Стенд для испытаний торцовых уплотнений валов циркуляционных насосов



Стенд для испытаний торцовых уплотнений валов циркуляционных насосов
Стенд для испытаний торцовых уплотнений валов циркуляционных насосов

 


Владельцы патента RU 2604778:

Акционерное общество "Опытное Конструкторское Бюро Машиностроения имени И.И. Африкантова" (АО "ОКБМ Африкантов") (RU)

Изобретение относится к области машиностроения, в частности к стендам для испытаний торцовых уплотнений валов циркуляционных насосов. Стенд для испытаний торцовых уплотнений валов циркуляционных насосов содержит постамент с силовым корпусом. В корпусе размещен вертикально на двух опорах вал. На валу стенда закреплена втулка-имитатор вала насоса. Торцовое уплотнение насоса установлено на втулку-имитатор и силовой корпус. Электродвигатель расположен в нижней части стенда и соединен с валом стенда через муфту и с силовым корпусом через станину. Силовой корпус снабжен шахтой, в которой установлены опоры вала. В верхней части силового корпуса и вала установлено щелевое уплотнение, состоящее из выгородки и отражателя, торцовое уплотнение оперто на втулку-имитатор через регулировочное кольцо. Между электродвигателем и валом через регулировочное кольцо размещена гибкая муфта, а силовой корпус установлен на постаменте через систему клиновых шайб. Изобретение направлено на повышение качества проводимых испытаний торцовых уплотнений и повышение надежности работы стенда. 1 ил.

 

Изобретение относится к области машиностроения, в частности к стендам для испытаний торцовых уплотнений валов циркуляционных насосов.

Известен стенд для испытаний торцовых уплотнений валов циркуляционных насосов, содержащий постамент с горизонтально расположенным на нем на подшипниковых опорах валом, при этом к валу через муфту подсоединены испытываемое торцовое уплотнение и приводной электродвигатель (см., например, А.И. Голубев, Торцовые уплотнения вращающихся валов, Москва, Машиностроение, 1974 год, стр. 177-178).

Такая конструкция стенда обеспечивает испытание торцовых уплотнений валов горизонтально расположенных циркуляционных насосов, однако если циркуляционный насос и торцовое уплотнение расположены вертикально, то такой стенд не обеспечивает полностью представительности проводимых испытаний, поскольку вес деталей торцовых уплотнений существенно влияет на характеристики работы уплотнения.

Известен стенд для испытаний торцовых уплотнений валов циркуляционных насосов, содержащий постамент с вертикально расположенным на нем на подшипниковых опорах валом, при этом к валу через муфту подсоединены испытываемое торцовое уплотнение и приводной электродвигатель, расположенный сверху (см., например, А.И. Голубев, Торцовые уплотнения вращающихся валов, Москва, Машиностроение, 1974 год, стр. 181-182).

Даная конструкция стенда обеспечивает представительность испытаний вертикальных насосов, однако ввиду того, что приводной электродвигатель расположен сверху, значительно усложняется демонтаж торцового уплотнения для его замены, ревизии и т.д.

Известен стенд для испытаний торцовых уплотнений валов циркуляционных насосов, содержащий постамент с силовым корпусом и установленным в него вертикально на трех опорах валом, при этом на валу установлена втулка-имитатор вала циркуляционного насоса, испытуемое торцовое уплотнение циркуляционного насоса установлено на втулку-имитатор и на силовой корпус, электродвигатель, соединенный с основным валом через муфту и с силовым корпусом через станину, расположен в нижней части стенда (см., например, патент Китая № CN 101649833, МПК F04B 51/00, опубликован 17.02.2010).

Такая конструкция обеспечивает более доступный монтаж-демонтаж испытуемого торцового уплотнения, однако имеет ряд недостатков.

Во-первых, все части стенда (постамент, силовой корпус, уплотнение) соединены между собой жестко и без регулировок, что может привести к перекосам при монтаже, к нарушению гидравлических нагрузок на испытуемом уплотнении и искажению результатов испытаний.

Во-вторых, поскольку не предусмотрен отвод протечек от испытуемого уплотнения, то это может привести к заливанию нижерасположенных подшипников и электродвигателя и вывести его из строя.

В-третьих, установка третьего подшипника проблематична без замера истинных размеров, что может привести к его перегреву и выходу из строя.

Технический результат предлагаемого изобретения заключается в устранении указанных недостатков, в частности в повышении качества проводимых испытаний торцовых уплотнений и повышении надежности работы стенда.

Указанный технический результат достигается тем, что в известном стенде для испытаний торцовых уплотнений валов циркуляционных насосов, содержащем постамент с силовым корпусом с размещенным в нем вертикально на двух опорах валом, втулку-имитатор вала насоса, закрепленную на валу стенда, торцовое уплотнение насоса, установленное на втулку-имитатор и силовой корпус, а также электродвигатель, расположенный в нижней части стенда и соединенный с валом стенда через муфту и с силовым корпусом через станину, силовой корпус снабжен шахтой, в которой установлены опоры вала, в верхней части силового корпуса и вала установлено щелевое уплотнение, состоящее из выгородки и отражателя, торцовое уплотнение оперто на втулку-имитатор через регулировочное кольцо, между электродвигателем и валом через регулировочное кольцо размещена гибкая муфта, а силовой корпус установлен на постаменте через систему клиновых шайб.

Предлагаемое изобретение поясняется чертежом, на котором изображен продольный разрез предлагаемого стенда.

Стенд для испытаний торцовых уплотнений валов циркуляционных насосов содержит постамент 1 и силовой корпус 2. В силовом корпусе 2 закреплен вал 3 на двух опорах, выполненных в виде подшипников качения 4 и 5, которые зафиксированы в шахте 6, занимающей центр силового корпуса 2. На валу 3 установлена втулка-имитатор 7 вала насоса. Торцовое уплотнение 8 опирается на втулку-имитатор 7 через регулировочное кольцо 9. Торцовое уплотнение 8 нижней частью сопряжено с силовым корпусом 2. В верхней части силового корпуса 2 и вала 3 размещено щелевое уплотнение 10, которое состоит из выгородки 11, установленной в корпусе 2, и отражателя 12, зафиксированного на валу 3. Электродвигатель 13 закреплен на станине 14, которая соединена с нижней частью силового корпуса 2. Вал 3 соединен с валом 15 электродвигателя 13 гибкой муфтой 16 через регулировочное кольцо 17. В верхней части силового корпуса 2 выполнено радиальное отверстие 18.

Силовой корпус 2 установлен на постамент 1 через систему клиновых шайб 19. Уплотнение вала 8 снабжено встроенным холодильником 20. Для подачи запирающей жидкости уплотнение 8 имеет отверстие 21. Для слива протечек из нижней и верхней ступеней уплотнения 8 в нем предусмотрены отверстия 22 и 23. Уплотнение 8 крепится к валу гайкой 24. Верхняя часть уплотнения закрыта прозрачным колпаком 25.

Предложенная конструкция работает следующим образом.

Сборка стенда осуществляется с силового корпуса 2, в шахту 6 которого устанавливается вал 3 с щелевым уплотнением 10 на двух подшипниках 4 и 5. Затем устанавливается станина 14, гибкая муфта 16 и электродвигатель 13 после замера истинного размера гибкой муфты 16 и подрезки регулировочного кольца 17. Таким способом гибкая муфта 16 установлена на вал 15 без перекосов и напряжений. Вся сборка силовой корпус 2 и электродвигатель 13 кантуется и устанавливается на постамент 1 через систему сдвоенных, или повернутых скосами друг другу, клиновых шайб 19. Регулировка клиновых шайб 19 позволяет выставить силовой корпус 2 в горизонт с высокой точностью. Втулка-имитатор 7 устанавливается на вал 3. По истинному размеру, заданному в уплотнении 8, подрезается кольцо 9 и ставится на втулку-имитатор 7, на которую опирается вращающаяся часть уплотнения 8, а нижний торец уплотнения 8 совпадает с верхним торцом силового корпуса 2. Такое положение уплотнения 8 исключает воздействие частей стенда на него. Уплотнение 8 крепится гайкой 24 и накрывается прозрачным колпаком 25 для наблюдения за процессом накопления и предотвращения разбрызгивания протечек.

После присоединения обслуживающих систем, источников питания и подачи в уплотнение 8 запирающей среды в отверстие 21 стенд готов к работе.

При вращении уплотнение 8 работает без нагрузок за счет установки на подрезанное кольцо 9. Выделяемое уплотнением 8 тепло снимается встроенным в него холодильником 20. Протечки запирающей среды сливаются через отверстия 22 и 23. На случай возникновения аварийной ситуации, связанной с увеличением протечек из нижней ступени в силовом корпусе, предусмотрено отверстие 18. Рабочая часть силового корпуса 2 защищена щелевым уплотнением 10, отражатель 12 которого отражает аварийные протечки при вращении, а выгородка 11 защищает шахту 6 при остановленном стенде. В защищенной шахте 6 подшипники 4 и 5 длительно работают на консистентной смазке. При этом полностью исключается попадание аварийных протечек на гибкую муфту 16 и электродвигатель 13.

Гибкая муфта 16, установленная на валы 3 и 15 за счет подрезки регулировочного кольца 17, находится без дополнительных нагрузок. Установленная таким образом гибкая муфта имеет более больший ресурс, а присоединяемая к ней антенна передает электромагнитный сигнал на приемное устройство.

Собранный таким образом стенд работает безаварийно и надежно неограниченное время.

Стенд для испытаний торцовых уплотнений валов циркуляционных насосов, содержащий постамент, силовой корпус, размещенный вертикально на двух опорах вал, причем на валу закреплена втулка-имитатор вала насоса, торцовое уплотнение насоса, установленное на втулку-имитатор и силовой корпус, а также электродвигатель, расположенный в нижней части стенда и соединенный через муфту с валом и через станину с силовым корпусом, отличающийся тем, что силовой корпус снабжен шахтой, в которой установлены опоры вала, в верхней части силового корпуса и вала установлено щелевое уплотнение, состоящее из выгородки и отражателя, торцовое уплотнение оперто на втулку-имитатор через регулировочное кольцо, между электродвигателем и валом через регулировочное кольцо размещена гибкая муфта, а силовой корпус установлен на постаменте через систему клиновых шайб.



 

Похожие патенты:

Изобретение относится к устройствам для поиска мест негерметичности изделий. Сущность: устройство включает контрольную течь (1) с линейной шкалой (7) и течеискатель (10) со щупом (9).

Изобретение относится к области эксплуатации технологических трубопроводов нефтеперекачивающих станций. В способе гидравлических переиспытаний действующих технологических трубопроводов трубопроводы, работающие под давлением, периодически нагружают повышенным давлением воды и проводят наблюдения за отсутствием течи и/или разрывов металла и отсутствием падения давления ниже установленных пределов.

Настоящее изобретение относится к обнаружению утечек, в частности к обнаружению утечек текучей среды в шланге. Заявленная группа изобретений содержит чувствительное устройство, обнаруживающее утечку, для секции шланга, секцию шланга и систему обнаружения утечек.

Изобретение относится к определению герметичности посредством давления и может быть использовано для создания испытательного давления для шланга. Устройство для создания испытательного давления для шланга включает первую пару нажимных/приводящих роликов, между которыми может быть помещен шланг, и вторую пару нажимных/приводящих роликов, между которыми может быть помещен шланг.

Изобретение относится к области испытания устройств на герметичность и может быть использовано для испытания закрытых контейнеров, заполненных потребительским продуктом.

Изобретение относится к устройствам-течеискателям. Сущность: устройство содержит щуп (10), соединенный посредством шланга (11) через дроссель (D2) с вакуумным насосом (16), и датчик тестового газа (15).

Изобретение относится к области исследований устройств на герметичность и может быть использовано для контроля герметичности емкостей, изготовленных из двухслойных оболочек, например, топливных емкостей летательных аппаратов.

Изобретение относится к области испытаний ракетно-космической техники и может быть использовано для контроля герметичности корпуса космического аппарата и поиска места течи из отсеков космического аппарата на этапах наземной подготовки и в условиях орбитального полета.

Изобретение относится к области испытательной техники и может найти применение в тех ее областях, где предъявляются повышенные требования к герметичности, долговечности и надежности изделий, например трубопроводов, замкнутых отсеков космических кораблей.

Изобретение относится к химическому реактору, в котором предусмотрена возможность выявления наличия теплообменников с механическими повреждениями и к способу выявления поврежденных теплообменников.

Группа изобретений относится к насосостроению, а именно узлу герметизации вала вертикального насоса двустороннего всасывания. Насос содержит узел корпуса, вал и интегральный механический торцевой уплотнитель сильфонного типа.

Изобретение относится к насосостроению и может быть использовано для насосов, перекачивающих жидкости, в том числе взрывопожарные среды с присутствием абразивных механических примесей.

Торцевая крышка (200) компрессора для обеспечения теплового барьера вблизи механического уплотнения содержит внутреннюю торцевую крышку (210) и наружную торцевую крышку (220).

Группа изобретений относится к системе сухого газового уплотнения в компрессорах. Уплотнительное устройство содержит первое, второе и третье сухие газовые уплотнения, расположенные последовательно.

Изобретение относится к механическому уплотнению, в частности для использования в гидравлических насосах. .

Изобретение относится к роторным механизмам и, в частности, к системе уплотнения контактной поверхности между вращающейся и неподвижной частями. .

Изобретение относится к области механики и, в частности, центробежным консольным моноблочным насосам с мокрым ротором. .

Изобретение относится к области уплотнительной техники и может быть использовано для уплотнения валов центробежных насосов, в частности водяных насосов дизелей тепловозов.

Группа изобретений относится к испытаниям газосепараторов, обеспечивающих работу погружных нефтяных насосов в условиях повышенного газосодержания. Способ испытаний газосепараторов включает нагнетание жидкости и газа в затрубное пространство модели обсадной колонны, формирование рабочей жидкости в виде газожидкостной смеси, разделение газожидкостной смеси с помощью испытуемого газосепаратора на дегазированную жидкость и свободный газ.
Наверх