Способ беспористого твёрдого хромирования деталей из чугунов и сталей

Изобретение относится к области нанесения гальванических покрытий на изделия из чугуна и стали. Способ включает последовательное осаждение слоев покрытия из электролита при прямой полярности тока, при этом деталь прогревают и подвергают катодной обработке при плотности катодного тока 100-150 А/дм2 и температуре 70-75°C в той же ванне при непрерывной циркуляции электролита, по окончании катодной обработки плотность тока снижают до 32 А/дм2 и продолжают хромирование до достижения толщины покрытия 8-10 мкм, далее без подачи тока проводят охлаждение электролита до температуры 45-50 °C посредством теплообменника с протоком холодной воды, а по достижении заданной температуры на деталь подают минимальный катодный ток с постепенным подъемом плотности до 45-50 А/дм2 и проводят хромирование до получения требуемой толщины покрытия. Процесс хромирования любых чугунов и сталей, в т.ч. азотированных, проводится в электролите одного состава и в одной ванне без применения анодной межслойной обработки. Технический результат: повышение микротвердости - от 1000 HV при удовлетворительной адгезии покрытия. 1 ил.

 

Изобретение относится к области нанесения гальванических покрытий на изделия из чугунов и сталей.

Известен способ электролитического нанесения покрытия, включающий непрерывное осаждение материала на изделии из раствора и его пластическое деформирование прижимами, причем пластическое деформирование осаждаемого материала прижимами осуществляют периодически с интервалом, который выбирают из условия:

Ti=(0,49…0,01)To,

где Ti - интервал между периодами пластического деформирования осаждаемого материала;

0,49 - максимальное значение интервала в долях общего времени осаждения;

0,01 - минимальное значение интервала в долях общего времени осаждения;

To - общее время осаждения материала (патент №2280107, МПК C25D 5/22, опубл. 20.07.2006 г.).

Общим признаком с заявляемым способом является непрерывное осаждение материала на изделии из раствора.

Признаком, препятствующим получению технического результата заявляемого способа, является пластическое деформирование прижимами, что требует наличие дополнительного оборудования.

Наиболее близким по технической сущности и достигаемому эффекту является способ нанесения гальванических покрытий, включающий последовательное осаждение слоя покрытия из электролита при прямой полярности тока, удаление части этого покрытия при обратной полярности и заключительное осаждение покрытия при прямой полярности тока, причем на электролит в течение всего процесса воздействуют ультразвуковыми колебаниями, отличающийся тем, что дополнительно возбуждают ультразвуковые колебания резонансной частоты в покрываемом изделии, при этом используют электролит, содержащий ультрадисперсную фазу (патент №2075557, МПК C25D 15/00, C25D 5/20, опубл. 20.03.1997).

Общим признаком с заявляемым способом является последовательное осаждение слоев покрытия из электролита при прямой полярности тока.

Признаками, препятствующими получению технического результата заявляемого способа, является последовательное осаждение слоя покрытия из электролита при прямой полярности тока, удаление части этого покрытия при обратной полярности и заключительное осаждение покрытия при прямой полярности тока, причем на электролит в течение всего процесса воздействуют ультразвуковыми колебаниями, при этом дополнительно возбуждают ультразвуковые колебания резонансной частоты в покрываемом изделии, при этом используют электролит, содержащий ультрадисперсную фазу.

В заявляемом способе обратная полярность тока не применяется, удаление части покрытия осуществляется за счет плавного увеличения тока прямой полярности с минимально возможного до рабочего;

- процесс ведется без воздействия на электролит ультразвуковых колебаний;

- электролит не содержит ультрадисперсную фазу.

Задача изобретения

Унификация и снижение себестоимости технологии хромирования деталей из чугунов и сталей за счет экономии производственных площадей и упрощения силового оборудования.

Технический результат заключается в получении беспористых хромовых покрытий с повышенной (от 1000 HV) микротвердостью и удовлетворительной адгезией на подложках из чугунов и сталей.

Технический результат достигается тем, что способ беспористого твердого хромирования деталей из чугунов и сталей включает последовательное осаждение слоев покрытия из электролита при прямой полярности тока, причем изделие прогревают и подвергают катодной обработке при плотности катодного тока 100-150 А/дм2 и температуре 70-75°C в той же ванне при непрерывной циркуляции электролита, по окончании обработки плотность тока снижают до 32 А/дм2 и хромирование продолжают до достижения толщины покрытия в 8-10 мкм, далее ток прерывают, дают проток холодной воды через теплообменник и проводят охлаждение электролита до температуры 45-50°C, по достижении заданной температуры на изделие подают минимальный катодный ток с постепенным подъемом токов до плотности 45-50 А/дм2, по достижении расчетных токов процесс ведется до получения требуемой толщины.

Установка, с помощью которой осуществляют способ, показана на схеме.

Установка состоит:

1 - ванна;

2 - аноды;

3 - деталь;

4 - нагреватель;

5 - циркуляционный насос;

6 - водяной теплообменник.

Изделие из чугуна или стали монтируется на подвеске и проходит ряд стандартных операций по подготовке поверхности (обезжиривание, травление), затем изделие погружается в ванну 1 с замкнутым циклом с электролитом хромирования следующего состава:

Хромовый ангидрид - (200-250) г/л

Серная кислота - (2-2,5) г/л

Добавка (ЭкоТех-4101) с содержанием солей стронция - 50 мл/л

Ванна содержит в себе циркуляционный насос 5, водяной теплообменник 6 (нагрев/охлаждение), аноды 2 из свинцового сплава ССу.

Изделие прогревается в электролите хромирования. После прогрева изделие подвергается катодной обработке при плотности катодного тока 100-150 А/дм2 и температуре 70-75°C в той же ванне при непрерывной циркуляции электролита. По окончании обработки плотность тока снижается до 32 А/дм2 и хромирование продолжается до достижения толщины покрытия в 8-10 мкм. Далее ток прерывают, дается проток холодной воды через теплообменник и проводится охлаждение электролита до температуры 45-50°C. По достижении заданной температуры на изделие подается минимальный катодный ток с постепенным подъемом токов до плотности 45-50 А/дм2. По достижении расчетных токов процесс ведется до получения требуемой толщины.

Процесс хромирования любых чугунов и сталей (в т.ч. азотированных) проводится в электролите одного состава и в одной ванне без применения анодной межслойной обработки.

Способ беспористого твердого хромирования деталей из чугуна и стали, включающий последовательное осаждение слоев покрытия из электролита при прямой полярности тока, отличающийся тем, что деталь прогревают и подвергают катодной обработке при плотности катодного тока 100-150 А/дм2 и температуре 70-75°C в той же ванне при непрерывной циркуляции электролита, по окончании катодной обработки плотность тока снижают до 32 А/дм2 и продолжают хромирование до достижения толщины покрытия 8-10 мкм, далее без подачи тока проводят охлаждение электролита до температуры 45-50 °C посредством теплообменника с протоком холодной воды, а по достижении заданной температуры на деталь подают минимальный катодный ток с постепенным подъемом плотности до 45-50 А/дм2 и проводят хромирование до получения требуемой толщины покрытия.



 

Похожие патенты:

Изобретение относится к области гальванотехники и может быть использовано в электронной, электротехнической и других отраслях промышленности. Способ включает электрохимическое осаждение из дицианаргентатнороданистого электролита, содержащего ионы серебра и модифицированный наноуглерод-алмазный материал детонационного синтеза, г/л: K[Ag(CN)2] (в расчете на Ag) - 20-35; К2СО3 - 40-50; KCNS - 150-200; модифицированный 5-30%-ной азотной кислотой наноуглерод-алмазный материал - 0,2-2,0, при температуре 18-25°С и плотности тока 0,5-2,0 А/дм2.

Изобретение относится к области гальванотехники и может быть использовано в электронной, электротехнической, ювелирной и других отраслях промышленности. Способ включает электрохимическое осаждение из дицианаргентатного электролита, содержащего ионы серебра и модифицированные (т.е.
Изобретение относится к области гальванотехники и может быть использовано для нанесения на детали, работающие под нагрузкой в агрессивных средах, для повышения надежности работы изделий.

Изобретение относится к области гальванотехники и может быть использовано в различных областях промышленности для повышения износостойкости режущего инструмента деталей, машин и механизмов.

Изобретение относится к области гальванотехники, в частности к электролитическим способам нанесения композиционных хромовых покрытий на металлические изделия, и может быть использовано в металлургии и машиностроении для получения коррозионно-стойких твердых хромовых покрытий.

Изобретение относится к области гальванотехники и может быть использовано для ремонта лопаток соплового аппарата газовой турбины. Согласно изобретению обеспечивают лопатку (120, 130), образующую катод и имеющую покрываемую поверхность, ограничивающую критическую зону (21), анод (19), электролитическую ванну, содержащую нерастворимые частицы, и опору (12), на которой устанавливают упомянутую лопатку в рабочем положении относительно опорной стенки (14), помещают опору (12) в упомянутую ванну и осуществляют соосаждение частиц и металла анода (19), образуя покрытие (20) на покрываемой поверхности, при этом образом упомянутый анод (19) размещен обращенным к критической зоне (21), а упомянутая опора (12) снабжена средством контроля линий тока таким образом, чтобы получить покрытие (20) с толщиной, заданной и относительно постоянной для критической зоны (21) и постепенно уменьшающейся до практически нулевого значения вдоль краев упомянутого покрытия (20).

Изобретение относится к области гальванотехники и может быть использовано в различных областях промышленности, в частности в машиностроении, производстве монет, столовых приборов, дорожных ограждений и других изделий, подверженных истиранию, коррозии и эрозии.
Изобретение относится к области гальванотехники и может быть использовано для создания композиционных электрохимических покрытий различного назначения. Способ получения композиционного покрытия включает осаждение металлического покрытия из водного электролита-суспензии с ультрадисперсными частицами алмаза.

Изобретение относится к области гальванотехники и может быть использовано в радиотехнике и электротехнике. Покрытие равномерно по всему объему серебра содержит астралены в количестве от 0,005 мас % до 0,5 мас %.

Изобретение относится к алмазно-абразивному инструменту, используемому для обработки особо твердых и хрупких материалов, преимущественно кремния, сапфира, гранатов, кварца, керамики, стекла и т.п., в частности к алмазному проволочному инструменту.

Изобретение относится к области гальванотехники и нанотехнологии. Электролит содержит серную кислоту, композицию «ЭКОМЕТ-А200» и порошок углеродного наноматериала «Таунит», введенный с помощью ультразвукового диспергатора, при этом он содержит компоненты при следующем соотношении, г/л: серная кислота 180-220, композиция «ЭКОМЕТ-А200» 26-28, углеродный наноматериал «Таунит» от 0,005 до менее 0,03. Технический результат: упрощение технологии увеличения микротвердости алюминиевых поверхностей. 2 табл., 1 пр.

Изобретение относится к области порошковой гальванотехники, а именно: к материалам для получения композиционных гальванических покрытий, и может быть использовано для создания износостойких покрытий в условиях массового, серийного и единичного производства. Электролит-суспензия для получения износостойких покрытий на основе железа содержит нанодисперсный порошок оксида алюминия в виде частиц сферической формы размером 0,03 мкм и менее с концентрацией 0,5-50 г/л, который получен путем плазменной переконденсации крупнодисперсного порошка оксида алюминия. Техническим результатом изобретения является повышение физико-механических свойств предлагаемых покрытий, а именно: износостойкости и микротвердости, и седиментационной устойчивости электролита. 1 табл., 1 ил.

Изобретение относится к области гальванотехники и может быть использовано для модификации медных гальванических покрытий. Способ включает введение в сульфатный электролит меднения наночастиц меди, полученных электроэрозионным диспергированием медных отходов, размерностью 2,5-100 нм с концентрацией до 0,1 г на 100 мл электролита. Технический результат: повышение физико-механических характеристик медного покрытия. 3 табл., 6 ил., 1 пр.

Изобретение относится к области гальванотехники, в частности к анодированию поверхности алюминия и его сплавов, и может быть использовано в различных областях промышленности для увеличения коррозионной стойкости, микротвердости изделий с покрытиями и создания подслоя для лаков и красок. Способ включает электрохимическое оксидирование в сернокислом электролите, содержащем детонационные наноалмазы, при этом используют детонационные наноалмазы, модифицированные аммиаком, сурьмой или бором, в количестве 0,5-10,0 г/л. Технический результат: повышение микротвердости и коррозионной стойкости покрытия, снижение его пористости при малом расходе ДНА по простой технологии. 3 з.п. ф-лы, 10 табл., 3 ил.
Наверх