Способ определения скорости роста трещины в образце и устройство для этого



Способ определения скорости роста трещины в образце и устройство для этого
Способ определения скорости роста трещины в образце и устройство для этого
Способ определения скорости роста трещины в образце и устройство для этого
Способ определения скорости роста трещины в образце и устройство для этого
Способ определения скорости роста трещины в образце и устройство для этого

 


Владельцы патента RU 2603939:

федеральное государственное бюджетное учреждение науки Институт механики сплошных сред Уральского отделения Российской академии наук (RU)

Изобретение относится к области измерительной техники и может быть использовано при исследовании процессов разрушения материалов с образованием трещин. Сущность: измеряют начальную длину трещины. В процессе испытаний замеряют мощность теплового потока от образца, а скорость роста трещины определяют по формуле. Устройство содержит датчик, контактирующий с образцом, и устройство обработки информации с датчика, включающее источник постоянного напряжения, усилитель, микроконтроллер, персональный компьютер. Датчик содержит два элемента Пельтье, выполненных в виде в плоских пластин. Первый элемент Пельтье контактирует одной стороной пластины с образцом, а другой стороной со вторым элементом Пельтье. Устройство дополнительно содержит радиатор, контактирующий со второй стороной второго элемента Пельтье, а также две термопары, одна из которых расположена между элементами Пельтье, а вторая расположена в месте постоянной температуры. Устройство обработки информации дополнительно содержит полевой транзистор и шунтирующий резистор, причем усилитель связан с первым элементом Пельтье, с двумя термопарами, шунтирующим резистором, установленным между соединениями усилителя с первым элементом Пельтье и второй термопарой и с микроконтроллером. Полевой транзистор установлен в цепи соединения микроконтроллера со вторым элементом Пельтье и источником постоянного напряжения. Микроконтроллер выполнен с возможностью широтно-импульсной модуляции напряжения источника питания и соединен с персональным компьютером. Технический результат: повышение точности измерения, упрощение конструкции, расширение функциональных возможностей. 2 н.п. ф-лы, 4 ил.

 

Изобретение относится к области измерительной техники и может быть использовано при исследовании процессов разрушения материалов с образованием трещин.

Наиболее близким известным техническим решением к предлагаемому способу является способ определения скорости роста трещины в образце материала с концентратором напряжения при воздействии на него циклической нагрузкой (см. патент RU 2200943, опубл. 20.03.2003).

Недостатком его является высокая погрешность измерений, большая трудоемкость испытаний.

Задачей предлагаемого изобретения является повышение точности и достоверности результатов измерения, снижение трудоемкости испытаний.

Для этого предлагается способ определения скорости роста трещины в образце материала с концентратором напряжения при воздействии на него циклической нагрузкой, заключающийся в том, что сначала замеряют начальную длину трещины, в процессе испытаний замеряют мощность теплового потока от образца, а затем скорость роста трещины определяют по формуле:

где

n - номер шага вычисления;

tn - время на n-м шаге (сек);

К1 - коэффициент пропорциональности (1/Дж);

Ρn - мощность теплового потока от образца в момент времени tn (Вт);

ln - длина трещины на n-м шаге вычисления (м), определяемая по формуле

, n=1…N

Отличительной особенностью предлагаемого способа является то, что сначала замеряют начальную длину трещины, в процессе испытаний замеряют мощность теплового потока от образца, а затем скорость роста трещины определяют по формуле:

где

n - номер шага вычисления;

tn - время на n-м шаге (сек);

К1 - коэффициент пропорциональности (1/Дж);

Ρn - мощность теплового потока от образца в момент времени tn (Вт);

ln - длина трещины на n-м шаге вычисления (м), определяемая по формуле

, n=1…Ν

Наиболее близким к предлагаемому устройству для определения скорости роста трещины в образце материала с использованием предлагаемого способа является устройство, включающее датчик, контактирующий с образцом, и устройство обработки информации с датчика, включающее источник постоянного напряжения, усилитель, микроконтроллер, персональный компьютер (см. патент RU 2315962, опубл. 27.01.2008).

Недостатком его является сложность устройства и невысокая точность результатов, ограниченные возможности.

Технической задачей предлагаемого устройства является повышение точности измерения, упрощение конструкции, расширение функциональных возможностей

Для этого устройство включает датчик, контактирующий с образцом, и устройство обработки информации с датчика, включающее источник постоянного напряжения, усилитель, микроконтроллер, персональный компьютер, при этом датчик содержит два элемента Пельтье, выполненных в виде в плоских пластин, причем первый элемент Пельтье контактирует одной стороной пластины с образцом, а другой стороной со вторым элементом Пельтье, кроме того, устройство содержит радиатор, контактирующий со второй стороной второго элемента Пельтье, а также две термопары, одна из которых расположена между элементами Пельтье, а вторая расположена в месте постоянной температуры, а устройство обработки информации дополнительно содержит полевой транзистор и шунтирующий резистор, причем усилитель связан с первым элементом Пельтье, с двумя термопарами, шунтирующим резистором, установленным между соединениями усилителя с первым элементом Пельтье и второй термопарой и с микроконтроллером, а полевой транзистор установлен в цепи соединения микроконтроллера со вторым элементом Пельтье и источником постоянного напряжения, причем микроконтроллер выполнен с возможностью широтно-импульсной модуляции напряжения источника питания в соответствии с формулой:

где

Uпит - напряжение питания второго (охлаждающего) элемента Пельтье (В),

U2 - напряжение с термопары измерительного модуля (В),

U1 - напряжение с термопары датчика (В),

V - напряжение источника питания (В),

К2 - температурный коэффициент элемента Пельтье(1/°С),

α - коэффициент термоэдс термопары (°С/В),

при этом микроконтроллер соединен с персональным компьютером и выполнен с возможностью определения скорости роста трещины по формуле:

где

υn - скорость роста усталостной трещины (м/с);

К1 - коэффициент пропорциональности (1/Дж);

ln - длина трещины на n-м шаге вычисления (м).

где

Π - удельный коэффициент Пельтье (Вт/(А·м2));

Un - разность потенциалов на шунтирующем резисторе (В);

R - сопротивление резистора (Ом);

S - площадь элемента Пельтье (м2).

Отличительной особенностью предлагаемого устройства является то, что датчик содержит два элемента Пельтье, выполненных в виде плоских пластин, причем первый элемент Пельтье контактирует одной стороной пластины с образцом, а другой стороной со вторым элементом Пельтье, кроме того, устройство содержит радиатор, контактирующий со второй стороной второго элемента Пельтье, а также две термопары, одна из которых расположена между элементами Пельтье, а вторая расположена в месте постоянной температуры, а устройство обработки информации дополнительно содержит полевой транзистор и шунтирующий резистор, причем усилитель связан с первым элементом Пельтье, с двумя термопарами, шунтирующим резистором, установленным между соединениями усилителя с первым элементом Пельтье и второй термопарой, и с микроконтроллером, а полевой транзистор установлен в цепи соединения микроконтроллера со вторым элементом Пельтье и источником постоянного напряжения, причем микроконтроллер выполнен с возможностью широтно-импульсной модуляции напряжения источника питания в соответствии с формулой:

где

Uпит - напряжение питания второго (охлаждающего) элемента Пельтье (В),

U2 - напряжение с термопары измерительного модуля (В),

U1 - напряжение с термопары датчика (В),

V - напряжение источника питания (В),

К2 - температурный коэффициент элемента Пельтье (1/°С),

α - коэффициент термоэдс термопары (°С/В),

при этом микроконтроллер соединен с персональным компьютером и выполнен с возможностью определения скорости роста трещины по формуле:

где

υn - скорость роста усталостной трещины (м/с);

К1 - коэффициент пропорциональности (1/Дж);

ln - длина трещины на n-м шаге вычисления (м).

где

Π - удельный коэффициент Пельтье (Вт/(А·м2));

Un - разность потенциалов на шунтирующем резисторе (В);

R - сопротивление резистора (Ом);

S - площадь элемента Пельтье (м2).

Сущность изобретения поясняется чертежами, где на фиг. 1 изображена схема устройства для определения скорости роста трещины в образце, на фиг. 2 изображен калибровочный график для определения коэффициента К2, на фиг. 3 калибровочный график для определения коэффициента К1 и на фиг. 4 изображена зависимость скорости роста трещины от времени.

Устройство включает датчик, контактирующий с образцом 1, и устройство обработки информации с датчика, включающее источник постоянного напряжения 2, усилитель 3, микроконтроллер 4, персональный компьютер 5.

Датчик содержит два элемента Пельтье, выполненных в виде плоских пластин, причем первый элемент Пельтье 6 контактирует одной стороной 7 пластины с образцом 1, а другой стороной 8 со вторым элементом Пельтье 9.

Использование в устройстве второго элемента Пельтье позволяет стабилизировать температуру на поверхности первого элемента Пельтье, исключив тем самым влияние колебаний температуры окружающей среды на измерение теплового потока.

Устройство содержит радиатор 10 контактирующий со второй стороной 11 второго элемента Пельтье 9, а также две термопары 12, 13, одна из которых 12 расположена между элементами Пельтье 6, 9, а вторая 13 расположена в месте постоянной температуры на значительном удалении от измеряемого объекта.

Установка второй термопары и предлагаемое его соединение позволяют установить необходимое напряжение питания второго элемента Пельтье для стабилизации температуры.

Устройство обработки информации дополнительно содержит полевой транзистор 14 и шунтирующий резистор 15.

Усилитель 3 связан с первым элементом Пельтье 6, с двумя термопарами 12, 13, шунтирующим резистором 15, установленным между соединениями усилителя 3 с первым элементом Пельтье 6 и с микроконтроллером 4, а полевой транзистор 14 установлен в цепи соединения микроконтроллера 4 со вторым элементом Пельтье 9 и источником постоянного напряжения 2.

Установка полевого транзистора и предлагаемое его соединение с другими элементами устройства необходимы для реализации на микроконтроллере функции управления источником постоянного напряжения.

Установка шунтирующего резистора и предлагаемое его соединение с другими элементами устройства необходимы для измерения тока, генерируемого элементом Пельтье 6, и определения значения теплового потока.

Микроконтроллер 4 выполнен с возможностью широтно-импульсной модуляции напряжения источника питания 2 в соответствии с формулой:

где

Uпит - напряжение питания второго (охлаждающего) элемента Пельтье (В),

U2 - напряжение с термопары измерительного модуля (В),

U1 - напряжение с термопары датчика (В),

V - напряжение источника питания (В),

К2 - температурный коэффициент элемента Пельтье (1/°С),

α - коэффициент термоэдс термопары (°С/В).

Использование широтно-импульсной модуляции напряжения источника питания позволяет усилить выходной сигнал микроконтроллера 4.

Микроконтроллер 4 соединен с персональным компьютером 5 и выполнен с возможностью определения скорости роста трещины по формуле:

где

υn - скорость роста усталостной трещины (м/с);

К1 - коэффициент пропорциональности (1/Дж);

ln - длина трещины на n-м шаге вычисления (м).

где

Π - удельный коэффициент Пельтье (Вт/(А·м2));

Un - разность потенциалов на шунтирующем резисторе (В);

R - сопротивление резистора (Ом);

S - площадь элемента пельтье (м2).

Такое выполнение микроконтроллера позволяет упростить реализацию измерения потока тела и повысить точность и достоверность измерений.

Предлагаемое устройство работает следующим образом.

Перед испытанием производят калибровку элементов Пельтье. Калибровка заключается в определении температуры на поверхности элемента Пельтье в зависимости от приложенного напряжения питания и определения коэффициента пропорциональности К2 - температурного коэффициента элемента Пельтье как тангенса угла аппроксимирующей прямой (см. фиг. 2).

Далее определяют коэффициент материала образца К1.

Для этого испытываемый образец из заданного материала закрепляют в нагружающей машине.

Путем дискретного замера длины трещины и мощности теплового потока

при различных амплитудах приложенной нагрузки получают для данного материала образца коэффициент К1 как тангенс угла аппроксимирующей прямой (см. фиг. 3)

Далее производят испытание образца материала в режиме многоцикловой усталости 5×106 и более циклов.

Для этого испытываемый образец из заданного материала закрепляют в нагружающей машине. Датчик теплового потока на штативе прижимают к образцу с использованием термопасты. Подается питание на элементы устройства, запускается программа сбора данных на персональном компьютере.

В измерительной системе фиксируют тепловое равновесие, при котором тепловой поток от образца равен нулю. Нагружают образец в режиме многоцикловой усталости 5×106 и более циклов.

В процессе испытаний скорость роста трещины определяют по формуле:

где

К1 - коэффициент пропорциональности (1/Дж);

Pn - мощность теплового потока от образца в момент времени tn (Вт), определяемая по формуле:

где

Π - удельный коэффициент Пельтье (Βт/(Α·м2));

Un - разность потенциалов на шунтирующем резисторе (В);

R - сопротивление резистора (Ом);

S - площадь элемента Пельтье (м2);

ln - длина трещины на n-м шаге вычисления (м), определяемая по формуле

, n=1…N

где

n - номер шага вычисления;

tn - время на n-м шаге (сек);

Для реализации устройства был взят микроконтроллер Freeduino Nano v5, Arduino-совместимый микроконтроллер. Подключение к ПК было произведено по интерфейсу USB 2.0.

В схеме использовался полевой транзистор IRFZ44, термопары тип-К (хромель-алюмелевые), элементы Пельтье ТЕС1-03103. Исследуемый материал - нержавеющая сталь марки 8Х18Н10.

На разработанном устройстве проведены испытания и получены следующие результаты: коэффициент пропорциональности К1=2,27 (1/Дж), температурный коэффициент элемента Пельтье К2=1,724 (1/°С), удельный коэффициент Пельтье Π=0,0111 (Βт/(Α·м2),

На Фиг. 4 представлена зависимость скорости роста трещины от времени для испытываемого материала.

Таким образом, предлагаемый способ и устройство позволяют повысить точность результатов измерения, снизить трудоемкость испытаний, расширить функциональные возможности, а именно позволяет измерить тепловой поток от любых объектов.

1. Способ определения скорости роста трещины в образце материала с концентратором напряжения при воздействии на него циклической нагрузкой, отличающийся тем, что сначала измеряют начальную длину трещины, в процессе испытаний замеряют мощность теплового потока от образца, а затем скорость роста трещины определяют по формуле:
υn=K1·Pn·ln
где
n - номер шага вычисления;
tn - время на n-м шаге (сек);
K1 - коэффициент пропорциональности (1/Дж);
Pn - мощность теплового потока от образца в момент времени tn (Вт);
ln - длина трещины на n-м шаге вычисления (м), определяемая по формуле:
, n=1…N

2. Устройство для определения скорости роста трещины в образце материала с использованием способа по п. 1, включающее датчик, контактирующий с образцом, и устройство обработки информации с датчика, включающее источник постоянного напряжения, усилитель, микроконтроллер, персональный компьютер, отличающееся тем, что датчик содержит два элемента Пельтье, выполненных в виде в плоских пластин, причем первый элемент Пельтье контактирует одной стороной пластины с образцом, а другой стороной со вторым элементом Пельтье, кроме того, устройство содержит радиатор, контактирующий со второй стороной второго элемента Пельтье, а также две термопары, одна из которых расположена между элементами Пельтье, а вторая расположена в месте постоянной температуры, а устройство обработки информации дополнительно содержит полевой транзистор и шунтирующий резистор, причем усилитель связан с первым элементом Пельтье, с двумя термопарами, шунтирующим резистором, установленным между соединениями усилителя с первым элементом Пельтье и второй термопарой и с микроконтроллером, а полевой транзистор установлен в цепи соединения микроконтроллера со вторым элементом Пельтье и источником постоянного напряжения, причем микроконтроллер выполнен с возможностью широтно-импульсной модуляции напряжения источника питания в соответствии с формулой:
Uпит=(U2-U1a·V·K2,
где
Uпит - напряжение питания второго (охлаждающего) элемента Пельтье (B),
U2 - напряжение с термопары измерительного модуля (В),
U1 - напряжение с термопары датчика (В),
V - напряжение источника питания (В),
K2 - температурный коэффициент элемента Пельтье (1/°C),
a - коэффициент термоэдс термопары (°C/B),
при этом микроконтроллер соединен с персональным компьютером и выполнен с возможностью определения скорости роста трещины по формуле:
υn=K1·Pn·ln,
где
υn - скорость роста усталостной трещины (м/с);
K1 - коэффициент пропорциональности (1/Дж);
ln - длина трещины на n-м шаге вычисления (м);
Pn=П·Un/R·S,
где
П - удельный коэффициент Пельтье (Вт/(А·м2));
Un - разность потенциалов на шунтирующем резисторе (B);
R - сопротивление резистора (Ом);
S - площадь элемента Пельтье (м2).



 

Похожие патенты:

Изобретение относится к области исследования прочностных свойств твердых материалов и может быть использовано для определения усталостной прочности конструкционных материалов, работающих в условиях циклического нагружения.

Изобретение относится к испытательной технике, а именно к способам определения предела выносливости материала. Сущность: измеряют радиусы кривизны поверхности испытуемого материала в сечениях двумя плоскостями главных кривизн и радиус сферического индентора, по которым определяют приведенный радиус кривизны.

Изобретение относится к сельскому хозяйству и может быть использовано для изучения физико-механических свойств корнеклубнеплодов и определения уровня повреждаемости клубней картофеля при оптимизации работы картофелеуборочных машин, а также для оценки механических повреждений при селекции сортов картофеля, предназначенных для механизированного возделывания.
Изобретение относится к области гидравлических испытаний, в частности к способам проведения циклических испытаний натурных образцов труб внутренним давлением и изгибом с целью получения фактических данных по их прочности и долговечности.

Изобретение относится к испытательной технике, а именно к установкам для испытания образцов материалов на прочность, и может быть применено в заводской и исследовательской лабораториях.

Изобретение относится к испытательной технике, к устройствам для испытания материалов, в частности горных пород, при исследовании энергообмена в массиве горных пород с целью прогноза и предотвращения опасных динамических явлений.

Изобретение относится к испытательной технике, к устройствам для испытания образцов горных пород при моделировании энергообмена в массиве горных пород с целью прогноза и предотвращения опасных динамических явлений.

Изобретение относится к неразрушающему контролю несущей способности однопролетных железобетонных балок по критериям прочности арматуры и бетона. Сущность: на контролируемой железобетонной балке определяют места с наибольшими деформациями от эксплуатационной нагрузки и в этих местах устанавливают измерители деформаций.

Изобретение относится к машиностроению, в частности к способам определения прочности лопаточных дисков турбомашин с вильчатым соединением. Способ заключается в создании эксплуатационных условий нагружения одновременно в трех верхних крепежных отверстиях элементах обода диска.

Изобретение относится к испытательной технике, к испытаниям на прочность. Стенд содержит основание, установленные на нем маховик с приводом вращения, штанги по количеству точек нагружения по заданной поверхности образца с ударниками для взаимодействия с образцом, установленные с возможностью изменения положения по длине маховика, приспособления для создания фрикционного взаимодействия штанг с маховиком, приспособления для возврата штанг в исходное положение и устройство для размещения образца, выполненное с обеспечением взаимодействия образца с ударниками.
Наверх