Способ прогнозирования развития чрезвычайной ситуации на взрывоопасном объекте

Изобретение относится к химическому и общему машиностроению, в частности к системам безопасности, предотвращающим развитие чрезвычайной ситуации. Предложен способ прогнозирования развития чрезвычайной ситуации при аварии на взрывоопасном объекте, заключающийся в том, что используют систему мониторинга с обработкой полученной информации об опасной зоне для принятия решения о предотвращении чрезвычайной ситуации. В испытательном боксе устанавливают макет взрывоопасного объекта, а по его внутреннему и внешнему периметрам устанавливают видеокамеры для видеонаблюдения за процессом развития чрезвычайной ситуации при аварии на взрывоопасном объекте, которую моделируют посредством установки в макете взрывного осколочного элемента с инициатором взрыва. Видеокамеры выполняют во взрывозащитном исполнении, а выходы с видеокамер через внутреннюю полость проставок соединяют с блоком, посредством которого производят запись и регистрацию протекающих процессов изменения технологических параметров в макете. Регистрируют посредством системы анализаторов записанных осциллограмм протекающих процессов изменения технологических параметров в макете взрывоопасного объекта, а в потолочной части макета выполняют проем, который закрывают взрывозащитным элементом, установленным по свободной посадке на трех упругих штырях, один конец каждого из которых жестко фиксируют в потолке макета, а на втором крепят горизонтальную перекладину между взрывным осколочным элементом и проемом. Устанавливают трехкоординатный датчик давления во взрывозащитном исполнении, выход которого соединяют со входом блока записывающей и регистрирующей аппаратуры, а по обе стороны от датчика давления располагают датчики температуры и влажности, контролирующие термовлажностный режим в макете, выходы которых также соединяют со входом блока записывающей и регистрирующей аппаратуры, а внутренние и внешние поверхности ограждений макета обклеивают тензодатчиками, выходы которых также соединяют со входом блока записывающей и регистрирующей аппаратуры. После обработки полученных экспериментальных данных формируют информационную базу данных о развитии чрезвычайной ситуации при аварии на взрывоопасном объекте и составляют математическую модель, прогнозирующую предотвращение чрезвычайной ситуации при аварии на взрывоопасном объекте. Технический результат - повышение эффективности защиты технологического оборудования и людских ресурсов от аварийных ситуаций путем возможности прогнозирования развития чрезвычайной ситуации при аварии на взрывоопасном объекте. 2 ил.

 

Изобретение относится к химическому и общему машиностроению, в частности к системам безопасности, предотвращающим развитие чрезвычайной ситуации.

Наиболее близким техническим решением к заявленному объекту является устройство систем безопасности в чрезвычайных ситуациях по патенту РФ №2406904, А62С 35/00, от 20.12.10 (прототип), содержащее систему датчиков, установленных в зоне опасного расположения защищаемого объекта, который требуется перевести из обычного режима работы в аварийный режим в результате возникновения опасности развития чрезвычайной ситуации, который соединен с исполнительным устройством, на срабатывание которого поступает сигнал с устройства управления. Таким образом, в прототипе используют систему мониторинга с обработкой полученной информации об опасной зоне для принятия решения о предотвращении чрезвычайной ситуации.

Недостатком известного решения является сравнительно невысокая информативность для системы управления по принятию решения о введении аварийного режима работы системы и отсутствие возможности прогнозировать развитие чрезвычайной ситуации.

Технически достижимый результат - повышение эффективности защиты технологического оборудования и людских ресурсов от аварийных ситуаций путем возможности прогнозирования развития чрезвычайной ситуации при аварии на взрывоопасном объекте.

Это достигается тем, что в способе прогнозирования развития чрезвычайной ситуации при аварии на взрывоопасном объекте, заключающемся в том, что используют систему мониторинга с обработкой полученной информации об опасной зоне для принятия решения о предотвращении чрезвычайной ситуации, в испытательном боксе устанавливают макет взрывоопасного объекта, а по его внутреннему и внешнему периметрам устанавливают видеокамеры для видеонаблюдения за процессом развития чрезвычайной ситуации при аварии на взрывоопасном объекте, которую моделируют посредством установки в макете взрывного осколочного элемента с инициатором взрыва, при этом видеокамеры выполняют во взрывозащитном исполнении, а выходы с видеокамер через внутреннюю полость проставок соединяют с блоком, посредством которого производят запись и регистрацию протекающих процессов изменения технологических параметров в макете, после чего регистрируют посредством системы анализаторов записанных осциллограмм протекающих процессов изменения технологических параметров в макете взрывоопасного объекта, а в потолочной части макета выполняют проем, который закрывают взрывозащитным элементом, установленным по свободной посадке на трех упругих штырях, один конец каждого из которых жестко фиксируют в потолке макета, а на втором крепят горизонтальную перекладину, между взрывным осколочным элементом и проемом устанавливают трехкоординатный датчик давления во взрывозащитном исполнении, выход которого соединяют со входом блока записывающей и регистрирующей аппаратуры, а по обе стороны от датчика давления располагают датчики температуры и влажности, контролирующие термовлажностный режим в макете, выходы которых также соединяют со входом блока записывающей и регистрирующей аппаратуры, а внутренние и внешние поверхности ограждений макета обклеивают тензодатчиками, выходы которых также соединяют со входом блока записывающей и регистрирующей аппаратуры, после обработки полученных экспериментальных данных формируют информационную базу данных о развитии чрезвычайной ситуации при аварии на взрывоопасном объекте и составляют математическую модель, прогнозирующую предотвращение чрезвычайной ситуации при аварии на взрывоопасном объекте.

На фиг. 1 показана принципиальная схема устройства для реализации способа прогнозирования развития чрезвычайной ситуации при аварии на взрывоопасном объекте, на фиг. 2 - фрагмент макета взрывозащитного элемента в потолочной части макета.

Устройство для реализации способа прогнозирования развития чрезвычайной ситуации при аварии на взрывоопасном объекте содержит макет 1 взрывоопасного объекта (фиг. 1) с установленным в нем взрывным осколочным элементом 14 с инициатором взрыва 13, защитный чехол 2 и поддон 3, при этом чехол с поддоном представляют собой единую замкнутую конструкцию, образованную вокруг макета 1 взрывоопасного объекта, размещенного в испытательном боксе 8. Кроме того, макет 1 оборудован транспортной 6 и подвесной 5 системами, а защитный чехол 2 выполнен многослойным и состоящим из обращенного внутрь к макету 1 алюминиевого слоя, затем резинового и перкалевого слоев. Подвесная система состоит из комплекта скоб и растяжек 5, размещенных на защитном чехле, а также необходимого количества анкерных крюков (петель) в потолке, стенах и полу испытательного бокса 8. Транспортная система 6 предназначена для удаления разрушенного макета 1 после проведения испытаний из испытательного бокса 8 вместе с защитным чехлом 2.

Транспортная система представляет собой тележку с дышлом. На раме тележки крепятся проставки, на которые устанавливаются и крепятся поддон и макет 1. Подвесная система состоит из комплекта скоб и растяжек, размещенных на защитном чехле, а также необходимого количества анкерных крюков (петель) в потолке, стенах и полу защитного сооружения.

Внутри макета 1 взрывоопасного объекта, по его внутреннему и внешнему периметрам установлены видеокамеры 7 и 4 видеонаблюдения за процессом развития ЧС, смоделированной посредством взрывного осколочного элемента 14 с инициатором взрыва 13, причем видеокамеры 4 и 7 выполнены во взрывозащитном исполнении, а выходы с видеокамер через внутреннюю полость проставок 10 соединены с блоком 17 записывающей и регистрирующей аппаратуры, выход которого соединен с блоком анализаторов 18 записанных осциллограмм протекающих процессов изменения технологических параметров в макете 1 взрывоопасного объекта. В потолочной части макета 1 выполнен проем 15, который закрыт взрывозащитным элементом 16, установленным по свободной посадке на трех упругих штырях 19, один конец каждого из которых жестко вмонтирован в потолок макета 1, а на втором имеется горизонтальная перекладина. Между взрывным осколочным элементом 14 и проемом 15, выполненным в потолочной части макета 1 и закрытым взрывозащитным элементом 16, по фронту движения взрывной волны установлен трехкоординатный датчик давления 9 во взрывозащитном исполнении, выход которого соединен со входом блока 17 записывающей и регистрирующей аппаратуры. По обе стороны от датчика давления 9 расположены датчики температуры 20 и влажности 21, контролирующие термовлажностный режим в макете 1, выходы которых также соединены со входом блока 17 записывающей и регистрирующей аппаратуры. Внутренние поверхности ограждений макета 1 обклеены тензодатчиками 12 (тензорезисторами), а внешние - тензодатчиками 11, выходы которых также соединены со входом блока 17 записывающей и регистрирующей аппаратуры.

Устройство монтируется следующим образом: поддон 3 с помощью проставок 10 и болтов (на чертеже не показано) крепится к опорным лапам (на чертеже не показано) макета 1, а также через проставки (на чертеже не показано) крепится болтовым соединением на раму транспортной системы 6. Защитный чехол 2 после предварительной примерки и отладки подвесной системы 5 подвязывается к потолку испытательного бокса 8 над макетом 1, поддоном 3 и транспортной системой 6. После проведения подготовительных к подрыву операций с макетом 1 и взрывным осколочным элементом 14 с инициатором взрыва 13, выведения и герметизации коммуникаций и подсоединения соответствующих электрических цепей чехол монтируется вокруг макета 1, герметично соединяется с поддоном и растягивается с помощью подвесной системы, образуя замкнутое герметичное пространство (объем) вокруг макета 1. Внутренние и внешние поверхности ограждений макета 1 обклеивают тензодатчиками 23 и 24.

Взрывозащитный элемент 16, размещенный в потолочной части макета 1, где выполнен проем 15, и который установлен по свободной посадке на трех упругих штырях 19, дополнительно снабжен демпфирующими элементами 26 (фиг. 2), смягчающими воздействие ударной волны при взрыве и закрепленными на горизонтальных перекладинах со стороны, обращенной к проему 15, при этом элементы 26 могут быть выполнены из эластомера, например полиуретана, или комбинированными (на чертеже не показано), например упругодемпфирующими в виде упругого элемента, пружины, заполненной полиуретаном, а между потолочной частью макета 1 и демпфирующими элементами 26 установлен индуктивный датчик перемещения 22, регистрирующий динамику перемещения взрывозащитного элемента 16 при взрыве, сигнал с которого по линии связи 25 поступает в блок 17 записывающей и регистрирующей аппаратуры, выход которой соединен с блоком 18 анализаторов записанных осциллограмм протекающих процессов изменения технологических параметров в макете 1 взрывоопасного объекта.

Инициатором взрыва 13 взрывного осколочного элемента 14 могут быть использованы горючие жидкости. Уравнение окисления стехиометрической смеси:

где - количество молей кислорода; - количество молей азота, углекислоты и воды (); Q - теплота сгорания, ккал/(кг·моль).

Если принять, что вся теплота сгорания реакции окисления идет только на нагрев продуктов сгорания, то температуру взрыва Твзр (адиабатическая температура горения) можно определить из теплового баланса реакции окисления стехиометрической смеси:

где - теплоемкости продуктов сгорания при температуре взрыва.

Принимаем при Твзр, равной 2000°С: [0,182 Дж/(кмоль·К)], [0,163 Дж/(кмоль·К)],

[0,115 Дж/(кмоль·К)].

Расчет необходимого количества взрывчатого вещества, например горючей жидкости (ацетона С3Н6О) для создания стехиометрической концентрации в помещении определяется по формуле

где М - молекулярный вес жидкости; VК - объем помещения, л; VВ - объем воздуха, необходимый для полного сгорания одной молекулы горючей жидкости, л.

где Рбар - барометрическое давление, мм рт.ст.; Vo = 22,4 л - объем грамм-молекулы воздуха при 0°С и давлении 760 мм рт.ст.,

объем (см3) горючей жидкости

где ρ - плотность жидкости, г/см3.

Способ прогнозирования развития чрезвычайной ситуации на взрывоопасном объекте осуществляют следующим образом.

В испытательном боксе 8 устанавливают макет 1 взрывоопасного объекта, а по его внутреннему и внешнему периметрам устанавливают видеокамеры 7 и 4 видеонаблюдения за процессом развития чрезвычайной ситуации при аварии на взрывоопасном объекте, которую моделируют посредством установки в макете 1 взрывного осколочного элемента 14 с инициатором взрыва 13, при этом видеокамеры 4 и 7 выполняют во взрывозащитном исполнении, а выходы с видеокамер через внутреннюю полость проставок 10 соединяют с блоком 17 и производят запись и регистрацию протекающих процессов изменения технологических параметров в макете 1, после чего регистрируют посредством системы анализаторов 18 записанных осциллограмм протекающих процессов изменения технологических параметров в макете 1 взрывоопасного объекта. В потолочной части макета 1 выполняют проем 15, который закрывают взрывозащитным элементом 16, установленным по свободной посадке на трех упругих штырях 19, один конец каждого из которых жестко фиксируют в потолке макета 1, а на втором крепят горизонтальную перекладину. Между взрывным осколочным элементом 14 и проемом 15 устанавливают трехкоординатный датчик давления 9 во взрывозащитном исполнении, выход которого соединяют со входом блока 17 записывающей и регистрирующей аппаратуры, а по обе стороны от датчика давления 9 располагают датчики температуры 20 и влажности 21, контролирующие термовлажностный режим в макете 1, выходы которых также соединяют со входом блока 17 записывающей и регистрирующей аппаратуры. Внутренние поверхности ограждений макета 1 обклеивают тензодатчиками 12 (тензорезисторами), а внешние - тензодатчиками 11, выходы которых также соединяют со входом блока 17 записывающей и регистрирующей аппаратуры. После обработки полученных экспериментальных данных формируют информационную базу данных о развитии чрезвычайной ситуации при аварии на взрывоопасном объекте и составляют математическую модель, прогнозирующую предотвращение чрезвычайной ситуации при аварии на взрывоопасном объекте. Взрывозащитный элемент, размещенный в потолочной части макета, где выполняют проем, и который устанавливают по свободной посадке на трех упругих штырях, дополнительно снабжают демпфирующими элементами, смягчающими воздействие ударной волны при взрыве, и закрепляют на горизонтальных перекладинах со стороны, обращенной к проему, при этом демпфирующие элементы выполняют из эластомера, а между потолочной частью макета и демпфирующими элементами устанавливают индуктивный датчик перемещения, регистрирующий динамику перемещения взрывозащитного элемента при взрыве, сигнал с которого по линии связи направляют в блок записывающей и регистрирующей аппаратуры, выход которой соединяют с блоком анализаторов записанных осциллограмм протекающих процессов изменения технологических параметров в макете взрывоопасного объекта, после обработки полученных экспериментальных данных формируют информационную базу данных о развитии чрезвычайной ситуации при аварии на взрывоопасном объекте и составляют математическую модель, прогнозирующую предотвращение чрезвычайной ситуации при аварии на взрывоопасном объекте. В боковых стенках макета размещают, по крайней мере, две взрывозащитных разрушающихся конструкции для ограждения особо опасных производственных объектов, в которых отсутствуют оконные проемы, и каждая из которых состоит из железобетонных панелей, состоящих из разрушающейся и неразрушающейся частей, причем неразрушающуюся часть выполняют по контуру панели, а разрушающуюся часть выполняют в виде, по крайней мере, двух коаксиально расположенных ниш, одну из которых - внешнюю образуют плоскостями правильной четырехугольной усеченной пирамиды с прямоугольным основанием, а другую - внутреннюю выполняют в виде двух наклонных поверхностей, соединенных ребром, а на наклонных поверхностях разрушающейся части панели устанавливают тензорезисторы, фиксирующие деформацию и момент их разрушения, при этом сигнал с тензорезисторов по линии связи направляют в блок записывающей и регистрирующей аппаратуры, выход которой соединяют с блоком анализаторов записанных осциллограмм протекающих процессов изменения технологических параметров в макете взрывоопасного объекта, после обработки полученных экспериментальных данных формируют информационную базу данных о развитии чрезвычайной ситуации при аварии на взрывоопасном объекте и составляют математическую модель, прогнозирующую предотвращение чрезвычайной ситуации при аварии на взрывоопасном объекте.

Способ прогнозирования развития чрезвычайной ситуации на взрывоопасном объекте, заключающийся в том, что используют систему мониторинга с обработкой полученной информации об опасной зоне для принятия решения о предотвращении чрезвычайной ситуации, в испытательном боксе устанавливают макет взрывоопасного объекта, а по его внутреннему и внешнему периметрам устанавливают видеокамеры для видеонаблюдения за процессом развития чрезвычайной ситуации при аварии на взрывоопасном объекте, которую моделируют посредством установки в макете взрывного осколочного элемента с инициатором взрыва, при этом видеокамеры выполняют во взрывозащитном исполнении, а выходы с видеокамер через внутреннюю полость проставок соединяют с блоком, посредством которого производят запись и регистрацию протекающих процессов изменения технологических параметров в макете, после чего регистрируют посредством системы анализаторов записанных осциллограмм протекающих процессов изменения технологических параметров в макете взрывоопасного объекта, а в потолочной части макета выполняют проем, который закрывают взрывозащитным элементом, установленным по свободной посадке на трех упругих штырях, один конец каждого из которых жестко фиксируют в потолке макета, а на втором крепят горизонтальную перекладину, между взрывным осколочным элементом и проемом устанавливают трехкоординатный датчик давления во взрывозащитном исполнении, выход которого соединяют со входом блока записывающей и регистрирующей аппаратуры, а по обе стороны от датчика давления располагают датчики температуры и влажности, контролирующие термовлажностный режим в макете, выходы которых также соединяют со входом блока записывающей и регистрирующей аппаратуры, а внутренние и внешние поверхности ограждений макета обклеивают тензодатчиками, выходы которых также соединяют со входом блока записывающей и регистрирующей аппаратуры, после обработки полученных экспериментальных данных формируют информационную базу данных о развитии чрезвычайной ситуации при аварии на взрывоопасном объекте и составляют математическую модель, прогнозирующую предотвращение чрезвычайной ситуации при аварии на взрывоопасном объекте, при этом взрывозащитный элемент, размещенный в потолочной части макета, где выполняют проем, и который устанавливают по свободной посадке на трех упругих штырях, дополнительно снабжают демпфирующими элементами, смягчающими воздействие ударной волны при взрыве, и закрепляют на горизонтальных перекладинах со стороны, обращенной к проему, при этом демпфирующие элементы выполняют из эластомера, а между потолочной частью макета и демпфирующими элементами устанавливают индуктивный датчик перемещения, регистрирующий динамику перемещения взрывозащитного элемента при взрыве, сигнал с которого по линии связи направляют в блок записывающей и регистрирующей аппаратуры, выход которой соединяют с блоком анализаторов записанных осциллограмм протекающих процессов изменения технологических параметров в макете взрывоопасного объекта, после обработки полученных экспериментальных данных формируют информационную базу данных о развитии чрезвычайной ситуации при аварии на взрывоопасном объекте и составляют математическую модель, прогнозирующую предотвращение чрезвычайной ситуации при аварии на взрывоопасном объекте, отличающийся тем, что в испытательном боксе в качестве инициатора взрыва взрывного осколочного элемента используют горючую жидкость, например ацетон, при этом необходимое ее количество для создания стехиометрической концентрации в испытательном боксе определяют по формуле
g = M V к V в ( 1 )
где М - молекулярный вес жидкости; VK - объем испытательного бокса, л; VВ - объем воздуха, необходимый для полного сгорания одной молекулы горючей жидкости, л.


где Рбар - барометрическое давление, мм рт. ст.; Vo=22,4 л - объем грамм-молекулы воздуха при 0°С и давлении 760 мм рт. ст., объем (см3) горючей жидкости

где ρ - плотность жидкости, г/см3.



 

Похожие патенты:

Изобретение относится к системам безопасности в чрезвычайных ситуациях и может быть использовано для взрывозащиты зданий, сооружений, а также технологического оборудования.

Изобретение относится к системам безопасности в чрезвычайных ситуациях и может быть использовано для взрывозащиты зданий, сооружений, а также технологического оборудования.

Изобретение относится к устройствам для объемного тушения пожаров посредством газоаэрозольной смеси ингибиторов. Генератор огнетушащего аэрозоля содержит оснащенный термозащитной прослойкой и воспламенителем внешнего инициирования цилиндрический корпус, в котором установлены функциональный заряд и металлический трубопровод коммуникации камеры сгорания с ресивером под крышкой с выходными отверстиями.
Изобретение относится к средствам пожаротушения. Изготовляют контейнеры, заполненные диспергированным огнетушащим веществом, смешанным с диспергированным взрывным веществом.
Изобретение относится к средствам пожаротушения. Изготовляют контейнер, заполненный диспергированным огнетушащим веществом, смешанным с взрывным веществом.
Изобретение относится к средствам пожаротушения обширных участков горящего объекта - верховых лесных пожаров. Изготовляют катапульту для доставки контейнера, заполненного диспергированным огнетушащим веществом, смешанным с диспергированным взрывным веществом.
Изобретение относится к средствам пожаротушения удаленных недоступных участков горящего объекта. Способ взрывного пожаротушения заключается в том, что на самоходную платформу устанавливают пневматическую пушку, тыльную часть которой соединяют с групповым средством, создающим управляемые импульсы сжатого воздуха.
Изобретение относится к средствам пожаротушения верховых лесных и степных пожаров. Способ взрывного оперативного пожаротушения состоит в том, что контейнеры, заполненные диспергированным огнетушащим веществом, смешанным с диспергированным взрывным веществом, доставляют в выбранный участок горящего объекта.

Изобретение относится к определению площади проемов (клапанов) в крыше вертикальных стальных резервуаров, необходимых для предупреждения механических повреждений и разрушения конструкции резервуаров для хранения жидких углеводородов при срабатывании автоматической установки газового пожаротушения (АУГП).
Изобретение относится к средствам пожаротушения обширных участков степного пожара. Способ оперативного взрывного пожаротушения заключается в том, что используют катапульту для доставки контейнера, заполненного диспергированным огнетушащим веществом, смешанным с диспергированным взрывным веществом.

Способ адаптивного контроля пожарной опасности и адаптивного тушения, система для его осуществления предназначены для многофакторного контроля среды защищаемого объекта на предмет раннего обнаружения пожара и локализации его при оптимальных режимах расхода огнетушащего вещества. Адаптивный контроль и адаптивное тушение обеспечивает информационно-исполнительная группировка автономных сигнально-пусковых устройств с адресными каналами ввода-вывода, объединенных посредством системного интерфейса. Группировка автономно способна формировать вокруг возникающего очага возгорания группу сигнально-пусковых устройств с повышенной чувствительностью к факторам пожара и осуществлять тушение при помощи управляемых исполнительных органов (спринклерных оросителей, порошковых модулей и т.п.). Технический результат характеризуется малым расходом огнетушащего вещества, коротким процессом тушения, минимизацией вредных последствий пожара. 2 н.п. ф-лы, 2 ил.

Изобретение относится к огнетушащему средству, а также способу подавления огня, огнетушителю и системе пожаротушения, использующим это средство. Огнетушащее средство содержит биологическое поверхностно-активное вещество, а именно липопептидное соединение или его соль. Средство обладает превосходным огнегасящим свойством и отличается повышенной безопасностью для окружающей среды и организма человека. 4 н. и 1 з.п. ф-лы, 1 ил., 1 табл., 10 пр.

Изобретение относится к нанотехнологиям в области противопожарной техники. Предлагаемое техническое решение относится к метаемым огнетушащим средствам. Сущность способа тушения пожара заключается в том, что в способе тушения пожара нанопорошком, заключающемся в доставке в очаг пожара с помощью метательного устройства оболочки с огнетушащим порошком, разрушении названной оболочки и подаче огнетушащего вещества в очаг пожара в виде нанопорошка. 3 н.п. ф-лы, 4 ил.

Устройство может быть использовано для автоматического обнаружения и предотвращения опасности пожара на транспортных средствах. Устройство содержит являющиеся частями системы обнаружения удара и приведения в действие воздушных подушек детекторы удара и обрабатывающий/управляющий модуль для приведения в действие клапанного средства, обеспечивающего подачу сжатого воздуха по трубопроводам в пеногенераторы, расположенные непосредственно в местах возможного возгорания. Пеногенераторы содержат пенообразующий раствор, который в сочетании со сжатым воздухом образует пену, используемую для пожаротушения. Использование для пожаротушения безопасных для человека компонентов позволяет минимизировать негативное воздействие пожаротушащего агента на пассажиров транспортного средства и активизировать устройство для огнезащиты салона немедленно после возникновения аварийной ситуации. Для повышения эффективности превентивной огнезащиты устройство отключает аккумулятор транспортного средства, являющийся опасным источником возгорания. Для этого клапанное устройство снабжено защелкой, позволяющей после приведения в действие системы пожаротушения и отключения электропитания обеспечить открытое состояние клапанного средства, при этом клапанное средство содержит прерыватель цепи питания контактного устройства, обеспечивающего соединение аккумулятора транспортного средства со всей бортовой системой электропитания. 1 ил.

Изобретение относится к определению инерционности автоматических резервуаров для легковоспламеняющихся жидкостей. При осуществлении способа определяют для одного линейного ввода установки подслойного пожаротушения суммарные протяженности и внутренние диаметры растворопроводов, проходящих от помещения с электроприводными задвижками до узла высоконапорных пеногенераторов (ВПГ), пенопроводов, проходящих от узла ВПГ до разрывной мембраны и внутри резервуара. Затем определяют расход раствора пенообразователя и измеряют кратность пены, после чего производят расчет интервалов времени заполнения раствором пенообразователя растворопроводов и заполнения пеной пенопровода, проходящего от узла ВПГ до разрывной мембраны. Определяют значение давления, при котором происходит разрыв мембраны. Производят расчет интервала времени нарастания значения давления в пенопроводе до значения, при котором происходит разрыв мембраны, и производят расчет интервала времени от разрыва мембраны до заполнения пеной пенопровода внутри резервуара. Измеряют скорость всплытия пены на поверхность жидкости и производят расчет интервала времени всплытия пены на поверхность жидкости. Инерционность установки подслойного пожаротушения определяют как сумму интервалов времени заполнения растворопроводов и пенопровода, времени нарастания значения давления в пенопроводе до значения, при котором происходит разрыв мембраны, времени от разрыва мембраны до заполнения пеной пенопровода внутри резервуара и времени всплытия пены на поверхность нефти. В результате осуществления заявленного способа достигается повышение точности определения инерционности УПП. 1 ил.
Изобретение относится к средствам пожаротушения и может быть использовано для безлюдного тушения пожаров. Способ состоит в том, что снабжают беспилотное летательное средство контейнерами - пластиковыми бутылями, которые заполняют диспергированным огнетушащим веществом, смешанным с диспергированным взрывным веществом. В крышке контейнера выполняют паз для установки с внутренней ее стороны теплового взрывателя-детонатора. Беспилотное летательное средство снабжено тепловым датчиком для дистанционного ориентирования его на зону горящего объекта и подачи команды на автоматическую систему для периодического выброса контейнеров в зону горящего объекта при положении беспилотного летательного средства над зоной горящего объекта. С теплового датчика подают команду на выброс контейнера, который по расчетной траектории доставляют в выбранный участок горящего объекта. Под воздействием высокой температуры в зоне горящего объекта взрывают тепловой взрыватель-детонатор, чем детонируют взрывчатое вещество контейнера. В соответствии с интенсивностью пожара автоматической системой выброса контейнеров определяют интервал времени выброса последующих контейнеров, которые выбрасывают по мере полета беспилотного летательного средства над зоной пожара. Техническим результатом данного изобретения является повышение эффективности пожаротушения.

Изобретение относится к противопожарной технике. Установка газового пожаротушения для мест хранения емкостей с легковоспламеняющимися и горючими жидкостями содержит блок управления и последовательно соединенные изотермический резервуар для жидкой углекислоты с трубопроводом подачи углекислоты и запорно-пусковым устройством, расположенным вне резервуара, распределительные устройства и распределительный трубопровод с распылителями. Запорно-пусковое устройство находится выше уровня жидкой углекислоты в резервуаре. Забор углекислоты производится через трубопровод в резервуаре из донной части последнего. Распылитель выполнен в виде дренчерной головки. Каждая из дренчерных головок выполнена в виде штуцера с каналом и рассекателя, закрепленного на держателях. Основание соединено с дугообразными держателями, которые удерживают втулку с закрепляемым на ней рассекателем, выполненным в виде диффузора с отогнутым в сторону основания пояском с расположенными по образующим конической поверхности пояска лепестками. Внутри рассекателя дополнительно установлен распылитель, выполненный в виде чашки, крепящейся посредством горизонтально расположенных, плоских лепестков, к внутренней поверхности рассекателя, при этом ось чашки совпадает с осями сквозного канала штуцера и втулки, а ее внутренняя полость направлена в сторону втулки. На внутренней поверхности чашки распылителя дренчерных головок выполнены винтовые канавки. Технически достижимый результат - повышение эффективности пожаротушения. 2 ил.

Изобретение относится к предохранительным устройствам систем безопасности. Автоматическое предохранительное устройство систем безопасности в чрезвычайных ситуациях содержит систему датчиков и электроклапан. С устройства управления, выполненного в виде электроклапана, поступает сигнал на срабатывание исполнительного устройства. Устройство электропуска электроклапана монтируется на запорно-поджимной гайке, закрепленной в верхней части корпуса электроклапана, и содержит два контакта: центральный контакт и контакт "корпус". При этом внутри корпуса электроклапана установлен поршень, фиксируемый в дежурном состоянии фиксатором. При срабатывании электроклапана поршень выполняет функцию фрезы, срезающей фиксатор, выполненный в виде отожженной проволоки диаметром 1,0 мм. Один конец фиксатора закреплен на корпусе электроклапана, а другой - на конце пускового рычага, соединенном с пусковой пружиной. Исполнительное устройство приводится в действие от кнопки включения, входящей в систему запуска исполнительного устройства. Система запуска исполнительного устройства включает в себя пусковой рычаг, на одном из концов которого зафиксированы пусковая пружина и фиксатор, а на другом конце имеется два отверстия: отверстие для предохранительной чеки и отверстие для установки оси пускового рычага. Ось пускового рычага закреплена на кронштейне, жестко связанном с корпусом исполнительного устройства. Электроклапан связан с системой зондирования опасной зоны, включающей в себя датчики, настроенные на превышение предельно допустимых концентраций химически опасных веществ, присутствующих в этой зоне, и зонд, настроенный на превышение предельно допустимых уровней радиоактивных веществ, сигналы с которых поступают на общий микропроцессор, обрабатывающий эти сигналы и выдающий управляющий сигнал на включение электроклапана. 3 ил.
Изобретение относится к средствам пожаротушения и может быть использовано для тушения участков горящего объекта. Сущность изобретения состоит в том, что изготовляют взрыватель-детонатор с замедлителем, время горения которого составляет 1,5-1,3 времени доставки контейнера в зону горения. В паз контейнера перед вбрасыванием в зону горения вставляют взрыватель-детонатор, выдергивают чеку, после догорания замедлителя взрывают взрыватель-детонатор. При взрыве контейнера со взрывчатым веществом сбиваются языки пламени и распыляется огнетушащее вещество, которое осаждается на раскаленных элементах горящего объекта, чем осуществляется отбор тепла, а следовательно, его пожаротушение. Техническим результатом данного изобретения является повышение эффективности пожаротушения.
Изобретение относится к средствам пожаротушения. Способ взрывного пожаротушения заключается в том, что изготовляют герметичный контейнер и герметичный пенал с механическим взрывателем-детонатором. К чеке детонатора прикрепляют огнеупорный фал, длина которого обеспечивает дистанционный взрыв контейнера. Заполняют герметичный контейнер водой или огнетушащим веществом, а также заполняют пенал взрывчатым веществом. Помещают пенал в контейнер так, чтобы чека с огнеупорным фалом были выведены наружу. При необходимости пожаротушения забрасывают контейнер в комнату или в зону, где возник пожар. Перемещают конец огнеупорного фала в защищенную от взрыва позицию. Выдергивают огнеупорным фалом чеку взрывателя-детонатора, чем осуществляют его взрыв и детонируют взрывчатое вещество, находящееся в пенале. При взрыве взрывчатого вещества сбиваются языки пламени и интенсивно разбрызгивается вода или огнетушащее вещество, которое осаждается на раскаленных элементах горящего объекта во всем объеме данного участка горящего объекта, чем осуществляется отбор тепла, а следовательно, его пожаротушение. Техническим результатом данного изобретения является повышение оперативности пожаротушения за счет осуществления пожаротушения силами самих граждан до прибытия пожарных.

Изобретение относится к химическому и общему машиностроению, в частности к системам безопасности, предотвращающим развитие чрезвычайной ситуации. Предложен способ прогнозирования развития чрезвычайной ситуации при аварии на взрывоопасном объекте, заключающийся в том, что используют систему мониторинга с обработкой полученной информации об опасной зоне для принятия решения о предотвращении чрезвычайной ситуации. В испытательном боксе устанавливают макет взрывоопасного объекта, а по его внутреннему и внешнему периметрам устанавливают видеокамеры для видеонаблюдения за процессом развития чрезвычайной ситуации при аварии на взрывоопасном объекте, которую моделируют посредством установки в макете взрывного осколочного элемента с инициатором взрыва. Видеокамеры выполняют во взрывозащитном исполнении, а выходы с видеокамер через внутреннюю полость проставок соединяют с блоком, посредством которого производят запись и регистрацию протекающих процессов изменения технологических параметров в макете. Регистрируют посредством системы анализаторов записанных осциллограмм протекающих процессов изменения технологических параметров в макете взрывоопасного объекта, а в потолочной части макета выполняют проем, который закрывают взрывозащитным элементом, установленным по свободной посадке на трех упругих штырях, один конец каждого из которых жестко фиксируют в потолке макета, а на втором крепят горизонтальную перекладину между взрывным осколочным элементом и проемом. Устанавливают трехкоординатный датчик давления во взрывозащитном исполнении, выход которого соединяют со входом блока записывающей и регистрирующей аппаратуры, а по обе стороны от датчика давления располагают датчики температуры и влажности, контролирующие термовлажностный режим в макете, выходы которых также соединяют со входом блока записывающей и регистрирующей аппаратуры, а внутренние и внешние поверхности ограждений макета обклеивают тензодатчиками, выходы которых также соединяют со входом блока записывающей и регистрирующей аппаратуры. После обработки полученных экспериментальных данных формируют информационную базу данных о развитии чрезвычайной ситуации при аварии на взрывоопасном объекте и составляют математическую модель, прогнозирующую предотвращение чрезвычайной ситуации при аварии на взрывоопасном объекте. Технический результат - повышение эффективности защиты технологического оборудования и людских ресурсов от аварийных ситуаций путем возможности прогнозирования развития чрезвычайной ситуации при аварии на взрывоопасном объекте. 2 ил.

Наверх