Система гашения спектра акустических шумов



Система гашения спектра акустических шумов
Система гашения спектра акустических шумов
Система гашения спектра акустических шумов

 


Владельцы патента RU 2604174:

федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" (RU)

Предложена система гашения спектра акустических шумов. Она включает последовательно расположенные на стенке канала акустический излучатель, резонансную ячейку Гельмгольца с резонансной частотой, равной частоте акустического излучателя, и датчик акустического давления у выхода из канала, связанный с акустическим излучателем обратной связью. При этом в качестве акустического излучателя использован активный моночастотный пьезоизлучатель с неизменной частотой излучения, а датчик акустического давления предназначен для управления амплитудой излучения пьезоизлучателя для различных спектров шумов. 3 з.п.-ф-лы, 4 ил.

 

Изобретение относится к области авиастроения, а именно к звукопоглощающим (шумоизолирующим) системам, гасящим звуковые колебания (шум), создаваемые газовыми потоками и их нагнетателями, и предназначено для использования в области авиакосмической техники, транспортной техники, радиотехнике и строительстве, в частности при изготовлении проточных трактов современных авиационных турбореактивных двигателей.

Известна система активного шумоподавления с ультразвуковым излучателем, состоящая из микрофона, аналого-цифрового преобразователя, устройства обработки полученного сигнала, цифроаналогового преобразователя, ультразвукового излучателя, генератора высокочастотного излучения со смесителем, широкополосного усилителя, акустического фильтра. При этом генератор и смеситель расположены между устройством обработки сигнала и цифроаналоговым преобразователем, а усилитель мощности своим входом соединен с выходом цифроаналогового преобразователя, выход усилителя соединен с пьезоэлектрическим преобразователем, выход преобразователя соединен с входом акустического фильтра (патент RU №2545462, 24.06.2013).

Недостатком известной системы является сложность ее конструкции, обусловленная сложностью ее создания, функционирования, управляющего алгоритма и настройки входящих в нее элементов.

Наиболее близкой системой того же назначения к изобретению по совокупности признаков является система управляемых реактивных дипольного и монопольного резонаторов (резонансных ячеек) для поглощения монохромного шума в узком волноводе, выполненная в виде последовательно (по направлению распространения шума) расположенных на стенке канала дипольного и монопольного резонаторов с одинаковыми собственными частотами и с установкой дополнительных датчиков давления для организации обратной связи с целью управления собственной частотой резонаторов и расширения частотного диапазона (рабочей полосы) поглощения монохромных шумов. Конструктивно дипольный резонатор представляет собой короткую трубку, закрытую с одного конца упругой мембраной и открытую с другого конца, монопольный резонатор - полый цилиндр с отверстием (ячейка Гельмгольца) (Канев Н.Г. Пассивные и активные резонаторы для локальных систем гашения звука, автореф. дис. - М., 2006). Данная система принята за прототип.

Признаки прототипа, совпадающие с существенными признаками изобретения: наличие последовательно расположенных на стенке канала акустического излучателя, резонансной ячейки Гельмгольца с резонансной частотой, равной частоте акустического излучателя, и датчика акустического давления у выхода из канала, связанного с акустическим излучателем обратной связью.

Недостатком известной системы, принятой за прототип, является сравнительно низкий эффект гашения широкополосного шума, обусловленный неэффективностью работы дипольного и монопольного резонаторов из-за наличия нерезонансных гармоник в спектре шума.

Задачей изобретения является повышение эффективности снижения шума с широкополосным спектром частот при упрощении конструкции системы.

Поставленная задача была решена за счет того, что в известной системе гашения спектра акустических шумов, включающей последовательно расположенные на стенке канала акустический излучатель, резонансную ячейку Гельмгольца с резонансной частотой, равной частоте акустического излучателя, и датчик акустического давления у выхода из канала, связанный с акустическим излучателем обратной связью, согласно изобретению в качестве акустического излучателя использован активный моночастотный пьезоизлучатель с неизменной частотой излучения, а датчик акустического давления предназначен для управления амплитудой излучения пьезоизлучателя для различных спектров шумов.

Целесообразно выполнение резонансной ячейки Гельмгольца в форме усеченного кругового конуса, обращенного меньшим основанием к каналу и соединенного со стенкой канала цилиндрической горловиной.

Целесообразно наличие входа у пьезоизлучателя, выполненного в форме усеченного кругового конуса, обращенного большим основанием к каналу.

Целесообразно превышение значений частот пьезоизлучателя над значениями частот шумовых гармоник в десять и более раз.

Признаки заявляемого технического решения, отличительные от прототипа - в качестве акустического излучателя использован пьезоизлучатель с неизменной частотой; датчик акустического давления предназначен для управления амплитудой излучения пьезоизлучателя для различных спектров шумов; резонансная ячейка Гельмгольца выполнена в форме усеченного кругового конуса, обращенного меньшим основанием к каналу и соединенного со стенкой канала цилиндрической горловиной; пьезоизлучатель имеет вход, выполненный в форме усеченного кругового конуса, обращенного большим основанием к каналу; значения частот пьезоизлучателя превышают значения частот шумовых гармоник в десять и более раз.

Использование в качестве акустического излучателя активного моночастотного пьезоизлучателя с неизменной частотой излучения позволяет создать акустический экран в поперечном сечении канала, что препятствует распространению по каналу всего широкого спектра гармоник, составляющих шум.

Наличие датчика акустического давления на выходе из канала, предназначенного для управления амплитудой излучения пьезоизлучателя для различных спектров шумов, позволяет обеспечить эффективный режим шумоглушения.

Выполнение ячейки Гельмгольца в форме усеченного кругового конуса, обращенного меньшим основанием к каналу и соединенного со стенкой канала цилиндрической горловиной, позволяет эффективно преобразовывать потенциальную энергию сжатия воздуха в объеме ячейки в кинетическую энергию акустического излучения, что приводит к эффективному гашению излучения пьезоизлучателя.

Наличие у пьезоизлучателя входа, выполненного в форме усеченного кругового конуса, обращенного большим основанием к каналу, позволяет обеспечить узконаправленное излучение, что способствует повышению эффективности снижения шума с широкополосным спектром частот.

Экспериментально установлено, что наибольший эффект экранирования достигается при значениях частот пьезоизлучателя, в десять и более раз превышающих значения частот шумовых гармоник.

Заявителю не известно использование в науке и технике отличительных признаков системы с получением указанного технического результата.

Предлагаемая система гашения акустических шумов иллюстрируется фиг. 1-4.

На фиг. 1 изображена схема расположений входа в канал спектра акустических шумов.

На фиг. 2 показана зависимость коэффициента звукопоглощения в канале (transmission loss) k от частоты ω звука на входе в канал для случая равных частот пьезоизлучателя, резонансной частоты ячейки и шума.

На фиг. 3 представлена зависимость акустических давлений заданного шума на входе pin от времени t для случая различных частот пьезоизлучателя, резонансной частоты ячейки и шума.

На фиг. 4 представлена зависимость акустических давлений измеренного шума на выходе pout из канала от времени t для случая различных частот пьзоизлучателя, резонансной частоты ячейки и шума.

Адаптивная система гашения спектра акустических шумов (фиг. 1) содержит последовательно расположенные на стенке канала моночастотный пьезоизлучатель 1, резонансную ячейку Гельмгольца 2 с резонансной частотой, равной частоте пьезоизлучателя 1, и датчик акустического давления 3 у выхода из канала. Датчик акустического давления 3 на выходе из канала связан с пьезоизлучателем 1 обратной связью (на чертеже показана стрелкой) и предназначен для управления амплитудой излучения пьезоизлучателя 1 для различных спектров шумов. Ячейка Гельмгольца 2 может быть выполнена в форме усеченного кругового конуса, обращенного меньшим основанием к каналу и соединенного со стенкой канала цилиндрической горловиной. Пьезоизлучатель 1 может иметь вход, выполненный в форме усеченного кругового конуса, обращенного большим основанием к каналу.

Геометрические параметры конической резонансной ячейки Гельмгольца: высота, диаметр горловины и конусность камеры определяются из условия, чтобы резонансная частота ячейки, зависящая от этих параметров, была равна заданной частоте активного пьезоизлучателя.

Принцип действия разработанной активной адаптивной системы гашения широкополосного спектра акустических шумов состоит в создании поперечного акустического барьера моночастотным пьезоизлучателем, препятствующего распространению широкополосной акустической волны (шума) вдоль канала; расположенная далее резонансная ячейка Гельмгольца настроена на частоту пьезоизлучателя и эффективно гасит его излучение (экран); датчик акустического давления на выходе из канала служит для организации обратной связи с пьезоизлучателем с целью оптимизации или адаптации для различных спектров шумов значения амплитуды давления в пьезоизлучателе для максимального падения акустического давления на выходе из канала.

Предлагаемая система имеет простую конструкцию и позволяет повысить эффективность снижения шума с широкополосным спектром частот до значения коэффициента звукопоглощения в канале, равного 85 дБ. Этот технический результат установлен экспериментально при моделировании системы.

На фиг. 2 показаны результаты эксперимента - зависимость коэффициента звукопоглощения в канале (transmission loss) k от частоты ω шума на входе в канал для случая равных частот пьезоизлучателя, резонансной частоты ячейки и шума 201 рад/с, амплитуды давлений шума на входе в канал 10 кПа, излучателя 600 кПа.

Полученные результаты эксперимента (фиг. 2) показали, что использование заявленной системы повысило эффективность снижения шума с широкополосным спектром частот, увеличив коэффициент звукопоглощения в канале до 85 дБ.

На фиг. 3 и 4 представлены зависимости акустических давлений заданного шума на входе pin (фиг. 3) и измеренного на выходе pοut (фиг. 4) из канала от времени t для случая различных частот пьезоизлучателя, резонансной частоты ячейки 201 рад/с и шума 20 рад/с, амплитуды давлений шума на входе в канал 10 кПа, излучателя 0.25 кПа.

Результаты моделирования (фиг. 3 и 4) показали, что превышение частоты пьезоизлучателя в 10 раз над частотой шума позволило увеличить шумопоглощение и значительно уменьшить амплитуду давления на излучателе до 0.25 кПа.

Таким образом, предложена уникальная активная адаптивная система гашения широкополосного спектра акустических шумов, которая значительно увеличивает коэффициент звукопоглощения в широкополосном диапазоне частот благодаря системе двух акустических моночастотных экранов от пьезоизлучателя и от резонансной ячейки Гельмгольца. Первый (активный) экран перекрывает распространение всего широкополосного спектра акустических шумов, второй (реактивный резонансный) экран обусловлен действием на ячейку Гельмгольца присутствующих в ее окрестности лишь акустических волн монохромного первого экрана и эффективно, в силу совпадения резонансной частоты ячейки с частотой экрана пьезоизлучателя, нейтрализует его распространение к выходу канала; адаптация значения амплитуды давления в пьезоизлучателе для различных спектров шумов происходит на основе обратной связи пьезоизлучателя с величиной падения акустического давления на выходе из канала.

1. Система гашения спектра акустических шумов, включающая последовательно расположенные на стенке канала акустический излучатель, резонансную ячейку Гельмгольца с резонансной частотой, равной частоте акустического излучателя, и датчик акустического давления у выхода из канала, связанный с акустическим излучателем обратной связью, отличающаяся тем, что в качестве акустического излучателя использован активный моночастотный пьезоизлучатель с неизменной частотой излучения, а датчик акустического давления предназначен для управления амплитудой излучения пьезоизлучателя для различных спектров шумов.

2. Система по п. 1, отличающаяся тем, что резонансная ячейка Гельмгольца выполнена в форме усеченного кругового конуса, обращенного меньшим основанием к каналу и соединенного со стенкой канала цилиндрической горловиной.

3. Система по п. 1, отличающаяся тем, что пьезоизлучатель имеет вход, выполненный в форме усеченного кругового конуса, обращенного большим основанием к каналу.

4. Система по п. 1, отличающаяся тем, что значения частот пьезоизлучателя превышают значения частот шумовых гармоник в десять и более раз.



 

Похожие патенты:
Изобретение относится к пригодному, например, в качестве промежуточного слоя в многослойном безопасном стекле пленочному многослойному материалу, который можно применять для получения системы стекло/пленочный многослойный материал/стекло для автомобилей, самолетов, кораблей, остекления зданий, конструктивных элементов фасадов или для получения фотоэлектрических модулей.

Группа изобретений относится к области транспортного машиностроения. Узлы прохода звукоизолирующей панели изготовлены в пластине из упругого эластичного материала с проходящими через ее фигурные отверстия длинномерными изделиями.

Изобретение относится к соединению между собой секций акустической сотовой конструкции, с образованием сращенной акустической сотовой конструкции, и может быть применено для сшивания искривленных секций акустической сотовой конструкции с образованием гондол двигателя и других акустических ослабляющих колебания структур.

Изобретение относится к вибрационному демпфирующему материалу для использования в связанной демпфирующей системе и к демпфирующему изделию со связанным слоем, применяемому в автомобилях для глушения шума.

Изобретение относится к промышленной акустике, в частности к широкополосному шумоглушению. Штучный звукопоглотитель состоит из перфорированного каркаса, заполненного звукопоглощающим материалом, помещенным в защитную оболочку.

Изобретение относится к промышленной акустике. Звукопоглощающая облицовка выполнена в виде жесткой и перфорированной стенок, между которыми расположен многослойный звукопоглощающий элемент, выполненный в виде двух слоев, один из которых, прилегающий к жесткой стенке, является звукопоглощающим, а другой, прилегающий к перфорированной стенке, выполнен из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны.

Изобретение относится к промышленной акустике и может быть использовано для снижения шума привода машин, облицовки производственных помещений и в других звукопоглощающих конструкциях.

Изобретение относится к средствам снижения шума на промышленных и транспортных объектах. Штучный сферический звукопоглотитель содержит звукопоглотители активного и реактивного типов, размещенные на жестком каркасе.

Изобретение относится к промышленной акустике и может быть использовано для снижения шума привода машин, облицовки производственных помещений. Звукопоглощающая конструкция выполнена в виде симметрично расположенных перфорированных стенок, между которыми расположен звукопоглощающий элемент, выполненный в виде трех слоев: центрального слоя из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, и симметрично прилегающих к нему звукопоглощающих слоев из материалов разной плотности.

Изобретение относится к средствам безопасности работы операторов в условиях чрезвычайных ситуаций, в частности при повышенных уровнях шума. Устройство акустической защиты оператора содержит рабочее место оператора, оснащенное средствами снижения шума.
Наверх