Система гашения спектра акустических шумов

Предложена система гашения спектра акустических шумов. Она включает последовательно расположенные на стенке канала акустический излучатель, резонансную ячейку Гельмгольца с резонансной частотой, равной частоте акустического излучателя, и датчик акустического давления у выхода из канала, связанный с акустическим излучателем обратной связью. При этом в качестве акустического излучателя использован активный моночастотный пьезоизлучатель с неизменной частотой излучения, а датчик акустического давления предназначен для управления амплитудой излучения пьезоизлучателя для различных спектров шумов. 3 з.п.-ф-лы, 4 ил.

 

Изобретение относится к области авиастроения, а именно к звукопоглощающим (шумоизолирующим) системам, гасящим звуковые колебания (шум), создаваемые газовыми потоками и их нагнетателями, и предназначено для использования в области авиакосмической техники, транспортной техники, радиотехнике и строительстве, в частности при изготовлении проточных трактов современных авиационных турбореактивных двигателей.

Известна система активного шумоподавления с ультразвуковым излучателем, состоящая из микрофона, аналого-цифрового преобразователя, устройства обработки полученного сигнала, цифроаналогового преобразователя, ультразвукового излучателя, генератора высокочастотного излучения со смесителем, широкополосного усилителя, акустического фильтра. При этом генератор и смеситель расположены между устройством обработки сигнала и цифроаналоговым преобразователем, а усилитель мощности своим входом соединен с выходом цифроаналогового преобразователя, выход усилителя соединен с пьезоэлектрическим преобразователем, выход преобразователя соединен с входом акустического фильтра (патент RU №2545462, 24.06.2013).

Недостатком известной системы является сложность ее конструкции, обусловленная сложностью ее создания, функционирования, управляющего алгоритма и настройки входящих в нее элементов.

Наиболее близкой системой того же назначения к изобретению по совокупности признаков является система управляемых реактивных дипольного и монопольного резонаторов (резонансных ячеек) для поглощения монохромного шума в узком волноводе, выполненная в виде последовательно (по направлению распространения шума) расположенных на стенке канала дипольного и монопольного резонаторов с одинаковыми собственными частотами и с установкой дополнительных датчиков давления для организации обратной связи с целью управления собственной частотой резонаторов и расширения частотного диапазона (рабочей полосы) поглощения монохромных шумов. Конструктивно дипольный резонатор представляет собой короткую трубку, закрытую с одного конца упругой мембраной и открытую с другого конца, монопольный резонатор - полый цилиндр с отверстием (ячейка Гельмгольца) (Канев Н.Г. Пассивные и активные резонаторы для локальных систем гашения звука, автореф. дис. - М., 2006). Данная система принята за прототип.

Признаки прототипа, совпадающие с существенными признаками изобретения: наличие последовательно расположенных на стенке канала акустического излучателя, резонансной ячейки Гельмгольца с резонансной частотой, равной частоте акустического излучателя, и датчика акустического давления у выхода из канала, связанного с акустическим излучателем обратной связью.

Недостатком известной системы, принятой за прототип, является сравнительно низкий эффект гашения широкополосного шума, обусловленный неэффективностью работы дипольного и монопольного резонаторов из-за наличия нерезонансных гармоник в спектре шума.

Задачей изобретения является повышение эффективности снижения шума с широкополосным спектром частот при упрощении конструкции системы.

Поставленная задача была решена за счет того, что в известной системе гашения спектра акустических шумов, включающей последовательно расположенные на стенке канала акустический излучатель, резонансную ячейку Гельмгольца с резонансной частотой, равной частоте акустического излучателя, и датчик акустического давления у выхода из канала, связанный с акустическим излучателем обратной связью, согласно изобретению в качестве акустического излучателя использован активный моночастотный пьезоизлучатель с неизменной частотой излучения, а датчик акустического давления предназначен для управления амплитудой излучения пьезоизлучателя для различных спектров шумов.

Целесообразно выполнение резонансной ячейки Гельмгольца в форме усеченного кругового конуса, обращенного меньшим основанием к каналу и соединенного со стенкой канала цилиндрической горловиной.

Целесообразно наличие входа у пьезоизлучателя, выполненного в форме усеченного кругового конуса, обращенного большим основанием к каналу.

Целесообразно превышение значений частот пьезоизлучателя над значениями частот шумовых гармоник в десять и более раз.

Признаки заявляемого технического решения, отличительные от прототипа - в качестве акустического излучателя использован пьезоизлучатель с неизменной частотой; датчик акустического давления предназначен для управления амплитудой излучения пьезоизлучателя для различных спектров шумов; резонансная ячейка Гельмгольца выполнена в форме усеченного кругового конуса, обращенного меньшим основанием к каналу и соединенного со стенкой канала цилиндрической горловиной; пьезоизлучатель имеет вход, выполненный в форме усеченного кругового конуса, обращенного большим основанием к каналу; значения частот пьезоизлучателя превышают значения частот шумовых гармоник в десять и более раз.

Использование в качестве акустического излучателя активного моночастотного пьезоизлучателя с неизменной частотой излучения позволяет создать акустический экран в поперечном сечении канала, что препятствует распространению по каналу всего широкого спектра гармоник, составляющих шум.

Наличие датчика акустического давления на выходе из канала, предназначенного для управления амплитудой излучения пьезоизлучателя для различных спектров шумов, позволяет обеспечить эффективный режим шумоглушения.

Выполнение ячейки Гельмгольца в форме усеченного кругового конуса, обращенного меньшим основанием к каналу и соединенного со стенкой канала цилиндрической горловиной, позволяет эффективно преобразовывать потенциальную энергию сжатия воздуха в объеме ячейки в кинетическую энергию акустического излучения, что приводит к эффективному гашению излучения пьезоизлучателя.

Наличие у пьезоизлучателя входа, выполненного в форме усеченного кругового конуса, обращенного большим основанием к каналу, позволяет обеспечить узконаправленное излучение, что способствует повышению эффективности снижения шума с широкополосным спектром частот.

Экспериментально установлено, что наибольший эффект экранирования достигается при значениях частот пьезоизлучателя, в десять и более раз превышающих значения частот шумовых гармоник.

Заявителю не известно использование в науке и технике отличительных признаков системы с получением указанного технического результата.

Предлагаемая система гашения акустических шумов иллюстрируется фиг. 1-4.

На фиг. 1 изображена схема расположений входа в канал спектра акустических шумов.

На фиг. 2 показана зависимость коэффициента звукопоглощения в канале (transmission loss) k от частоты ω звука на входе в канал для случая равных частот пьезоизлучателя, резонансной частоты ячейки и шума.

На фиг. 3 представлена зависимость акустических давлений заданного шума на входе pin от времени t для случая различных частот пьезоизлучателя, резонансной частоты ячейки и шума.

На фиг. 4 представлена зависимость акустических давлений измеренного шума на выходе pout из канала от времени t для случая различных частот пьзоизлучателя, резонансной частоты ячейки и шума.

Адаптивная система гашения спектра акустических шумов (фиг. 1) содержит последовательно расположенные на стенке канала моночастотный пьезоизлучатель 1, резонансную ячейку Гельмгольца 2 с резонансной частотой, равной частоте пьезоизлучателя 1, и датчик акустического давления 3 у выхода из канала. Датчик акустического давления 3 на выходе из канала связан с пьезоизлучателем 1 обратной связью (на чертеже показана стрелкой) и предназначен для управления амплитудой излучения пьезоизлучателя 1 для различных спектров шумов. Ячейка Гельмгольца 2 может быть выполнена в форме усеченного кругового конуса, обращенного меньшим основанием к каналу и соединенного со стенкой канала цилиндрической горловиной. Пьезоизлучатель 1 может иметь вход, выполненный в форме усеченного кругового конуса, обращенного большим основанием к каналу.

Геометрические параметры конической резонансной ячейки Гельмгольца: высота, диаметр горловины и конусность камеры определяются из условия, чтобы резонансная частота ячейки, зависящая от этих параметров, была равна заданной частоте активного пьезоизлучателя.

Принцип действия разработанной активной адаптивной системы гашения широкополосного спектра акустических шумов состоит в создании поперечного акустического барьера моночастотным пьезоизлучателем, препятствующего распространению широкополосной акустической волны (шума) вдоль канала; расположенная далее резонансная ячейка Гельмгольца настроена на частоту пьезоизлучателя и эффективно гасит его излучение (экран); датчик акустического давления на выходе из канала служит для организации обратной связи с пьезоизлучателем с целью оптимизации или адаптации для различных спектров шумов значения амплитуды давления в пьезоизлучателе для максимального падения акустического давления на выходе из канала.

Предлагаемая система имеет простую конструкцию и позволяет повысить эффективность снижения шума с широкополосным спектром частот до значения коэффициента звукопоглощения в канале, равного 85 дБ. Этот технический результат установлен экспериментально при моделировании системы.

На фиг. 2 показаны результаты эксперимента - зависимость коэффициента звукопоглощения в канале (transmission loss) k от частоты ω шума на входе в канал для случая равных частот пьезоизлучателя, резонансной частоты ячейки и шума 201 рад/с, амплитуды давлений шума на входе в канал 10 кПа, излучателя 600 кПа.

Полученные результаты эксперимента (фиг. 2) показали, что использование заявленной системы повысило эффективность снижения шума с широкополосным спектром частот, увеличив коэффициент звукопоглощения в канале до 85 дБ.

На фиг. 3 и 4 представлены зависимости акустических давлений заданного шума на входе pin (фиг. 3) и измеренного на выходе pοut (фиг. 4) из канала от времени t для случая различных частот пьезоизлучателя, резонансной частоты ячейки 201 рад/с и шума 20 рад/с, амплитуды давлений шума на входе в канал 10 кПа, излучателя 0.25 кПа.

Результаты моделирования (фиг. 3 и 4) показали, что превышение частоты пьезоизлучателя в 10 раз над частотой шума позволило увеличить шумопоглощение и значительно уменьшить амплитуду давления на излучателе до 0.25 кПа.

Таким образом, предложена уникальная активная адаптивная система гашения широкополосного спектра акустических шумов, которая значительно увеличивает коэффициент звукопоглощения в широкополосном диапазоне частот благодаря системе двух акустических моночастотных экранов от пьезоизлучателя и от резонансной ячейки Гельмгольца. Первый (активный) экран перекрывает распространение всего широкополосного спектра акустических шумов, второй (реактивный резонансный) экран обусловлен действием на ячейку Гельмгольца присутствующих в ее окрестности лишь акустических волн монохромного первого экрана и эффективно, в силу совпадения резонансной частоты ячейки с частотой экрана пьезоизлучателя, нейтрализует его распространение к выходу канала; адаптация значения амплитуды давления в пьезоизлучателе для различных спектров шумов происходит на основе обратной связи пьезоизлучателя с величиной падения акустического давления на выходе из канала.

1. Система гашения спектра акустических шумов, включающая последовательно расположенные на стенке канала акустический излучатель, резонансную ячейку Гельмгольца с резонансной частотой, равной частоте акустического излучателя, и датчик акустического давления у выхода из канала, связанный с акустическим излучателем обратной связью, отличающаяся тем, что в качестве акустического излучателя использован активный моночастотный пьезоизлучатель с неизменной частотой излучения, а датчик акустического давления предназначен для управления амплитудой излучения пьезоизлучателя для различных спектров шумов.

2. Система по п. 1, отличающаяся тем, что резонансная ячейка Гельмгольца выполнена в форме усеченного кругового конуса, обращенного меньшим основанием к каналу и соединенного со стенкой канала цилиндрической горловиной.

3. Система по п. 1, отличающаяся тем, что пьезоизлучатель имеет вход, выполненный в форме усеченного кругового конуса, обращенного большим основанием к каналу.

4. Система по п. 1, отличающаяся тем, что значения частот пьезоизлучателя превышают значения частот шумовых гармоник в десять и более раз.



 

Похожие патенты:
Изобретение относится к пригодному, например, в качестве промежуточного слоя в многослойном безопасном стекле пленочному многослойному материалу, который можно применять для получения системы стекло/пленочный многослойный материал/стекло для автомобилей, самолетов, кораблей, остекления зданий, конструктивных элементов фасадов или для получения фотоэлектрических модулей.

Группа изобретений относится к области транспортного машиностроения. Узлы прохода звукоизолирующей панели изготовлены в пластине из упругого эластичного материала с проходящими через ее фигурные отверстия длинномерными изделиями.

Изобретение относится к соединению между собой секций акустической сотовой конструкции, с образованием сращенной акустической сотовой конструкции, и может быть применено для сшивания искривленных секций акустической сотовой конструкции с образованием гондол двигателя и других акустических ослабляющих колебания структур.

Изобретение относится к вибрационному демпфирующему материалу для использования в связанной демпфирующей системе и к демпфирующему изделию со связанным слоем, применяемому в автомобилях для глушения шума.

Изобретение относится к промышленной акустике, в частности к широкополосному шумоглушению. Штучный звукопоглотитель состоит из перфорированного каркаса, заполненного звукопоглощающим материалом, помещенным в защитную оболочку.

Изобретение относится к промышленной акустике. Звукопоглощающая облицовка выполнена в виде жесткой и перфорированной стенок, между которыми расположен многослойный звукопоглощающий элемент, выполненный в виде двух слоев, один из которых, прилегающий к жесткой стенке, является звукопоглощающим, а другой, прилегающий к перфорированной стенке, выполнен из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны.

Изобретение относится к промышленной акустике и может быть использовано для снижения шума привода машин, облицовки производственных помещений и в других звукопоглощающих конструкциях.

Изобретение относится к средствам снижения шума на промышленных и транспортных объектах. Штучный сферический звукопоглотитель содержит звукопоглотители активного и реактивного типов, размещенные на жестком каркасе.

Изобретение относится к промышленной акустике и может быть использовано для снижения шума привода машин, облицовки производственных помещений. Звукопоглощающая конструкция выполнена в виде симметрично расположенных перфорированных стенок, между которыми расположен звукопоглощающий элемент, выполненный в виде трех слоев: центрального слоя из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, и симметрично прилегающих к нему звукопоглощающих слоев из материалов разной плотности.

Изобретение относится к средствам безопасности работы операторов в условиях чрезвычайных ситуаций, в частности при повышенных уровнях шума. Устройство акустической защиты оператора содержит рабочее место оператора, оснащенное средствами снижения шума.

Изобретение относится к области транспортного машиностроения. Система звукоизоляции для автотранспортного средства содержит упругий и пористый базовый буферный слой и воздухонепроницаемый промежуточный изолирующий слой. Базовый буферный слой предназначен для расположения напротив поверхности автотранспортного средства. Непроницаемый промежуточный изолирующий слой располагается на базовом буферном слое. Непроницаемый промежуточный слой имеет поверхностную плотность ниже 500 г/м2, в частности в пределах от 50 г/м2 до 400 г/м2. Система звукоизоляции содержит жесткий пористый слой, входящий в контакт с непроницаемым промежуточным слоем и имеющий толщину, меньшую толщины базового буферного слоя. Жесткий пористый слой имеет жесткость при изгибе, приведенную к унитарной ширине, превышающую 0,01 Н.м. Достигается улучшение звукоизоляции транспортного средства и уменьшение массы звукоизолирующей системы. 13 з.п. ф-лы, 7 ил.

Изобретение относится к промышленной акустике, а именно к стеновой шумопоглощающей панели. Стеновая шумопоглощающая панель содержит гладкую и перфорированную поверхности, между которыми размещен комбинированный звукопоглощающий слой сложной формы. Последний представляет собой чередование сплошных участков и пустотелых участков. Каркас выполнен из жесткого звукопоглощающего материала. Пустотелые участки образованы призматическими поверхностями, имеющими в сечении, параллельном плоскости чертежа, форму параллелограмма, внутренние поверхности которого имеют зубчатую структуру. При этом вершины зубьев обращены внутрь призматических поверхностей. Ребра призматических поверхностей закреплены соответственно на гладкой и перфорированной поверхностях. Полости, образованные гладкой и перфорированной поверхностями, между которыми расположен комбинированный звукопоглощающий слой сложной формы, заполнены мягким звукопоглощающим материалом из минеральной ваты на базальтовой основе. Внутренняя поверхность перфорированной поверхности, обращенная в сторону звукопоглощающего материала, облицована акустически прозрачным материалом, например стеклотканью. Полости пустотелых участков, образованные призматическими поверхностями, заполнены вспененным полиэтиленом или полипропиленом. Повышает эффективность шумоглушения и надежность конструкции в целом. 1 ил.
Изобретение относится к многослойным звукопоглощающим отделочным материалам и касается звукопоглощающего настенного покрытия. Включает: (a) опорный слой, изготовленный из нетканого материала на основе органических волокон, имеющих многолепестковое поперечное сечение, (b) поверхностный слой, изготовленный из стеклотекстильного материала, у которого статическое сопротивление воздушному потоку, измеряемое согласно стандарту ISO 9053, составляет от 105 Н⋅с⋅м-4 до 106 Н⋅с⋅м-4, (c) прерывистый адгезионный слой, у которого поверхностная плотность составляет от 17 до 60 г/м2, на границе раздела между опорным слоем (a) и поверхностным слоем (b). Изобретение также относится к способу изготовления такого покрытия и к использованию такого покрытия для улучшения акустического комфорта помещения или строения. Изобретение обеспечивает создание настенного покрытия, обеспечивающего акустический комфорт, т.е уменьшение и оптимизацию отраженного компонента звука. 4 н. и 12 з.п. ф-лы, 1 пр.
Изобретение относится к многослойным отделолочным звукопоглощающим материалам и касается звукопоглощающего настенного покрытия. Включает: (a) опорный слой, изготовленный из органического полимерного пеноматериала, у которого открытая пористость составляет от 0,50 до 0,995, (b) поверхностный слой, изготовленный из стеклотекстильного материала, у которого статическое сопротивление воздушному потоку, измеряемое согласно стандарту ISO 9053, составляет от 105 Н•с•м-4 до 106 Н•с•м-4 и (c) прерывистый адгезионный слой, у которого поверхностная плотность составляет от 17 до 60 г/м2, на границе раздела между опорным слоем (a) и поверхностным слоем (b). Изобретение также относится к способу изготовления такого покрытия и к использованию такого покрытия для улучшения акустического комфорта помещения или строения. Изобретение обеспечивает создание настенного покрытия, обеспечивающего акустический комфорт, т.е уменьшение и оптимизацию отраженного компонента звука. 4 н. и 9 з.п. ф-лы, 1 табл., 8 пр.

Изобретение относится к промышленной акустике, а именно к многослойным комбинированным акустическим конструкциям. Содержит гладкую и перфорированную поверхности, между которыми размещена комбинированная конструкция сложной формы. Последняя представляет чередование звукопоглощающих сплошных участков и пустотелых участков, заполненных звукопоглощающим материалом. Сплошные участки образованы гладкими призматическими поверхностями, расположенными перпендикулярно гладкой и перфорированной поверхностям и закреплены к гладкой поверхности, а также двумя связанными с ними и наклонными, относительно гладких призматических поверхностей, поверхностями сложной формы. Последние имеют с одной стороны гладкую поверхность, а с другой стороны зубчатую поверхность. Вершины зубьев или выступов обращены внутрь этих поверхностей, а сами поверхности закреплены на перфорированной поверхности. К гладкой поверхности прикреплены шумопоглощающие рельефные элементы: звукопоглощающие элементы, выполненные в виде тетраэдров, которые чередуются с резонансными элементами, выполненными в виде конусов с резонансными втулками. Внешние поверхности резонансных элементов покрыты звукопоглощающими коническими оболочками. В качестве материала резонансных элементов, выполненных в виде конусов, применен жесткий звукоотражающий материал на основе алюминесодержащих сплавов. Повышение эффективности шумоглушения и надежности конструкции в целом. 1 ил.

Изобретение относится к промышленной акустике. Звукопоглощающая конструкция кольцевого типа выполнена в виде двух перфорированных стенок, между которыми расположен многослойный звукопоглощающий элемент. Конструкция в осевом сечении выполнена в виде кольца, стенки которого выполнены двухслойными. Слой, прилегающий к одной из стенок, выполнен звукопоглощающим, а прилегающий к другой перфорированной стенке выполнен из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны. Каждая из перфорированных стенок имеет следующие параметры перфорации: диаметр отверстий - 3÷7 мм, процент перфорации 10%÷15%. По форме отверстия могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля. В случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности. В качестве звукопоглощающего материала используются плиты из минеральной ваты на базальтовой основе типа «Rockwool», или минеральной ваты типа «URSA», или базальтовой ваты типа П-75, или стекловаты с облицовкой стекловойлоком. Звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «повиден». Изобретение позволяет повысить эффективность шумоглушения и надежность конструкции в целом. 3 з.п. ф-лы, 1 ил.

Изобретение относится к промышленной акустике. Звукопоглощающая конструкция выполнена в виде двух перфорированных стенок, между которыми расположен многослойный звукопоглощающий элемент. Многослойный звукопоглощающий элемент выполнен двухслойным. Слой, прилегающий к одной из стенок, выполнен звукопоглощающим, а прилегающий к другой перфорированной стенке слой выполнен из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны. Каждая из перфорированных стенок имеет следующие параметры перфорации: диаметр отверстий 3÷7 мм, процент перфорации 10÷15%. По форме отверстия могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля. В случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности. В качестве звукопоглощающего материала используются плиты из минеральной ваты на базальтовой основе типа «Rockwool», или минеральной ваты типа «URSA», или базальтовой ваты типа П-75, или стекловаты с облицовкой стекловойлоком. Звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «Повиден». Изобретение позволяет повысить эффективность шумоглушения и надежность конструкции в целом. 3 з.п. ф-лы, 1 ил.

Изобретение относится к промышленной акустике и может быть использовано для снижения шума привода машин, облицовки производственных помещений и в других звукопоглощающих конструкциях. Звукопоглощающий элемент содержит гладкую и перфорированную поверхности, между которыми размещена многослойная комбинированная конструкция. Последняя выполнена сложной формы и представляет собой чередование звукопоглощающих сплошных участков и пустотелых участков, заполненных звукопоглощающим материалом. Сплошные участки образованы гладкими призматическими поверхностями, расположенными перпендикулярно гладкой и перфорированной поверхностям и закрепленными к гладкой поверхности, а также двумя, связанными с ними и наклонными, относительно гладких призматических поверхностей, поверхностями сложной формы. Последние имеют с одной стороны гладкую поверхность, а с другой стороны зубчатую. Вершины зубьев обращены внутрь этих поверхностей, а сами поверхности закреплены на перфорированной поверхности. При этом к гладкой поверхности прикреплены звукопоглощающие и резонансные рельефные элементы. Звукопоглощающие элементы выполнены в виде тетраэдров, которые чередуются с резонансными элементами, выполненными в виде конусов с резонансными втулками, и внешние поверхности которых покрыты звукопоглощающими коническими оболочками. Повышает эффективность шумоглушения и надежность конструкции в целом. 1 ил.

Изобретение относится к промышленной акустике, а именно к шумопоглощающим панелям. Панель включает корпус и расположенную в его внутренней полости шумопоглощающую вставку. Корпус выполнен в виде прямоугольного параллелепипеда, образованного перфорированной передней и сплошной задней стенками панели. Каждая панель имеет П-образную форму с боковыми ребрами, причем на передней стенке имеется щелевая перфорация. Последняя выполнена в виде прямоугольников и расположена рядами с шириной рядов b1 и b2 и расстоянием между ними h1 и h2. Смежные ряды расположены со смещением. Количество щелей в одном ряду четное, а в другом – нечетное. Коэффициент перфорации принимается равным или более 0,25. Стенки панели фиксируются между собой вибродемпфирующими крышками. Крышки выполнены П-образной формы с ячейками, заполненными вибродемпфирующей мастикой для соединения панелей. Шумопоглощающая вставка выполнена в виде сплошной жесткой стенки из жесткого вибродемпфирующего материала и перфорированной стенки из сетчатого полимерного материала. Между ними расположен двухслойный комбинированный звукопоглощающий элемент. Слой, прилегающий к жесткой стенке, выполнен звукопоглощающим. Слой, прилегающий к перфорированной стенке, выполнен из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны. При этом звукопоглощающий слой помещен в акустически прозрачный материал, например стеклоткань, или нетканый материал, например «лутрасил». Изобретение повышает эффективность шумопоглощения за счет расширения частотного диапазона, а также упрощает монтаж, улучшает эксплуатационные свойства. 1 з.п. ф-лы, 2 ил.

Изобретение относится к медицинской технике и может быть использовано для аускультации. Комбинированный приемник для регистрации дыхательных звуков на поверхности грудной клетки представляет собой корпус (10) с внутренней массивной накладкой (9), стетоскопическую насадку (11), имеющую с внешней стороны дна плоскую поверхность, и два датчика. Первый датчик выполнен в виде микрофона (1), установлен на массивной накладке (9) над горловиной стетоскопической насадки (11) и жестко соединен с массивной накладкой (9) через упругую прокладку (12). Второй датчик выполнен в виде кольцевого изгибного биморфного пьезопреобразователя (2-4) с центральным отверстием. Внутренняя кромка второго датчика скреплена по периметру с верхней частью стетоскопической насадки (11) с обеспечением сообщения внутренней полости стетоскопической насадки (11) с микрофоном (1). Внешняя кромка второго датчика прикреплена по периметру к массивной накладке (9). Достигается повышение отношения сигнал/помеха на выходе приемника, что обеспечивает повышение помехозащищенности приемника и увеличение достоверности диагностической информации. 1 ил.
Наверх