Способ обнаружения поверхностных дефектов цилиндрических объектов

Изобретение относится к контрольно-измерительной технике и может быть использовано в производстве ядерного топлива, в частности, для обнаружения дефектов (контроля) внешнего вида топливных таблеток. В заявленном способе обнаружения поверхностных дефектов цилиндрических объектов контролируемый цилиндрический объект перемещают через позицию контроля, где освещают боковую поверхность объекта N пучками света, которые формируют на контролируемой поверхности N световых полос, образующих замкнутую по периметру объекта световую полосу. Световые полосы располагаются в одной плоскости, перпендикулярной продольной оси объекта и лежащей под углом α к направлениям освещения. Изображения полос регистрируются N матричными фотоприемниками, оптические оси которых лежат в плоскости световых полос. В аналитическом устройстве по отклонениям положения изображений полос от номинального положения определяют наличие дефектов поверхности и принимают решение о годности объекта по критериям: глубина, длина и площадь дефектов. Технический результат - повышение производительности контроля поверхности цилиндрических объектов. 3 з.п. ф-лы, 7 ил.

 

Изобретение относится к контрольно-измерительной технике и может быть использовано в производстве ядерного топлива, в частности, для обнаружения дефектов (контроля) внешнего вида топливных таблеток.

Известен способ контроля внешнего вида боковой поверхности топливных таблеток (А.В. Белобородов, Е.В. Власов, П.С. Завьялов, Л.В. Финогенов. Многоканальный высокопроизводительный оптико-электронный контроль качества поверхности топливных таблеток. Автометрия, т. 46, №4, 2010, стр. 121-129).

Способ основан на освещении полупроводниковыми лазерами с четырех сторон топливной таблетки в процессе ее движения вдоль оси с помощью объективов, со специально рассчитанной кривизной поля, приеме через полупрозрачные зеркала изображения боковой поверхности с помощью стандартных фотообъективов цифровыми камерами. При этом наблюдение и освещение каждой точки поверхности осуществляется по нормали к поверхности. Полученные изображения обрабатываются в компьютере по специальному алгоритму. По результатам обработки принимается решение о годности топливной таблетки. Недостатком данного способа контроля боковой поверхности топливных таблеток является низкая достоверность контроля, обусловленная тем, что в способе не определяется глубина дефектов, а решение о годности принимается на основе получения и обработки полутоновых изображений с учетом различия контрастности областей изображений.

Известен также способ автоматического контроля топливных таблеток (Патент US S 602646), включающий вращение таблетки вокруг оси, освещение цилиндрической поверхности таблетки во время вращения узкой полоской света, прием отраженного от поверхности света фотоприемником, анализ принятого сигнала с целью обнаружения дефектов поверхности таблеток, классификацию таблеток на годные и негодные.

Недостатком данного способа контроля топливных таблеток является его низкая производительность, обусловленная вращением таблетки вокруг оси для получения информации обо всей цилиндрической поверхности.

Наиболее близким к предлагаемому способу является способ, примененный в устройстве для измерения формы объекта (патентный документ US 20140152771 А1, 05.06.2014). Способ заключается в том, что на поверхности контролируемого объекта с помощью светоизлучающих систем, расположенных симметрично относительно контролируемой поверхности, формируют световые полосы, которые регистрируются под углом к контролируемой поверхности с помощью проекционных систем матричными фотоприемниками. Изображения световых полос передаются в аналитическое устройство. Для контроля объекта в следующем сечении он перемещается на контрольной позиции. Решение о качестве изделия, с учетом калибровочных данных, принимается в аналитическом устройстве.

Недостатком данного способа является низкая производительность при контроле объектов с большой кривизной формы поверхности, например цилиндрических топливных таблеток для ядерных реакторов. В этом случае, при ограниченном числе оптических каналов, изображение световой полосы в кадрах приемных камер будет занимать много строк и считываемые кадры, следовательно, будут иметь большой объем информации, значительная часть которой, при обнаружении дефектов, будет бесполезной. Большой объем информации потребует много времени на ее передачу и обработку, что будет ограничивать производительность контроля цилиндрических объектов.

Технический результат предлагаемого изобретения заключается в повышении производительности контроля поверхности цилиндрических объектов.

Указанный технический результат достигается тем, что в способе обнаружения поверхностных дефектов цилиндрических объектов, включающем перемещение контролируемого объекта через позициюконтроля, освещение объекта N пучками света, которые формируют на контролируемой поверхности световые полосы, прием изображений полос матричными фотоприемниками, обработку полученных изображений в аналитическом устройстве с учетом данных, полученных при калибровке аналитического устройства, контролируемый объект освещают N пучками света таким образом, что они формируют на поверхности N световых полос, образующих замкнутую по периметру объекта световую полосу и расположенных в одной плоскости, перпендикулярной продольной оси объекта и лежащей под углом α к направлениям освещения. Изображения полос регистрируются N матричными фотоприемниками, оптические оси которых лежат в плоскости световых полос. По отклонениям положения изображений полос от номинального положения в аналитическом устройстве определяются дефекты поверхности и принимается решение о годности объекта по критериям: глубина, длина, площадь дефектов.

Существует вариант, в котором световые полосы на поверхности контролируемого объект формируют с помощью дифракции когерентного света на амплитудных транспарантах.

Существует также вариант, в котором световые полосы на поверхности контролируемого объекта формируют с помощью дифракции когерентного света на фазовых транспарантах.

Существует также вариант, в котором световые полосы на поверхности контролируемого объекта формируют с помощью дифракции когерентного света на амплитудно-фазовых транспарантах.

На фиг. 1 изображено в общем виде (вид сбоку и вид спереди) устройство для реализации предложенного способа обнаружения поверхностных дефектов цилиндрических объектов.

На фиг. 2 представлен ход световых лучей и вид изображения световой полосы 4 для одного оптического канала в кадре матричного фотоприемника 10 при отсутствии дефекта на поверхности топливной таблетки 5.

На фиг. 3 представлен ход световых лучей и вид изображения световой полосы 4 для одного оптического канала в кадре матричного фотоприемника 10 при наличии дефекта на поверхности топливной таблетки 5.

На фиг. 4 приведен вид восстановленной в аналитическом устройстве 3-D развертки боковой поверхности топливной таблетки с дефектом.

На фиг. 5 представлен вид максимального по площади сечения дефекта с обозначением размеров для вычисления площади дефекта.

На фиг. 6 приведено изображение сечения дефекта в виде трещины с обозначением длины дефекта.

На фиг. 7 приведен вид калибра для калибровки устройства на измерение глубины дефектов.

Устройство содержит четыре идентичных оптических канала I-IV (фиг. 1). Каждый оптический канал состоит из осветительной части и приемной части. Осветительная часть включает источник света 1, коллиматор 2, формирователь 3 световой полосы 4 на поверхности контролируемой топливной таблетки 5. Топливные таблетки 5 перемещаются по направляющей 6 с прорезью 7. Приемный канал содержит фотоприемную камеру 8, включающую объектив 9 и матричный фотоприемник 10. Все фотоприемные камеры 8 соединены с аналитическим устройством 11. Световые полосы 4 лежат в одной плоскости, перпендикулярной продольной оси таблетки 5 и расположенной под углом α к направлениям освещения. Оптические оси всех приемных частей лежат в одной плоскости, перпендикулярной продольной оси таблеток 5 и совпадающей с плоскостью световых полос 4.

Способ обнаружения поверхностных дефектов цилиндрических объектов реализуется следующим образом.

Контролируемые топливные таблетки 5 (фиг. 1) перемещаются, например, с помощью толкателя с постоянной скоростью по направляющей 6 через позицию контроля, на которой направляющая 6 имеет разрыв 7, для прохода освещающих лучей света. На позиции контроля на цилиндрической поверхности топливной таблетки 5 с помощью четырех осветительных частей оптических каналов I-IV формируются световые полосы 4, которые образуют замкнутую световую полосу по всему периметру топливной таблетки 5. В каждой осветительной части свет от источника света 1 проходит через коллиматор 2 и формирователь 3 световой полосы, который формирует из света на поверхности топливной таблетки 5 световую полосу 4. Коллиматор 2 образует пучок света с плоским волновым фронтом, освещающий всю рабочую поверхность формирователя 3 световой полосы 4. Все световые полосы 4 создаются формирователями 3 всех четырех осветительных частей оптических каналов I-IV в одной плоскости, перпендикулярной продольной оси топливной таблетки 5 и расположенной под углом α к оптическим осям осветительных частей. Изображения световых полос 4 регистрируются фотоприемными камерами 8 с объективами 9 и матричными фотоприемниками 10. При этом оптические оси всех четырех приемных частей оптических каналов и световые полосы 4 лежат в одной плоскости Р. Кроме того, направление строчной развертки в кадре матричных фотоприемников 10 всех фотоприемных камер 8 параллельны плоскости Ρ световой полосы. Для минимизации количества регистрируемой информации размер кадра фотоприемных камер 8 в направлении строчной развертки ограничен длиной изображения световой полосы 4, а размер кадра в направлении, перпендикулярном строкам матричного фотоприемника 10, ограничивается изображением максимально допустимого дефекта топливной таблетки 5 по глубине. Ход пучка световых лучей от формирователя световой полосы 3 и изображение световой полосы для одного сектора топливной таблетки 5 в кадре матричного фотоприемника 10 в случае отсутствия дефекта приведен на фиг. 2, а в случае наличия дефекта - на фиг. 3. Информация с фотоприемных камер 8 поступает в аналитическое устройство 11. В аналитическом устройстве 11 по результатам сканирования всей топливной таблетки 5 восстанавливается 3-D изображение полной боковой поверхности топливной таблетки 5 (фиг. 4). Из 3-D изображения определяется глубина дефекта h в пикселях как расстояние между плоскостью изображения бездефектной поверхности и вершиной изображения дефекта. Далее вычисляется глубина дефекта H непосредственно на поверхности таблетки 5 по формуле

H=k×h,

где k - коэффициент пропорциональности, определяемый при калибровке устройства.

Площадь дефекта на топливной таблетке 5 определяется через площадь фигуры, которая образуется в сечении изображения дефекта (фиг. 4) по пороговому уровню, превышающему уровень шума в изображении (уровень, близкий к поверхности бездефектной части поверхности топливной таблетки 5). В случае значительного шума в изображении поверхности может быть проведена его низкочастотная фильтрация или другая обработка известными методами, повышающими отношение сигнал/шум. Вычисление площади S дефекта на поверхности топливной таблетки производится по правилам, принятым для приемки топливных таблеток при их контроле, например, по формуле

S=k12×a×b/2,

где k1 - коэффициент пропорциональности, учитывающий размерность и масштаб изображения и определяемый при калибровке устройства;

a, b - размеры фигуры сечения (фиг. 5) в пикселях фотоприемной матрицы 10.

Для узких и длинных дефектов (типа трещина) определяется длина L, например, по правилу, принятому в производстве, в соответствии с фиг. 6, по формуле

L=k1×l,

где l - длина трещины по изображению с фотоприемной матрицы 10 в пикселях.

После определения величин H, S, L их значения сравниваются с предельными значениями, которые хранятся в памяти аналитического устройства. В случае превышения одной из величин допустимых значений, топливная таблетка 5 бракуется.

При калибровке устройства на измерение глубины дефектов может использоваться калибр в виде ступенчатого цилиндра (фиг. 7). В этом случае калибровочный коэффициент k определяется по формуле

k=ΔR/Δr,

где ΔR - изменение радиуса на ступеньке калибра;

Δr - соответствующее изменение положения изображения световой полосы 4 в кадре фотоприемной матрицы 10.

Для калибровки устройства на измерение площади и длины дефектов может использоваться калибр в виде имитатора топливной таблетки с нанесенной, например, методом лазерной гравировки контрастной линией длиной Lк. В этом случае в результате сканирования калибра на восстановленном изображении развертки боковой поверхности получится контрастное изображение линии длиной lк (пикселов). Тогда калибровочный коэффициент k1 определяется по формуле

k1=Lк/lк.

В качестве источника излучения 1 в устройстве, реализующем заявляемый способ обнаружения поверхностных дефектов цилиндрических объектов, может быть использован полупроводниковый лазер.

В качестве фотоприемной камеры 8 может быть использована камера с КМОП матричным фотоприемником, например, камеры КЦ - 360 или КЦ - 1310 (А.В. Белобородов, Д.А. Малофеев, Л.В. Финогенов. Цифровые КМОП камеры для промышленного применения. Датчики и Системы, №8, 2011, с. 49.). В этих камерах можно программно изменять частоту кадров за счет изменения количества строк, что позволяет уменьшить объем лишней информации и увеличить быстродействие устройства.

В качестве объектива 9 для камеры 8 можно использовать комбинацию объектива со специально рассчитанной кривизной поля и стандартного объектива (А.В. Белобородов, Е.В. Власов, П.С. Завьялов, Л.В. Финогенов. Многоканальный высокопроизводительный оптико-электронный контроль качества поверхности топливных таблеток. Автометрия, т. 46, №4, 2010, стр. 121-129).

В качестве формирователя 3 световой полосы 4 может использоваться амплитудный, фазовый или амплитудно-фазовый транспарант (Методы компьютерной оптики. Под ред. В.А. Сойфера. М. Физматлит, 2000, стр. 11-26).

В качестве аналитического устройства может быть использован промышленный компьютер.

Угол α между направлением освещения и плоскостью световых полос определяется исходя из требуемой погрешности измерений геометрических параметров дефектов.

1. Способ обнаружения поверхностных дефектов цилиндрических объектов, заключающийся в том, что контролируемый объект перемещают через позицию контроля поверхности, на позиции контроля освещают N пучками света, которые формируют на контролируемой поверхности N световых полос, образующих замкнутую по периметру объекта световую полосу, расположенную в плоскости, перпендикулярной продольной оси объекта, принимают изображение полос матричными фотоприемниками, полученные с фотоприемников изображения подвергают обработке в аналитическом устройстве с учетом данных, полученных при калибровке, отличающийся тем, что освещение контролируемого объекта производят под углом α к плоскости световых полос, а оптические оси N матричных фотоприемников лежат в плоскости световых полос; по отклонениям положения изображений полос от номинального положения в аналитическом устройстве определяют дефекты поверхности.

2. Способ по п. 1, отличающийся тем, что световые полосы на поверхности контролируемого объекта формируют с помощью дифракции когерентного света на амплитудных транспарантах.

3. Способ по п. 1, отличающийся тем, что световые полосы на поверхности контролируемого объекта формируют с помощью дифракции когерентного света на фазовых транспарантах.

4. Способ по п. 1, отличающийся тем, что световые полосы на поверхности контролируемого объекта формируют с помощью дифракции когерентного света на амплитудно-фазовых транспарантах.



 

Похожие патенты:

Изобретение относится к области ядерной энергетики, к радиационному анализу материалов. Установка для определения выхода летучих веществ из жидкометаллического теплоносителя в газовую среду содержит петлю циркуляции газа, включающую емкость с нагревательными элементами, в нижней части которой расположен теплоноситель, а в верхней - патрубки подвода и отвода газа, холодильник, расходомер и компрессор для прокачки газа.

Изобретение относится к области методов и средств обеспечения радиационной, химической и взрывопожарной безопасности подводных лодок. Способ предаварийного, аварийного и поставарийного контроля источников опасности в герметичных обитаемых объектах заключается в том, что предварительно выполняют описание объекта контроля.

Изобретение относится к диагностике технического состояния систем контроля технологических процессов. Предложен способ проверки работоспособности системы контроля течи трубопровода, который включает воспроизведение системой параметров эталонного имитатора измеряемых системой физических величин, сравнение воспроизведенных параметров с заданными параметрами эталонного имитатора и выработку заключения о работоспособности системы.

Изобретение относится к области обеспечения надежности и безопасности атомных электростанций. Технический результат - возможность осуществления текущей диагностики технического состояния объекта контроля в части оценки целостности металла.

Изобретение относится к области измерения температуры и может быть использовано при контроле качества монтажа термоэлектрических преобразователей на выходе из тепловыделяющих сборок водо-водяных энергетических реакторов.
Изобретение относится к области реакторных измерений и может быть использовано в системах контроля и управления ядерных реакторов. Способ включает размещение детектора, подключенного к счетному каналу реактиметра, в зоне радиоактивного излучения и определение и регулировку показаний проверяемого счетного канала.

Изобретение относится к ядерным реакторам на бегущей волне. Способ определения материалов активной зоны включает определение средней скорости изменения количества материала и потока в ячейке, определение обновленного количества материала в ячейке на основании средней скорости изменения и корректировку обновленного количества материала в ячейке не некое количество.

Изобретение относится к ядерным реакторам деления. Система вентилируемого тепловыделяющего модуля ядерного деления содержит тепловыделяющий элемент ядерного деления, соединенный с ним корпус клапана для помещения газообразных продуктов деления и клапан, предназначенный для управляемой вентиляции газообразных продуктов деления из объема корпуса.

Изобретение относится к устройству контроля ядерных реакторов, которые осуществляют преобразование плотности потока тепловых нейтронов (ППТН) и потока гамма-квантов в выходные электрические сигналы на всех режимах работы реакторной установки.

Изобретение относится к методам испытаний конструкционных материалов при прогнозировании и оценке работоспособности облучаемых корпусов реакторов ВВЭР-1000. В способе прогнозирования ресурсоспособности сталей корпусов реакторов образцы из стали корпуса облучают потоком быстрых нейтронов с высокой плотностью до дозы облучения, соответствующей дозе облучения реального корпуса реактора за отдаленное время, превышающее проектный срок службы.

Изобретение относится к внутриреакторным средствам контроля параметров ядерного реактора. Автономная встроенная внутризонная измерительная сборка в канале для контроля уровней температуры и излучения вокруг сборки ядерного топлива передает выходные сигналы беспроводным способом на удаленный пункт. Внутризонная измерительная сборка в канале активируется кратковременным облучением внутри активной зоны реактора и остается активной после удаления тепловыделяющей сборки из активной зоны реактора. Технический результат – непрерывное обеспечение возможности удаленного контроля без внешнего источника энергии тепловыделяющей сборки, когда она переносится в удаленный пункт или хранится там. 2 н. и 10 з.п. ф-лы, 12 ил.

Изобретение относится к герметизации трещины в стенке бассейна атомной электростанции, а именно способу герметизации шва и мобильному роботу, оснащенному размотчиком клейкой ленты, который содержит головку, прижимающую клейкую ленту к стенке. Для осуществления герметизации шва управляют множеством отсасывающих систем робота, содержащих присоски, причем указанное множество отсасывающих систем содержит первую отсасывающую систему и по меньшей мере вторую отсасывающую систему. При этом размотчик механически интегрирован с первой отсасывающей системой, выполненной с возможностью перемещения относительно второй отсасывающей системы для регулирования положения головки размотчика и клейкой ленты, которую наносят на шов. И управляют перемещением первой отсасывающей системы относительно второй отсасывающей системы. При этом клейкую ленту размотчика наносят на шов при перемещении первой отсасывающей системы относительно второй отсасывающей системы. Изобретение позволяет наклеивать ленту в труднодоступных местах, на острых краях и при этом на протяженных участках. 3 н. и 11 з.п. ф-лы, 8 ил.

Изобретение относится к системе моделирования ядерного реактора. Технический результат заключается в автоматизации моделирования и симуляции ядерного реактора. Система содержит интерфейс моделирования для определения стандартизированных данных моделирования абстрактной модели ядерного реактора, преобразования этих данных в данные моделирования ядерного реактора, определяющие модель ядерного реактора, симулятор, включающий множество модулей симулятора, включающих модуль нейтронного симулятора, модуль симулятора выгорания топлива, модуль термогидравлического симулятора и модуль симулятора характеристик материала, причем симулятор связан с интерфейсом моделирования и сконфигурирован для генерирования данных симуляции для интерфейса моделирования, причем интерфейс моделирования сконфигурирован для избирательной и итерационной посылки данных моделирования ядерного реактора в выбранные модули симулятора для формирования данных симуляции ядерного реактора, приема данных симуляции ядерного реактора, анализа и обновления данных моделирования и данных симуляции для их сохранения, стандартизации обновленных данных моделирования ядерного реактора, базу данных, связанную с интерфейсом моделирования и сконфигурированную для приема стандартизированных данных. 28 з.п. ф-лы, 40 ил., 3 табл.

Изобретение относится к способу контроля герметичности оболочек твэлов отработавших тепловыделяющих сборок (ОТВС) транспортных ядерных энергетических установок. В заявленном способе ОТВС помещают в герметичный пенал, заполненный газовым теплоносителем, нагревают пенал с ОТВС и прокачивают газовый теплоноситель с отходящими из ОТВС радиоактивными газами и парами остаточной влаги по замкнутому циркуляционному контуру последовательно через аэрозольный фильтр, селективный к йоду фильтр, барботер, заполненный раствором щелочи, и измерительную камеру. Отделяют радионуклиды 137Cs на аэрозольном фильтре, 129I - на селективном фильтре, 14С и остатки 129I - в щелочном растворе барботера. Далее проводят бета-радиометрические измерения 85Kr в газовом теплоносителе, сравнивают измеренные значения активности радионуклидов 85Kr с установленными критериями отбраковки дефектных твэлов отработавших тепловыделяющих сборок и определяют герметичность оболочек твэлов ОТВС. Техническим результатом является повышение точности определения объемной бета-активности 85Kr в газовом теплоносителе нагретой ОТВС. 2 з.п. ф-лы, 1 ил., 4 табл., 2 пр.

Изобретение относится к способу контроля графитовой кладки реактора РБМК. В заявленном способе осуществляют обследование выборочного числа ячеек реактора путем измерения в них величины стрелы прогиба канала, сравнивают ее с предельно-допустимым значением и принимают решения о продолжении эксплуатации реактора. На стадии эксплуатации, соответствующей ускоренному формоизменению кладки, проводят обследование ячеек, расположенных по правилу внутри кольца (19-21)-го рядов, а также внутри кольца (13-15)-го рядов от центра реактора. По полученным данным выявляют местоположение областей ячеек с наибольшими величинами стрелы прогиба. Проводят обследование ячеек этих областей, после чего определяют срок до проведения следующего обследования или до останова реактора на ремонт. При этом обеспечивают выполнение правила, состоящего в том, чтобы любой луч, проведенный из центра реактора, пересекал хотя бы одну обследуемую ячейку в каждом из колец. Техническим результатом является повышение своевременности и точности идентификация ячейки с максимальной величиной стрелы прогиба при одновременном сокращении числа обследуемых ячеек. 3 з.п. ф-лы, 1 ил.

Изобретение относится к области хранения ядерного топлива, к способам определения и контроля подкритичности бассейнов выдержки. Способ контроля подкритичности отработавшего ядерного топлива заключается в создании расчетной модели хранилища и определении фрагмента хранилища с максимальными размножающими свойствами, численно решая условно-критическое уравнение. Для центра tизм выделенного интервала выполняют расчетное моделирование. Определяют расстояние r0 между источником и детектором, при котором минимальное значение декремента затухания равно асимптотическому значению декремента затухания α0. По минимуму данной зависимости определяют экспериментальное значение α0. Подкритичность контролируют по количественному значению реактивности ρ. Изобретение позволяет повысить ядерную безопасность бассейнов выдержки путем повышения достоверности контроля подкритичности за счет прямого измерения асимптотического значения декремента затухания и определения количественного значения величины реактивности. 6 з.п. ф-лы, 8 ил.

Изобретение относится к атомной энергетике и может быть использовано при изготовлении тепловыделяющих элементов (твэлов). Способ измерения концентрации гелия в твэле включает подачу твэла в установку на позицию измерения. Проводят локальный импульсный нагрев участка оболочки твэла, измерение временных температурных зависимостей и определяют концентрации гелия в твэле. Перед подачей контролируемого твэла в установку измеряют температуру воздуха в установке, после размещения твэла на позицию измерения измеряют температуру оболочки твэла, измеряют временные температурные зависимости стандартных образцов, измерения проводят при всех сочетаниях допускаемых нижних и верхних значений температуры воздуха в установке и температуры оболочки твэла. Из совокупности результатов измерений со стандартными образцами и контролируемым твэлом определяют концентрацию гелия по соответствующей формуле. Изобретение позволяет повысить качество изготовления твэлов за счет возможности реализовать сплошной контроль содержания гелия в твэлах. 1 ил.
Изобретение относится к методам испытаний конструкционных материалов, преимущественно для прогнозирования ресурсоспособности сталей, работающих в зонах нейтронного облучения объектов атомной техники. Способ определения сдвига критической температуры хрупкости сталей включает изготовление образцов, определение их твердости в исходном состоянии и после облучения быстрыми нейтронами, определение сдвига температуры хрупко-вязкого перехода, причем изготавливают образцы стали с переменной концентрацией одного из компонентов по одному из габаритов образца, их макротвердость в точках с одинаковой концентрацией изменяемого компонента определяют методом Бринелля, а сдвиг температуры хрупко-вязкого перехода ΔТк для каждой точки определяют по формуле: ΔТк=А+В(ΔНВ)2, где ΔНВ=НВОБ-НВИ, НВОБ - твердость стали после облучения, МПа, НВИ - твердость стали в исходном состоянии, МПа, А=100°C, В=0,00012°C/(МПа)2. Изобретение позволяет снизить трудоемкость и время определения сдвига критической температуры хрупкости при разработке сталей для корпусов реакторов типа ВВЭР. 5 з.п. ф-лы.

Изобретение относится к устройствам для контроля внешнего вида цилиндрических изделий и, в частности, может быть использовано в производстве ядерного топлива. Устройство для обнаружения дефектов на образующей поверхности цилиндрических изделий содержит последовательно установленные на транспортерах узел формирования столба изделия, узел линейного перемещения изделий, узел контроля образующих изделий и узел разбраковки изделий. Узел формирования столба изделий содержит блок упоров и отсекатель, в состав каждого входят по два пневмоцилиндра. Узел линейного перемещения изделий содержит раму, с помощью которой осуществляется перемещение столба изделий на валы осмотра. Узел контроля образующих изделий содержит средство для формирования излучения видимого спектра, средство освещения контролируемых изделий, средство регистрации и передачи изображения в аналитическое устройство и связанное с ним средство сдува бракованных изделий. Узел разбраковки изделий содержит средство сдува бракованных изделий, с помощью которого забракованное изделие сбрасывается в емкость для брака. Изобретение позволяет синхронизировать вращение изделий и средство для формирования излучения видимого спектра. 8 з.п. ф-лы, 2 ил.

Группа изобретений относится к ядерной технике, в частности к обращению с отработавшим ядерным топливом (ОЯТ). Защитная пробка гнезда хранения пеналов с ОЯТ включает корпус, образованный верхним и нижним дисками и обечайкой, заполненный бетоном. В корпусе пробки установлена ступенчатая проходка, примыкающая к обечайке своей нижней частью, снабженная резьбовым штуцером с накидной гайкой. В ступенчатой проходке размещен с возможностью извлечения из нее ступенчатый защитный стержень, между ступенями которых установлено уплотнительное кольцо. Также имеется термодатчик. Термодатчик содержит термоэлектрические преобразователи с керамической изоляцией проводников, заключенные в трубки с теплоприемниками, установленными в их нижней части. Верхние части трубок размещены в ступенчатом защитном кожухе, выполненном с возможностью его установки в проходку защитной пробки вместо ступенчатого защитного стержня. Нижние части трубок смещены относительно верхних на величину половины кольцевого зазора между стенками пенала и корпуса гнезда. Расстояние между теплоприемниками в свободном состоянии трубок превышает ширину кольцевого зазора. Группа изобретений позволяет измерить температуру наружной стенки пенала и гнезда в сухом хранилище. 2 н. и 3 з.п. ф-лы, 4 ил.
Наверх