Шкаф с регулируемым микроклиматом

Изобретение относится к области лабораторного оборудования для проведения научно-исследовательских работ с биологическими объектами в условиях искусственного климата. Шкаф содержит остекленную рабочую камеру с остекленной передней дверью для наблюдения за растениями и двойной задней остекленной стенкой, образующей полость, обеспечивающую выход воздуха в рабочую камеру через щель в верхней части внутреннего стекла, источники света, расположенные с внешней стороны рабочей камеры, блок управления и блок подготовки воздуха, состоящий из увлажнителя, охладителя, нагревателя и сообщающийся с полостью двойной задней остекленной стенки, а также с рабочей камерой посредством отверстий в общей стенке, являющейся его потолком и дном рабочей камеры. Блок подготовки воздуха снабжен гибким воздуховодом, один конец которого герметично соединен с выходным патрубком увлажнителя. Второй конец воздуховода выходит в полость, образованную двойной задней остекленной стенкой. Блок подготовки воздуха снабжен экраном для защиты гибкого воздуховода от нагнетания в него циркулирующего воздуха и обеспечения беспрепятственного выхода увлажненного воздуха, установленным около второго конца гибкого воздуховода. При таком выполнении обеспечивается повышение верхней границы диапазона воспроизведения относительной влажности воздуха и уменьшение расхода воды. 1 ил.

 

Изобретение относится к области лабораторного оборудования для проведения научно-исследовательских работ с биологическими объектами (растениями, насекомыми и т.п.) в условиях искусственного климата. Оно может быть использовано для изучения влияния климатических факторов на процессы, протекающие в биологических объектах, а также для проведения селекционных работ с растениями, для разработки мер защиты растений от вредителей с помощью насекомых-энтомофагов и т.п.

Известные шкафы, установки, камеры роста растений различаются в основном количеством воспроизводимых климатических факторов из числа следующих: свет, температура, влажность, содержание углекислого газа, скорость движения воздуха [1, 2, 3]. Основными компонентами таких устройств являются остекленная рабочая камера с полезным пространством для исследуемых объектов, источники света, блок подготовки воздуха и блок управления. Наибольшее распространение получили устройства с вертикальной конструкцией рабочей камеры [3], позволяющие более рационально использовать площадь лаборатории. Наиболее близким аналогом изобретению является шкаф с регулируемым микроклиматом [4], содержащий остекленную рабочую камеру с остекленной передней дверью для наблюдения за растениями и двойной задней остекленной стенкой, образующей полость, обеспечивающую выход воздуха в рабочую камеру через щель в верхней части внутреннего стекла, источники света, расположенные с внешней стороны рабочей камеры, блок управления и блок подготовки воздуха, содержащий увлажнитель, охладитель, нагреватель и сообщающийся с полостью двойной задней остекленной стенки, а также с рабочей камерой посредством отверстий в общей стенке, являющейся его потолком и дном рабочей камеры. Избыток тепла от ламп удаляется охладителем (кондиционером), а его недостаток восполняется нагревателем. Недостаток влаги восполняется увлажнителем. Увлажненный воздух блока подготовки воздуха нагнетается в полость, образованную двойной задней остекленной стенкой, под действием вентиляторов охладителя или нагревателя в зависимости от того, какое исполнительное устройство (охладитель или нагреватель) включено в данный момент времени. Недостаток такого технического решения заключается в том, что увлажненный воздух перед попаданием в полость, образованную двойной задней остекленной стенкой, проходит через конструктивные элементы охладителя и нагревателя (радиатор, спираль, лопасти вентиляторов), в результате чего происходит потеря влаги и, как следствие, увеличивается расход воды из бачка увлажнителя и уменьшается верхняя граница диапазона воспроизводимой влажности.

Техническим результатом изобретения является повышение верхней границы диапазона воспроизводимой влажности и уменьшение расхода воды из бачка увлажнителя.

Технический результат достигается тем, что у шкафа с регулируемым микроклиматом, содержащего остекленную рабочую камеру с остекленной передней дверью для наблюдения за растениями и двойной задней остекленной стенкой, образующей полость, обеспечивающую выход воздуха в рабочую камеру через щель в верхней части внутреннего стекла, источники света, расположенные с внешней стороны рабочей камеры, блок управления и блок подготовки воздуха, состоящий из увлажнителя, охладителя, нагревателя и сообщающийся с полостью двойной задней остекленной стенки, а также с рабочей камерой посредством отверстий в общей стенке, являющейся его потолком и дном рабочей камеры, блок подготовки воздуха снабжен гибким воздуховодом, один конец которого герметично соединен с выходным патрубком увлажнителя, а второй конец выходит в полость, образованную двойной задней остекленной стенкой, а также экраном для защиты гибкого воздуховода от нагнетания в него циркулирующего воздуха и обеспечения беспрепятственного выхода увлажненного воздуха, установленным около второго конца гибкого воздуховода. Таким образом, достигается прямая подача увлажненного воздуха в полость, образованную двойной задней остекленной стенкой рабочей камеры. По мере прохождения увлажненного воздуха вверх внутри двойной задней остекленной стенки и далее через щель во внутреннем стекле задней стенки вниз рабочей камеры микрокапли воды полностью испаряются и при дальнейших циклах циркулирования воздуха через элементы охладителя и нагревателя существенной потери влаги не происходит.

На чертеже изображен рисунок подачи увлажненного воздуха в общий контур циркулирования воздуха шкафа с регулируемым микроклиматом, поясняющий сущность изобретения.

Шкаф с регулируемым микроклиматом содержит остекленную рабочую камеру 1 с остекленной передней дверью 2, с внутренней стороны которой наклеена зеркальная полимерная пленка. Задняя стенка состоит из двух стекол 3 и 4, отстоящих друг от друга так, что образуется полость 5 для нагнетания воздуха из блока подготовки воздуха 6. Внутреннее стекло 3 задней стенки выполнено короче, чем наружное, так что образуется щель в верхней части рабочей камеры 1 для выхода воздуха из полости 5 в рабочую камеру 1. Внутри рабочей камеры 1 расположены четыре съемных решетчатых полки (на рисунке не показаны) для установки растений. С внешней стороны рабочей камеры 1 на потолке и трех сторонах (двух боковых и задней) расположены источники света - семь светильников 7 с люминесцентными лампами или светодиодами (светильники на боковых сторонах на рисунке не показаны). Рабочая камера 1 установлена на блок подготовки воздуха 6, который содержит исполнительные устройства: охладитель (кондиционер) 8, нагреватель (тепловентилятор) 9 и ультразвуковой увлажнитель 10. Потолок блока подготовки воздуха 6 является дном рабочей камеры 1 после установки ее на блок подготовки воздуха 6 и имеет отверстия для циркуляции воздуха. В блок подготовки воздуха 6 вмонтирован блок управления (на рисунке не показан), основными элементами которого являются программируемый во времени регулятор температуры, влажности, освещения и датчики температуры и влажности. В выходной патрубок ультразвукового увлажнителя 10 вставлен патрубок гофрированного воздуховода (сифона) 11. Второй патрубок гофрированного воздуховода 11 закреплен в отверстии стенки блока подготовки воздуха 6, являющейся продолжением внутренней стенки (стекла 3) полости 5. На этой же стенке закреплен экран 12, защищающий гофрированный воздуховод 11 от нагнетания в него циркулирующего воздуха и обеспечивающий беспрепятственный выход увлажненного воздуха из увлажнителя 10. Патрубок гофрированного воздуховода 11 со стороны увлажнителя 10 выполнен быстросъемным для заливки воды в бачок увлажнителя 10.

Работа шкафа с регулируемым микроклиматом заключается в поддержании заданных параметров микроклимата в рабочей камере 1 с помощью светильников 7, охладителя 8, нагревателя 9, увлажнителя 10 блока подготовки воздуха 6, которые включаются и выключаются под управлением регулятора в зависимости от заданных программой значений температуры, влажности, времени включения (выключения) светильников 7 и текущих значений температуры, влажности и времени, поступающих от датчика температуры, датчика влажности и таймера регулятора. Освещенность в рабочей камере 1 создается светильниками 7 и светом, отраженным от зеркальной полимерной пленки на передней двери 2. Воздух циркулирует под действием вентиляторов либо охладителя 8, либо нагревателя 9, в зависимости от того, какое исполнительное устройство включено регулятором в данный момент времени -охладитель 8 или нагреватель 9. Увлажненный воздух из увлажнителя 10 поступает в общий поток через гофрированный воздуховод 11. Экран 12 перекрывает выход гофрированного воздуховода 11 от запирания потоком воздуха, циркулирующего по общему контуру.

Изобретение может быть реализовано с использованием следующих компонентов. Каркасы рабочей камеры 1 и съемной двери 2 могут изготавливаться из окрашенного алюминиевого профиля типа CONSTA-SIB. Остекление может быть выполнено из оконного стекла толщиной 4 мм с ошлифованными кромками с применением П-образных пластиковых уплотнителей. В качестве светильников 7 могут быть применены стандартные - типа TL418-1A на четыре люминесцентных лампы мощностью 18 Вт каждая, со специальным спектром излучения для растений, типа L18W/77 FLUORA или светодиодные таких же размеров. Для регулирования и воспроизведения необходимых значений температуры, влажности и освещенности могут быть применены микропроцессорный программный регулятор МПР51-Щ4 и два термометра сопротивления ТС 034-50М (фирмы ОВЕН г. Москва), один из которых используется для измерения влажности психрометрическим методом, и исполнительные устройства: охладитель-кондиционер 8 типа LWJ0561ACG (фирмы LG, Ю. Корея) или EC-W05C4 (фирмы ERISSON), нагреватель-тепловентилятор 9 РЕН 2036 и увлажнитель 10 типа PUH 1104 (оба фирмы POLARIS, США). Зеркальное покрытие на внутренней поверхности двери 2 может быть выполнено путем наклеивания полимерной зеркальной пленки торговой марки Llumar, например, типа R15GSRCDF (серая, с пропусканием света 15%).

Результаты измерений влажности в рабочей камере с помощью термогигрометра ИВА-6 показали, что диапазон воспроизведения относительной влажности воздуха в рабочей камере может быть расширен до 95% по сравнению с верхней границей диапазона воспроизведения относительной влажности воздуха 80% в прототипе. При этом расход воды уменьшается более чем в два раза.

Источники информации

1. Садовой А.Ф., Советов В.П. Установки искусственного климата. - М.: Агропромиздат, 1985. - 72 с., ил.

2. Курец В.К., Попов Э.Г. Статистическое моделирование системы связей растение-среда. - Л.: Наука, 1991. - 152 с.

3. Патент РФ №2446673. Шкаф роста растений.

4. Патент РФ №2546221. Шкаф искусственного климата (прототип).

Шкаф с регулируемым микроклиматом, содержащий остекленную рабочую камеру с остекленной передней дверью для наблюдения за растениями и двойной задней остекленной стенкой, образующей полость, обеспечивающую выход воздуха в рабочую камеру через щель в верхней части внутреннего стекла, источники света, расположенные с внешней стороны рабочей камеры, блок управления и блок подготовки воздуха, состоящий из увлажнителя, охладителя, нагревателя и сообщающийся с полостью двойной задней остекленной стенки, а также с рабочей камерой посредством отверстий в общей стенке, являющейся его потолком и дном рабочей камеры, отличающийся тем, что блок подготовки воздуха снабжен гибким воздуховодом, один конец которого герметично соединен с выходным патрубком увлажнителя, а второй конец выходит в полость, образованную двойной задней остекленной стенкой, а также экраном для защиты гибкого воздуховода от нагнетания в него циркулирующего воздуха и обеспечения беспрепятственного выхода увлажненного воздуха, установленным около второго конца гибкого воздуховода.



 

Похожие патенты:

Изобретение относится к устройствам для выращивания сельскохозяйственной продукции в защищенном грунте промышленного типа. Теплица зимняя блочная или ангарная ресурсосберегающая состоит из стен 7 и покрытия.

Изобретение относится к области сельского хозяйства, в частности к растениеводству. Способ включает нарезку черенков и посадку их на гряды в условиях защищенного грунта с искусственным туманом.

Автоматизированная система гравиметрического скрининга и способ управляют влажностью почвы у множества горшечных растений для проведения экспериментов по нехватке воды в теплице с использованием стационарной опорной платформы и конструкции сосуда, которые сохраняют растения в неподвижном положении в процессе тестирования.

Изобретение относится к сельскохозяйственной технике, а именно к системам и способам автоматического управления свето-температурным режимом в теплицах или других сооружениях защищенного грунта.

Изобретение относится к методам и средствам автоматического управления сельскохозяйственными технологическими процессами и может быть использовано для автоматизации управления температурным режимом теплиц.

Изобретение относится к области сельского хозяйства, а именно к плодоводству и виноградарству. Способ включает размещение маточного куста в контейнере, заполнение полости контейнера влагоудерживающим материалом, удаление контейнера с маточного куста после окоренения побегов и отделение отводков.

Изобретение относится к сельскохозяйственной технике, а именно к способам автоматического управления свето-температурным режимом в теплицах или других сооружениях защищенного грунта.

Изобретение относится к технологии выращивания растительной продукции в промышленных теплицах. Тепличный процесс для выращивания растений с применением питательных растворов характеризуется тем, что для предотвращения засорения форсунок или трубочек полива осадками солей маточные насыщенные растворы получают с применением ультразвуковых колебаний, которые затем разделяют микрофильтрацией на загрязненный и чистый потоки.

Изобретение относится к области сельского хозяйства и может найти применение при выращивании лимонов в условиях защищенного грунта. Лимонарий включает сооружение траншейного типа, оборудованное системами вентиляции, а также дождевания и увлажнения почвы, подключенными с помощью трубопровода к водоисточнику.

Изобретение относится к устройствам преобразования солнечной энергии в тепловую, в частности к системам солнечного теплоснабжения, размещенным на строительных конструкциях зданий и сооружений, и предназначенным для обогрева и (или) горячего водоснабжения индивидуальных жилых домов, коттеджей, сельских усадебных домов, офисов, общественных зданий, теплиц и других объектов.

Изобретение относится к области сельского хозяйства, в частности к способам ускоренного выращивания рассады в личных подсобных хозяйствах. Способ заключается в том, что в герметичной емкости, оборудованной системой подачи и дозировки газов, освещения фитолампами, а также контроля температуры и состояния рассады, создают повышенное давление газов в герметичной емкости, благодаря которому происходит ускоренный фотосинтез из-за высокой концентрации углекислого газа в водном растворе, питающем корни рассады. В качестве газов используют воздух и углекислый газ. Причем естественное снижение давления в емкости в результате развития растений компенсируют подачей в емкость углекислого газа. Устройство состоит из герметичной емкости, в которой имеется люк, через него в емкость помещают рассаду. Люк закрывается съемной панелью, на которой смонтированы системы подачи и контроля давления газов. Внутри емкости на стенках и ребрах имеется светоотражающее покрытие из полос фольги синего и красного цвета. Изобретения обеспечивают ускорение развития растений путем создания повышенного давления газов. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области теплоэнергетики и может быть использовано в системах оборотного водоснабжения технологического оборудования, охлаждаемого водой. Эжекционное устройство для охлаждения оборотной воды системы охлаждения производственного оборудования содержит корпус с вертикальным и горизонтальным эжекционными каналами, снабженными форсунками и шахтой выброса воздуха, снабженной в верхней ее части каплеуловителями, приемный бак, соединенный магистралями, в которые включены насосы, с системой охлаждения производственного оборудования, с форсункой вертикального эжекционного канала и с форсункой горизонтального эжекционного канала, при этом в нижней части корпуса выполнена магистраль для слива воды из корпуса в приемный бак, дополнительную эжекционную камеру с одной или более форсунками внутри нее, с каплеуловителем в верхней ее части, и одним или более воздухоприемными окнами в нижней ее части, форсунками, размещенными в дополнительной эжекционной камере, соединенными магистралью с системой охлаждения производственного оборудования, в нижней части дополнительной эжекционной камеры выполнена магистраль для слива воды из нее в приемный бак, в котором выполнена перегородка с отверстием в нижней части, отделяющая зону слива в приемный бак воды из корпуса от зоны слива в него из дополнительной эжекционной камеры, воздухоприемные окна которой могут быть снабжены элементами принудительной подачи воздуха, в донной части приемного бака установлено устройство для дегазации воды, на корпусе эжекционного устройства за каплеуловителями размещен роторный ветродвигатель. Устройство снабжено дополнительной магистралью, соединенной соответственно с магистралью оборотной воды от производственного оборудования и тепличным комплексом сельскохозяйственного назначения для нагрева посевной земли. Изобретение позволяет использовать низкопотенциальное тепло оборотной воды от производственного оборудования для нагрева посевной земли тепличного комплекса сельскохозяйственного назначения при пониженных температурах окружающего воздуха в осенний, зимний и весенний периоды года, не только обеспечивая непосредственное охлаждение воды, но и позволяя создать необходимые температурные условия в посевной земле для выращивания товарной сельскохозяйственной продукции, а также отказаться от применения водогрейного котла, работающего на газовом или других видах топлива, и, как следствие, исключить вредные выбросы в окружающую среду с уходящими в дымовую трубу дымовыми газами. 1 ил.

Изобретение относится к агропромышленному комплексу, а именно к оборудованию для регулирования микроклимата в теплицах. Термопривод содержит раму, шарнирные соединения, корпус в виде гильзы с перфорированными стенками, крышку с отверстием и направляющей втулкой, регулируемый по длине шток, пружину. В корпус помещены теплообменник и активные элементы, выполненные в виде одного и более герметичных сильфонов, заполненных жидкой термоактивной средой. В предлагаемом термоприводе исключаются утечки рабочего тела, уменьшено дополнительное сопротивление движению штока в направляющей втулке крышки, в штатном режиме работы не требуется нагревания активных элементов от дополнительных источников. Использование изобретения позволит повысить эффективность работы термопривода. 3 ил.

Изобретение относится к устройству коллектора света и, кроме того, к солнечному устройству, к теплице или осветительному блоку, содержащему такое устройство коллектора света. Изобретение имеет подобное листу устройство коллектора света, содержащее сторону приема света и сторону выхода света, а также множество криволинейных структур из световодного материала, содержащего органический краситель, выполненный с возможностью поглощения по меньшей мере части света источника света и преобразования по меньшей мере части поглощенного света в преобразованный свет видимого диапазона длин волн. Каждая криволинейная структура имеет выпуклую криволинейную часть на стороне приема света, вогнутую часть на стороне выхода света и краевую часть выхода света на стороне выхода света. Каждая криволинейная структура имеет кривизну и толщину световода, выполненную с возможностью облегчения передачи введенного света и видимого преобразованного света в направлении краевой части выхода света для обеспечения испускания света устройства из краевой части выхода света. Такое выполнение устройств позволит более динамично использовать входной свет и более эффективно направлять его, например, к растениям. 4 н. и 11 з.п. ф-лы, 36 ил.

Изобретение относится к технологии сушки с использованием солнечной энергии, более конкретно к комплексной системе сушки на солнечной энергии, выполненной с возможностью сбора тепла, аккумулирования тепла и подачи тепла. Система содержит гелиотеплицу, стеллаж (1) для аккумулирования тепла солнечной энергии, воздушный конденсатор (3), мокрый пылеуловитель (4) и трубки, и клапаны (9.1 - 9.12), соединяющие каждое устройство, и воздуходувки (2.1-2.3). Гелиотеплица представляет собой каркасную конструкцию, имеющую пол из перфорированных цементных плит (7). Стеллаж (1) для аккумулирования тепла солнечной энергии содержит верхнюю и нижнюю воздушные камеры (1.1), ряд трубок (1.3) для сбора и аккумулирования солнечной энергии и герметичную камеру. Воздушный конденсатор (3) представляет собой цилиндрическую конструкцию, стороны которой снабжены отверстиями для притока и оттока воздуха, и верхнее, и нижнее отверстия которого снабжены воздушными камерами (3.1), соединенными между собой воздушными трубками (3.2). Канал притока воздуха предусмотрен под полом гелиотеплицы, а два канала оттока воздуха предусмотрены выше пола. Нижняя воздушная камера воздушного конденсатора (3) соединена с мокрым пылеуловителем (4). Изобретение должно обеспечить высокие тепловую эффективность и скорость сушки. 8 з.п. ф-лы, 6 ил.

Устройство для проветривания теплицы относится к области сельского хозяйства и может быть использовано преимущественно в отдаленных от места проживания людей садово-огородных участках и фермах для обеспечения оптимальной температуры воздуха внутри теплицы путем автоматического открытия и закрытия дверей теплицы. Устройство имеет установленный в теплице неподвижный блок с канавками по окружности обода. К ободу на гибкой тяге подвешено ведро, у которого ось шарнирного соединения ручки ведра с ведром расположена чуть ниже центра тяжести наполненного водой ведра, но выше центра тяжести пустого ведра. К ободу блока прикреплены концы двух тросов, каждый из которых проходит через противоположно расположенную дверь теплицы и соединяется с ней разъемным соединением, а на другом конце каждого троса, огибающего неподвижный блок снаружи теплицы, подвешен контргруз. В верхней части устройства установлен бак с водой и гибкой трубкой, соединяющей бак с ведром через регулятор скорости истечения воды. На каждой двери теплицы установлен регулируемый ограничитель угла открытия дверей. Такое выполнение устройства позволит в течение рабочей недели поддерживать в теплице оптимальную для растений температуру в автоматическом режиме без присутствия человека. 1 ил.

Изобретение относится к области сельского хозяйства, в частности к растениеводству. Устройство содержит понтонное средство с полыми поплавками и установленный на нем контейнер с размещенным внутри питательным субстратом с семенами растений, дно которого выполнено с возможностью пропускания влаги, причем наружная поверхность дна размещена выше водной поверхности. При этом полые поплавки понтонного средства выполнены цельными и связаны между собой с образованием замкнутого контура. Форма контейнера соответствует форме указанного контура. Каждая из боковых стенок контейнера закреплена в верхней части соответствующего поплавка. Дно контейнера выполнено в виде решетки, установленной на поплавках таким образом, что высота между наружной поверхностью дна и водной поверхностью составляет не менее высоты поплавков, а внутри контейнера на дне и боковых стенках последовательно размещены паропроницаемое и сетчатое покрытия. Устройство позволяет создать условия для увлажнения питательного субстрата с семенами растений конденсатом паров, испаряющихся с поверхности водоема, от фазы набухания и прорастания семян до фазы формирования корневой системы в питательном субстрате контейнера. 10 з.п. ф-лы, 2 ил.

Изобретение относится к теплоэнергетике в сельском хозяйстве и может быть использовано в системах отопления теплицы и отопления блока переработки продукции при теплице. Солнечный вегетарий содержит прямоугольную теплицу с плоской крышей, систему перфорированных труб 10, уложенных в грунт теплицы и соединенных поперечной трубой-коллектором, подключенной к вертикальной трубе вентиляции с заслонками. Другие концы перфорированных труб выведены во внутрь теплицы. Вегетарий имеет печь-стену с аккумулирующими тепловую энергию колпаками. Теплица выполнена из двух частей 1, 2 и блока 3 переработки продукции, отделенного от них печной стеной, калориферов нижнего 5 и верхнего 9 яруса печи. Калориферы нижнего 5 яруса оснащены дверками-задвижками 6, 11 и 7 и соединены с перфорированными трубами, создающими микроклимат и орошение в теплице. Калориферы верхнего 9 яруса печи с дверками 8 и фрамугами 12 соединены с системой вентиляции, а аккумулирующие колпаки - с каждой из частей теплицы. При таком выполнении повышается эффективность использования энергетических ресурсов на отопление, вентиляцию и на внутрипочвенное орошение в любой период года. 2 ил.

Изобретение относится к теплоэнергетике и сельскому хозяйству и может быть использовано для повышения урожайности в овощеводстве закрытого грунта. Теплица включает транзитный газоход с отводным газоходом, теплообменник, вентилятор, эжектор, распределитель озоновоздушной смеси, соединенный с озонатором, газовоздушный коллектор, соединенный с корпусом теплицы, снабженной дефлектором. После эжектора установлена камера окисления, снабженная распределителем озоновоздушной смеси и гидрозатвором. Газовоздушный коллектор соединен через свои правую и левую ветви с корпусом теплицы, установленным на правый и левый ряды вертикальных пластинчатых теплообменников, примыкающих своими торцами к опорным стойкам. Каждый вертикальный пластинчатый теплообменник состоит из вертикального прямоугольного корпуса с внутренней вертикальной перегородкой, которые изготовлены из прозрачного материала с высокой теплопроводностью и коррозионной стойкостью. Вертикальная перегородка установлена с образованием нижней переточной щели. В верхней части внутренней стенки корпуса устроена горизонтальная распределительная щель. В верхней части наружной стенки корпуса устроен газовоздушный штуцер, соединенный с правой или левой ветвью газовоздушного коллектора. В днище корпуса устроен штуцер слива конденсата, соединенный с правой или левой ветвью конденсатного коллектора, соединенного с камерой окисления через гидрозатвор и с анионитовым фильтром. Обеспечивается повышение экологической эффективности теплицы с очисткой и комплексной утилизацией сбросных газов. 5 ил.

Изобретение относится к области практических исследований температурных полей в светопроницаемых культивационных сооружениях, например, в пленочных теплицах, укрытиях или парниках для выращивания теплолюбивых овощных культур при изучении тепловых полей в зоне выращивания растений. Способ моделирования температурных полей в светопроницаемых культивационных сооружениях отличается тем, что изменение температурных полей внутри сооружения осуществляется за счет техногенного воздействия на внутреннюю ограждающую поверхность светопроницаемого культивационного сооружения. При этом техногенное воздействие осуществляется искусственным тепловым полем, уровень техногенного воздействия регулируется изменением величины теплового поля. Устройство для моделирования температурных полей, содержащее защитные экраны, торцевые заслонки и датчики температуры, отличающееся тем, что по всей внутренней поверхности защитных экранов закреплен распределенный нагревательный элемент, причем мощность нагревательного элемента регулируется. Технический результат – повышение информативности получаемых данных за счет обеспечения моделирования внешнего воздействия температуры воздуха на температурный режим внутри сооружения. 2 н. 4 з.п.ф-лы, 2 ил.
Наверх