Образец для испытаний имеет минимальную ширину в указанной исследуемой области (20) и постоянную толщину. Первая трапецеидальная часть (16) имеет первую и вторую прямолинейные скошенные стороны (12а и 12b). Вторая трапецеидальная часть (18) имеет третью и четвертую прямолинейные скошенные стороны (12с и 12d). Исследуемая область (20) содержит первую и вторую радиусные стороны (14а и 14b). При этом первая радиусная сторона (14а) соединена с первой и третьей прямолинейными скошенными сторонами (12а и 12с), а вторая радиусная сторона (14b) соединена со второй и четвертой прямолинейными скошенными сторонами (12b и 12d). Высота указанной первой радиусной части не превышает 3% указанной высоты образца (10) для испытаний. Обеспечивается гарантированное разрушение в исследуемой области (20) во время усталостных испытаний. 5 з.п. ф-лы, 7 ил.

Изобретение относится к испытательной технике, к исследованию образцов и изделий на прочность при циклическом нагружении. Центробежная установка содержит корпус, установленную на нем платформу с приводом вращения, расположенные на ней дополнительные платформы по количеству циклов нагружения по одной из осей образца, размещенные последовательно одна на другой и снабженные приводами вращения, захват для образца, закрепленный на дополнительной платформе для размещения захвата, согласно изобретению установка снабжена дополнительным приводом вращения, соединенным с захватом для образца и закрепленным радиально оси вращения на платформе для размещения захвата. Технический результат: расширение технологических возможностей центробежных установок путем обеспечения испытаний как при осевом, так и при плоском напряженном состоянии с многоцикловым или плавным нагружением по одной из осей. 1 ил.

Изобретение относится к области вибрационной техники, а именно к конструкциям свайных фундаментов зданий и сооружений гражданского и промышленного назначения. Экспериментальная установка состоит из лотка, грунтового массива и моделируемой сваи. Вибрируемый на вибростенде металлический лоток с грунтом и забитой в него сваей, верхняя часть которой соединена с металлическим наголовником, в котором жестко, симметрично и радиально под углом 180° закреплены две горизонтальные шпильки и одна вертикальная шпилька, ориентированная вдоль продольной оси сваи, с перемещающимися по резьбе шпилек грузами - гирями. Технический результат: возможность изучения особенностей демпфирования сваи при ее взаимодействии с грунтом. 2 ил.
Наверх