Частота дискретизации динамической регистрации для компьютерной томографической визуализации перфузии (стр)

Группа изобретений относится к медицинской технике, а именно к системам компьютерной визуализации перфузии. Система содержит компьютерный томографический сканер, пульт, который управляет сканером на основании протокола сканирования, средство оценки данных, которое определяет, указывает ли уровень контраста в данных изображения, по существу, отсутствие контраста, накопление контраста или вымывание контраста, и пульт управляет сканером. Способ визуализации перфузии заключается в получении данных с первой частотой дискретизации до определения накопления контраста и получение данных со второй частотой дискретизации, которая больше, чем первая частота дискретизации, во время накопления контраста. Использование изобретений позволяет снизить накопление дозы облучения. 2 н. и 7 з.п. ф-лы, 3 ил.

 

Следующее в целом относится к визуализации перфузии и описано в приложении к компьютерной томографической перфузии (CTP) и, в частности, к использованию частоты дискретизации динамической регистрации применительно к CTP сканированию.

Компьютерная томографическая перфузия (CTP) представляет собой способ медицинской визуализации, который используют для диагностики, определения характеристик повреждений и потенциально влияет на уход за пациентом, а также при определении результатов терапии. В целом, CTP сканирование показывает прохождение введенного контрастного вещества через сосудистую ткань, такую как сосуды и органы. Внутривенный болюс контрастного вещества вводят пациенту и выполняют сканирование пациента. Контрастное вещество вызывает временное повышение рентгеновской плотности по мере того, как контрастное вещество проходит через сосудистую ткань. Сканирование включает в себя получение данных во множестве интервалов, покрывающих поступление, накопление и вымывание контрастного вещества через сосудистую структуру, представляющую интерес.

Анализ получаемых данных можно использовать для того, чтобы определять состояние перфузии сосудистой ткани, представляющей интерес, основываясь на наблюдениях за динамикой контрастного вещества в поле обзора сканирования. Такой анализ может включать в себя определение различной информации, соответствующей перфузии, такой как кривая зависимости ослабления от времени, течение крови, объем крови, среднее время прохождения и время до пика. Эту информацию можно использовать для того, чтобы идентифицировать ишемизированную ткань и/или дифференцировать необратимо поврежденную ткань (некротизированную ткань, или ишемическое ядро) и потенциально обратимо поврежденную ткань (ткань под угрозой, или область «ишемической полутени»).

К сожалению, пациент подвергается излучению не только во время периода накопления и вымывания контрастного вещества, но также до накопления, чтобы установить значение базового уровня и обнаружить поступление и вымывание относительно значения базового уровня. Кроме того, типично исследование включает повторные сканирования одного и того же местоположения с предварительно определенными интервалами в течение определенного периода времени, чтобы наблюдать накопление и вымывание контраста и, таким образом, такие сканирования считаются имеющими высокую дозу и не очень хорошо подходящими для скрининга и/или обычной клинической практики. Вдобавок, пациентам, которые типично нуждаются в таких исследованиях, также требуется несколько КТ исследований при последующем наблюдении, которые увеличивают накопленную дозу облучения. Кроме того, простое снижение общей частоты дискретизации может потенциально негативно сказаться на упомянутых выше количественных измерениях перфузии.

Аспекты настоящей заявки направлены на упомянутые выше и другие проблемы.

По одному из аспектов, способ включает в себя динамическое изменение частоты дискретизации регистрации данных между, по меньшей мере, двумя различными частотами дискретизации регистрации данных во время сканирования перфузии с увеличенным контрастом, основываясь на уровне контраста в данных изображения, генерируемых во время сканирования.

По другому аспекту, система включает в себя компьютерный томографический сканер и пульт, с которого управляют сканером, основываясь на протоколе сканирования, где пульт динамически изменяет частоту дискретизации регистрации данных при сканированиях во время сканирования перфузии с увеличенным контрастом, основываясь на уровне контраста в данных изображения, генерируемых во время сканирования.

По другому аспекту, способ оптимизации дозы сканирования включает в себя снижение частоты дискретизации регистрации данных во время, по меньшей мере, подпорции сканирования, в которой не сканируют состояние, представляющее интерес.

По другому аспекту, способ визуализации перфузии включает в себя получение данных с первой частотой дискретизации до тех пор, пока не будет определено накопление контраста, и получение данных со второй частотой дискретизации, которая больше, чем первая частота дискретизации, во время накопления контраста.

Изобретение может принимать форму различных компонентов и компоновок компонентов, а также различных этапов и компоновок этапов. Чертежи приведены только с целью иллюстрирования предпочтительных вариантов осуществления и их не следует толковать в качестве ограничения изобретения.

На фиг. 1 проиллюстрирована система визуализации.

На фиг. 2 представлен пример графика накопления и вымывания контраста.

На фиг. 3 проиллюстрирован способ.

На фиг. 1 проиллюстрирована система визуализации, такая как компьютерный томографический (CT) сканер 100. Сканер 100 включает в себя стационарный гентри 102 и поворотный гентри 104, который поддерживается стационарным гентри 102 с возможностью вращения. Поворотный гентри 104 вращается вокруг области 106 исследования вдоль продольной оси или оси z 108. Опора 116 пациента, такая как кушетка, поддерживает пациента в области 106 исследования и является перемещаемой вдоль оси z 108 согласованно с вращением поворотного гентри 104 для того, чтобы содействовать спиральной, осевой или другим желаемым траекториям сканирования.

Источник 110 излучения, такой как рентгеновская трубка, поддерживается поворотным гентри 104 и вращается вместе с ним вокруг области 106 исследования. Источник 110 излучения испускает в целом веерное, клинообразное или коническое излучение, которое пересекает область 106 исследования. Чувствительная к излучению детекторная матрица 112 обнаруживает фотоны, испускаемые источником 110 излучения, которые пересекают область 106 исследования и генерируют проекционные данные, отражающие обнаруживаемое излучение.

Инжектор 118 выполнен с возможностью инъецировать или вводить материал, такой как одно или несколько контрастных веществ объекту (например, фантом) или субъекту, такому как пациент человек или животное, подлежащему сканированию. Контрастное вещество можно дополнительно или альтернативно вводить вручную с помощью практикующего врача или тому подобного. Когда контрастное вещество вводят вручную, инжектор 118 может быть опущен. Средство 114 реконструкции реконструирует проекционные данные и генерирует данные объемного изображения, указывающие на область 106 исследования.

Средство 126 оценки данных оценивает проекционные данные и/или данные реконструированного изображения. В проиллюстрированном варианте осуществления, и как описано более подробно ниже, средство 126 оценки данных оценивает проекционные данные и/или данные изображения и определяет присутствие и/или степень контрастного вещества в интересующей ткани, представленной в проекционных данных и/или данных изображения, и генерирует сигнал, отражающий их.

Вычислительная система общего назначения выполняет функцию пульта 120 оператора. Программное обеспечение, расположенное на пульте 120, позволяет оператору управлять работой системы 100, например, посредством предоставления оператору возможности выбирать протокол сканирования, такой как протокол 124 динамического сканирования перфузии из памяти 122 и т.д. Средство 126 оценки данных может представлять собой часть пульта 120 и/или другой вычислительной системы, включая компьютер.

В одном случае пульт 120, когда исполняют протокол 124 динамического сканирования перфузии, динамически корректирует частоту дискретизации регистрации данных при сканировании, основываясь на сигнале от средства 126 оценки данных. Например, в контексте сканирования с увеличенным контрастом, пульт 120 может снижать частоту дискретизации регистрации данных, когда сканируют до того, как контраст достигнет ткани, представляющие интерес, и затем увеличивать частоту дискретизации регистрации данных, когда сканируют ткани, представляющие интерес, по мере прохождения контрастом тканей, представляющих интерес.

Такое управление допускает снижение общей дозы при сохранении заданной частоты дискретизации регистрации данных во время накопления и/или вымывания. Кроме того, такое управление допускает сохранение заданной дозы при повышении частоты дискретизации регистрации данных во время накопления и/или вымывания. Кроме того, такое управление допускает оптимизацию длины сканирования согласно заданной дозе.

На фиг. 2 проиллюстрирован пример кривой 200 накопления и вымывания контраста. На фиг. 2 ось y 202 представляет количество контраста в заданном местоположении ткани, представляющей интерес, и ось x 204 представляет время. В этом примере количество контраста в заданном местоположении можно определять, основываясь на значениях в единицах Хаунсфилда (HU) для вокселей, представляющих заданное местоположение в данных изображения, соответствующих заданному местоположению ткани, представляющей интерес.

В этом примере, в области 206, после введения контраста, но до того, как контраст достиг заданного местоположения в ткани, представляющей интерес, значение вокселя ниже предварительно определяемого порогового значения (TH) 208, представляя достаточное присутствие контраста в заданном местоположении в ткани, представляющей интерес. Значения в единицах Хаунсфилда (HU) в этой области представляет значение базового уровня. Несмотря на то, что часть кривой 200 в области 206 показана в виде прямой линии, часть может колебаться в связи с течением крови, перемещениями и т.д.

В этом примере в момент времени (Tнакопления) 210, значение вокселя соответствует порогу 208, что указывает на достаточное присутствие контраста в заданном местоположении в ткани, представляющей интерес. В области 212 значение вокселя продолжает расти, что указывает на накопление контраста. В момент времени (Tпика) 214, значение вокселя достигает пикового значения в HU. В области 216 значение вокселя снижается, что указывает на вымывание контраста.

Следует принимать во внимание, что для заданной частоты дискретизации, выходную мощность источника излучения можно избирательно снижать или повышать во время сканирования, основываясь на предпочтении пользователя, настройках умолчанию и т.д.

На фиг. 3 проиллюстрирован способ динамической корректировки частоты для частоты дискретизации регистрации данных во время CTP сканирования применительно к кривой 200 накопления контраста на фиг. 2.

На этапе 302 контрастное вещество вводят субъекту.

На этапе 304 осуществляют сканирование субъекта с первой частотой дискретизации регистрации данных. Первую частоту дискретизации регистрации данных можно задавать, основываясь на протоколе сканирования (например, протоколе 124 динамического сканирования перфузии), или вручную, с помощью оператора системы. В одном случае первая частота дискретизации регистрации данных является переменной и растет с течением времени или по мере приближения к предварительно определяемой типичной точке накопления, тем самым облегчая идентификацию точки накопления. В качестве примера сканирование можно начинать с дискретизации с первой частотой дискретизации в течение первого периода времени, с более высокой частотой дискретизации в течение следующего периода времени, и затем с еще более высокой частотой дискретизации до тех пор, пока не обнаруживают накопление. Другие модели вариации частоты дискретизации также предусмотрены в настоящем документе.

На этапе 306 проекционные данные и/или данные изображения оценивают для того, чтобы определять, достигнут ли пороговый уровень контраста в заданном местоположении в ткани, представляющей интерес. Как рассмотрено в настоящем документе, этого можно достичь посредством слежения за значением в единицах Хаунсфилда. Пороговый уровень можно задавать, основываясь на протоколе сканирования или вручную с помощью оператора системы.

На этапе 308 в ответ на достижение уровнем контраста порогового уровня частоту дискретизации регистрации данных увеличивают до второй частоты дискретизации регистрации данных, которая в целом выше, чем первая частота дискретизации регистрации данных. Вторую частоту дискретизации регистрации данных можно задавать, основываясь на протоколе сканирования или вручную с помощью оператора системы. Длительность дискретизации также можно увеличивать наряду с увеличением частоты дискретизации, что может способствовать поддержанию или даже снижению общей дозы сканирования, но предоставлять дополнительные данные изображения в течение важного периода.

На этапе 310 проекционные данные и/или данные изображения оценивают для того, чтобы определять достигнут ли пиковый уровень или уровень вымывания контраста в заданном местоположении в ткани, представляющей интерес. Этого также можно достичь посредством отслеживания значения в единицах Хаунсфилда. Уровень вымывания можно задавать, основываясь на протоколе сканирования или вручную с помощью оператора системы.

На этапе 312 в ответ на достижение уровнем контраста пикового уровня, частоту дискретизации регистрации данных можно, в некоторый предварительно определяемый момент времени после этого, поддерживать, снижать до первой частоты дискретизации регистрации данных или снижать до третьей частоты дискретизации регистрации данных, которая находится между первой и второй частотами дискретизации регистрации данных. Третью частоту дискретизации регистрации данных можно задавать, основываясь на протоколе сканирования или вручную с помощью оператора системы. В другом случае сканирование прекращают в ответ на достижение уровнем контраста пикового уровня или через некоторое предварительно определенное время после этого.

На этапе 314 полученные данные используют для того, чтобы определять соответствующую перфузии информацию. Такая информация может включать в себя, но без ограничения, течение крови, объем крови, среднее время прохождения и время до пика, карты перфузии и/или итоговые карты, на которых графически показано состояние перфузии.

Изложенное выше можно реализовать посредством машиночитаемых инструкций, которые при исполнении посредством процессора(ов) компьютера, управляют процессором(ами) для осуществления описанных действий. В таком случае инструкции хранят в машиночитаемом носителе, связанном с или иным образом доступном соответствующему компьютеру. Эти действия не обязательно выполнять одновременно с регистрацией данных.

В изложенном выше частоты дискретизации регистрации данных представляют собой функции от времени и кривой накопления контраста. С другой стороны, желаемая фаза регистрации данных представляет собой функцию сердечного цикла и/или его дыхательной фазы(фаз). В качестве примера, применительно к кардиологическим применениям, сканирование запускают по сигналу ЭКГ в одну и ту же физиологическую фазу. В этом случае, система 100 дополнительно содержит ЭКГ монитор или другое устройство, которое может считывать электрическую активность сердца. В применении к брюшной полости и органам дыхания, сканирование можно запускать, основываясь на дыхательном сигнале. В этом случае система 100 дополнительно содержит дыхательный гофрированный баллон или тому подобное.

Изобретение описано в настоящем документе со ссылкой на различные варианты осуществления. Модификации и изменения могут прийти на ум при прочтении описания в настоящем документе. Подразумевают, что изобретение следует толковать как включающее все такие модификации и изменения в такой мере, в какой они входят в объем приложенной формулы изобретения или ее эквивалентов.

1. Система (100) для визуализации перфузии, содержащая:
компьютерный томографический сканер;
пульт (120), который управляет сканером на основании протокола сканирования, причем пульт динамически изменяет частоту дискретизации регистрации данных сканера во время сканирования перфузии с увеличенным контрастом на основании уровня контраста в данных изображения, генерируемых во время сканирования; и
средство (126) оценки данных, которое определяет, указывает ли уровень контраста в данных изображения, по существу, отсутствие контраста, накопление контраста или вымывание контраста, причем пульт управляет сканером для того, чтобы получать данные с первой частотой дискретизации регистрации данных в ответ на определение средством оценки данных того, что уровень контраста в данных изображения указывает отсутствие контраста.

2. Система по п. 1, причем пульт управляет сканером для того, чтобы получать данные со второй частотой дискретизации регистрации данных в ответ на определение средством оценки данных того, что уровень контраста в данных изображения указывает накопление контраста, и вторая частота дискретизации регистрации данных больше, чем первая частота дискретизации регистрации данных.

3. Система по п. 2, причем пульт управляет сканером для того, чтобы получать данные с третьей частотой дискретизации регистрации данных в ответ на определение средством оценки данных того, что уровень контраста в данных изображения указывает вымывание контраста, причем третья частота дискретизации регистрации данных представляет собой одно из равной или меньшей частоты, чем вторая частота дискретизации регистрации данных.

4. Система по пп. 2-3, причем частота дискретизации регистрации данных сканера соответствует одной из фазы сердечного цикла, представляющей интерес, или дыхательной фазы, представляющей интерес.

5. Способ визуализации перфузии, который содержит:
получение данных с первой частотой дискретизации до определения накопления контраста; и
получение данных со второй частотой дискретизации, которая больше, чем первая частота дискретизации, во время накопления контраста.

6. Способ по п. 5, который дополнительно содержит получение данных с третьей частотой дискретизации во время вымывания контраста, причем третья частота дискретизации меньше, чем вторая частота дискретизации.

7. Способ по пп. 5-6, который дополнительно содержит изменение дозы сканирования в сочетании с частотой дискретизации.

8. Способ по пп. 5-6, причем первая частота дискретизации является переменной, и ее увеличивают с течением времени до определения накопления контраста.

9. Способ по пп. 5-6, который дополнительно содержит увеличение длительности дискретизации наряду с увеличением частоты дискретизации.



 

Похожие патенты:

Группа изобретений относится к медицинской технике, а именно к средствам электромагнитной томографии. Способ электромагнитной томографии частей тела живого человека с использованием носимого сканера в корпусе содержит установку носимого и переносного сканера таким образом, чтобы сканер облегал часть тела живого человека во время перемещения человека из одного места в другое, причем носимый и переносной сканер имеет полую конструкцию, стенки которой содержат множество «окошек» для электромагнитного излучения, определение информации о положении носимого корпуса сканера по отношению к внешней системе координат, создание электромагнитного поля, внешнего по отношению к носимому сканеру, которое проходит в носимый корпус сканера и выходит из него через окошки для электромагнитного излучения, независимо открывание или закрывание окошек для электромагнитного излучения для контроля, проходит ли через них электромагнитное излучение, при этом этап независимого открытия или закрытия «окошек» для электромагнитного излучения осуществляется с помощью соответствующего микрошлюза, которым оборудовано каждое «окошко», измерение электромагнитного поля после того, как оно было рассеяно/изменилось в результате влияния части тела живого человека, и создание электромагнитного томографического изображения на основании созданного и измеренного электромагнитного поля с использованием информации об установленном положении и включении информации о положении каждого из множества окошек для электромагнитного излучения.

Изобретение относится к медицине, а именно к лучевой диагностике, и может быть использовано для определения вероятности развития остеопоротических переломов позвонков у женщин постменопаузального периода.

Изобретение относится к медицине, клинической кардиологии и может быть использовано для количественной оценки начальных нарушений и неоднородности перфузии миокарда по данным однофотонно-эмиссионной компьютерной томографии (ОФЭКТ).

Изобретение относится к медицине, лучевой диагностике и может применяться в рамках персонализации в планировании хирургического приема у больных с периферическими объемными образованиями легких (ООЛ).

Изобретение относится к медицине, ортопедии, травматологии и может использоваться для оценки эффективности лечения больных с повреждением тазового кольца. Выполняют компьютерную томографию и на изображении среза первоначально в горизонтальной плоскости измеряют длины отрезков на трех уровнях: уровне верхушек крыльев подвздошных костей (ВКПК), центров головок бедренных костей (ЦГБК) и уровне симфиза (УС).

Изобретения относятся к медицинской технике, а именно к средствам для формирования изображений. Устройство для формирования изображений объекта, обеспечивающее осуществление способа формирования изображений, содержит представляющий изображение блок для предоставления первого изображения объекта и второго изображения объекта, причем первое изображение имеет более низкий уровень шума, чем второе изображение, предоставляющий окно дисплея блок для предоставления окна дисплея, причем окно дисплея отражает диапазон значений изображения, представляемого на дисплее, и объединяющий блок для формирования объединенного изображения посредством объединения первого изображения и второго изображения в зависимости от ширины окна предоставляемого окна дисплея.

Изобретение относится к медицине, а именно к онкологии, и может быть использовано для прогнозирования вероятности риска развития недостаточности анастомозов в послеоперационном периоде у больных раком пищевода.
Изобретение относится к медицине, неврологии и лучевой диагностике и может быть использовано для прогнозирования исхода ишемического инсульта головного мозга. При нарушении сознания на 3-и сутки от начала заболевания по шкале комы Глазго 8 баллов и менее осуществляют КТ-перфузию с количественным определением кровотока в стволе головного мозга на уровне большого затылочного отверстия и цветовое дуплексное сканирование интракраниальных отделов позвоночных артерий.

Группа изобретений относится к медицинской технике, а именно к системам визуализации. Система визуализации содержит поворотный гантри кольцевой формы и стационарный гантри, при этом стационарный гантри включает в себя основание гантри, наклонную раму кольцевой формы и систему наклона, при этом система наклона содержит одно упругое звено, имеющее первый конец, прикрепленный к основанию гантри, и второй противоположный конец, прикрепленный к наклонной раме, при этом одно упругое звено включает в себя два упругих звена, расположенных под углом друг к другу.

Группа изобретений относится к медицинской технике, а именно к средствам детектирования излучения. Устройство детектирования содержит источник излучения генерации конического пучка излучения для прохождения через область, представляющую интерес, в зоне обследования, детектор с однородной поверхностью детектирования для генерации значений детектирования, указывающих пучок излучения после прохождения области, представляющей интерес, блок перемещения источника излучения и области, представляющей интерес, относительно друг друга по спиральной траектории вокруг оси (R) вращения, фильтр пучка излучения для генерации первой и второй областей пучка излучения, имеющих разные энергетические спектры.

Изобретение относится к медицине, лучевой диагностике с использованием однофотонной эмиссионной компьютерной томографии (ОФЭКТ). Определяют реабилитационный потенциал (РП) у пациента с нарушением уровня сознания, для чего проводят оценку состояния мозгового кровотока - перфузии головного мозга: вначале осуществляют внутривенное введение 99mТс-гексаметилпропиленаминоксима (99mTc-ГМПАО) в дозе 4,5-5 МБк на кг массы тела пациента, определяют методом ОФЭКТ корковую перфузию в передних, средних, задних отделах лобных долей, теменных, височных, затылочных долях обоих полушарий головного мозга и в каждом из полушарий мозжечка. Затем рассчитывают ОКП для каждой из указанных зон головного мозга, используя в качестве референтной зоны полушарие мозжечка с той же стороны, что и исследуемая зона головного мозга, и осуществляют визуальную, аудиальную, сенсорную и когнитивную нагрузку и/или фармакологическую нагрузку, в качестве которой внутривенно вводят любое лекарственное вещество, влияющее на изменение мозгового кровотока и/или мозговой активности. На фоне проводимой нагрузки внутривенно вводят дозу упомянутого РФП из расчета 9-10 МБк/кг массы тела пациента и повторно осуществляют ОФЭКТ, определяя корковую перфузию. Снова рассчитывают ОКП для каждой из исследуемых зон головного мозга и сопоставляют полученные значения регионарной перфузии в каждой из этих зон в состоянии покоя и на фоне нагрузки. При увеличении ОКП зоны мозга более чем на 10% делают заключение о наличии функциональных резервов этой зоны и высоком РП, при отсутствии увеличения ОКП зоны или увеличении ее менее чем на 10%, делают вывод о сниженном РП. Способ обеспечивает определение сохранности различных зон коры головного мозга, четкую верификацию диагноза для правильного подбора лечебных и реабилитационных мероприятий. 2 ил.

Изобретение относится к формированию медицинских изображений. Техническим результатом является повышение точности реконструкции изображений. Способ содержит этапы, на которых: собирают данные проекций объекта; задают поле обзора с воксельной сеткой в трансаксиальном направлении; определяют максимальные трансаксиальные размеры объекта; формируют расширенное поле обзора посредством продолжения воксельной сетки поля обзора на одну расширенную область снаружи поля обзора; и итерационно реконструируют собранные данные проекций; определение максимальных трансаксиальных размеров объекта содержит этапы, на которых: задают воксельную сетку с крупным шагом в поле обзора, которое заведомо больше, чем трансаксиальные предельные размеры объекта; реконструируют большое поле обзора с получением представляемого изображения с крупным шагом, представляемое изображение с крупным шагом имеет разрешение ниже, чем реконструированное представляемое изображение; и определяют трансаксиальные предельные размеры объекта по представляемому изображению с крупным шагом. 3 н. и 9 з.п. ф-лы, 10 ил.

Изобретение относится к области медицины, а именно к области челюстно-лицевой хирургии и ортодонтии. Для моделирования костно-реконструктивных операций при лечении новообразований челюстных костей в детском возрасте выполняют КТ исследование черепа с последующей реконструкцией в 3D программах и создают объемную модель черепа, выявляют новообразование, рассчитывают основные параметрические данные новообразования и виртуально его удаляют на полученной модели, затем виртуально восполняют дефект или изъян, после чего прототипируют реконструктивные модели челюстей или эндопротез с помощью 3D принтера. До виртуального удаления новообразования проводят 3D цефалометрию, на полученной 3D модели черепа вручную расставляют цефалометрические ориентиры под максимальным увеличением разрешения экрана, используя одновременно различные проекции, perspective, right, left, top, front и варьируя прозрачность изображения от 0 до 100%, определяют 48 цефалометрических параметров, с учетом которых проводят виртуальное восполнение дефекта или изъяна с последующей виртуальной корректировкой челюстных костей при проведении этапного ортодонтическо-хирургического лечения. Способ позволяет моделировать и прогнозировать этапное хирургическо-ортодонтическое и ортопедическое лечение у ребенка до завершения его роста, а также снизить вероятность проведения незапланированных этапных операций. 21 ил., 4 табл., 1 пр.

Группа изобретений относится медицинской технике, в частности к способам и устройствам визуализации на основе рентгеновской стереоскопии, и может быть использовано в кардиохирургии для объемной визуализации внутренних камер сердца, сосудов, хирургического эндокардиального инструмента и карт электрической активности миокарда при лечении аритмий сердца методом катетерной аблации. Способ визуализации заключается в том, что совмещают с заданными весовыми коэффициентами и визуализируют с помощью стереомониторной системы стереопары рентгеновских изображений области обследования, которые получают при просвечивании области обследования с двух направлений, соответствующих углам стереоскопического зрения, со стереопарами изображений, которые получают путем рендеринга 3D-объектов, принадлежащих той же области обследования для направлений, соответствующих углам просвечивания рентгеновскими лучами. При этом 3D-объекты получают непосредственно в процессе обследования и выполнения кардиохирургической операции в виде трехмерных поверхностей, соответствующих внутренним поверхностям камер сердца и сосудов, принадлежащих области обследования, для чего в камеры сердца и сосуды вводят хирургические инструменты, представляющие собой эндокардиальные электроды, проводят манипуляцию электродами внутри камер сердца и сосудов и одновременно получают стереопары рентгеновских изображений области обследования, на которых присутствуют теневые отметки позиций электродов, по которым вычисляют и запоминают трехмерные координаты множества позиций электродов в различных положениях. По запомненному множеству позиций создают трехмерную поверхность исследуемого органа, на которой визуализируют параметры электрограмм, для этого каждой запомненной позиции сопоставляют электрограмму, зарегистрированную электродом в соответствующей позиции. Устройство визуализации содержит рентгеновский блок, позволяющий создавать стереопары рентгеновских изображений области обследования, блок рендеринга 3D-объектов, блок совмещения рентгеновских стереопар со стереопарами блока рендеринга 3D-объектов, создающий в виде взвешенной суммы два совмещенных изображения для передачи и визуализации с помощью стереомониторного устройства. Дополнительно установлены блок синтеза 3D-объектов в виде трехмерных поверхностей органов, блок определения трехмерных координат эндокардиальных электродов и блок регистрации электрограмм, соединенный с эндокардиальными электродами, размещаемыми во внутреннем пространстве органов, принадлежащих области обследования. Использование изобретений позволяет повысить точность и сократить время на выполнение манипуляций при наведении хирургического инструмента на мишень для абляции в условиях, когда нет возможности прямого визуального наблюдения как инструмента, так и области аритмии в миокарде. 2 н. и 6 з.п. ф-лы, 5 ил.

Изобретение относится к медицине, радиологии и может использоваться для диагностики и хирургического лечения функциональных расстройств и новообразований головного мозга. Фиксируют на черепе маркеры посредством конструкции, состоящей из локализатора с маркерами и прикрепленного к нему лотка с оттиском зубов, закрепляемой на верхней челюсти пациента при проведении томографического исследования. Получают мультимодальные томографические изображения. При этом в качестве маркеров используют мономодальные маркеры с индивидуальной для каждой модальности геометрией расположения маркеров на локализаторе. Маркеры каждой модальности крепят на соответствующий локализатор и проводят исследование на томографах соответствующей маркерам модальности, получая серии изображений головного мозга с маркерами. Последовательно определяют координаты маркеров локализатора соответствующей модальности и строят координатную систему (СК) локализатора первой модальности во внутренней СК томографа первой модальности и далее - каждого локализатора в СК томографа каждой из следующих модальностей. Затем поочередно фиксируют локализаторы используемых модальностей на измерительном устройстве, определяя координаты маркеров локализаторов в СК измерительного устройства. Строят СК локализаторов в СК измерительного устройства. Совмещают томографические изображения, определяя координаты выбранной точки изображения внутримозгового пространства пациента, полученного с помощью томографа первой модальности, вначале в СК локализатора первой модальности с последующим преобразованием координат этой точки из СК локализатора первой модальности в СК измерительного устройства, а затем - в СК локализатора следующей модальности и далее - в СК томографа соответствующей модальности. Способ обеспечивает повышение точности совмещения томографических изображений, полученных более чем в двух модальностях, за счет универсальности СК измерительного устройства, позволяющей проводить преобразование координат точек для неограниченного количества локализаторов с индивидуальными СК и мономодальными маркерами, оптимально подобранными для каждого томографического метода – для наилучшей контрастности изображения, при атравматичности, неинвазивности фиксации маркеров. 6 ил., 1 пр.

Изобретение относится к медицине, кардиологии, лучевой диагностике и может быть использовано для диагностики висцерального ожирения. Выполняют компьютерную томографию при симметричном относительно средней линии тела горизонтальном положении пациента с получением компьютерно-томографических изображений двух поперечных срезов туловища толщиной 7 мм на уровне между II и III поясничными позвонками и между IV и V поясничными позвонками (уровни LII-III и LIV-V). Определяют на каждом срезе площади висцеральной жировой ткани при выделении области брюшной полости по брюшной фасции, а по задней поверхности – исключая мышцы спины. Далее рассчитывают сумму площадей висцеральной жировой ткани на уровне LII-III и LIV-V. При значениях показателя суммы площадей висцеральной жировой ткани на двух уровнях 223 см2 и выше диагностируют висцеральное ожирение. Способ обеспечивает высокую точность, доступность, простоту и быстроту диагностики висцерального ожирения. 1 ил., 2 пр., 4 табл.

Изобретение относится к медицине, радионуклидной диагностике, может найти применение в кардиологии и кардиохирургии. Проводят топическую диагностику воспаления в сердце путем выполнения однофотонной эмиссионной компьютерной томографии (ОФЭКТ) через 18-20 ч после внутривенного введения радиофармпрепарата. Причем перед томографией на тело пациента в 3 межреберье слева по срединно-ключичной линии наносят поверхностную радиоизотопную метку. Затем на нее наклеивают в качестве рентгеноконтрастной метки одноразовый ЭКГ-электрод. Запись ОФЭКТ осуществляют одновременно в 27 проекциях, время сканирования составляет от 400 до 600 сек в зависимости от веса тела пациента. По окончании ОФЭКТ, не меняя положения тела пациента и высоты томографического стола, выполняют рентгеновскую компьютерную томографию грудной клетки высокого разрешения, с толщиной среза 1,25 мм на гибридном ОЭКТ/КТ томографе. Далее по меткам выполняют совмещение сцинтиграфических и рентгеновских томографических изображений путем точного наложения друг на друга радиоизотопной и рентгеноконтрастной меток во фронтальных, сагиттальных и поперечных срезах, определяя наличие и местоположение воспалительного очага в сердце. Способ обеспечивает высокую чувствительность и точность определения наличия и местонахождения воспалительных очагов в сердце, с исключением погрешностей при наложении изображений при визуализации всех камер сердца, сокращение времени исследования, уменьшение лучевой нагрузки на пациента. 3 ил., 2 пр.

Изобретение относится к области спектральной компьютерной томографии. Технический результат заключается в снижении дозы облучения для заданного качества изображения. Технический результат достигается за счет того, что оценивают локальное шумовое значение для одного или более вокселов спектрального изображения из набора спектральных изображений, соответствующих различным энергетическим диапазонам, создавая шумовую модель для спектрального изображения, и удаляют шум воксела, основываясь на выбранной модели локальной структуры, посредством замены значения воксела на значение, оцененное, основываясь на выбранной модели локальной структуры, причем для множества вокселов множества спектральных изображений из набора спектральных изображений удаляется шум за счет того, что создается набор спектральных изображений с удаленным шумом. 2 н. и 8 з.п. ф-лы, 15 ил.
Изобретение относится к медицине, а именно к хирургии, и может быть использовано для прогнозирования раневых осложнений у больных, оперированных по поводу грыж передней брюшной стенки. Для этого с помощью компьютерного термографа «ИРТИС-2000» определяют локальную температуру по всей поверхности передней брюшной стенки с определением градиента температуры. При повышении локальной температуры на 3-и сутки после операции в зоне пластики на величину до 1,8°С прогнозируют - гладкое течение послеоперационного периода. При повышении локальной температуры на 3-и сутки после операции в зоне пластики на величину 3,0°С и более прогнозируют - гнойно-септическое осложнение со стороны раны. При повышении локальной температуры на 3-и сутки после операции в зоне пластики на величину от 1,9 до 2,9°С течение послеоперационного периода неопределенное. Такому пациенту выполняют повторное исследование на 5-е сутки после операции. Если выявляют повышение локальной температуры на 1,8°С и менее по сравнению с окружающими тканями, делают вывод о неосложненном течении послеоперационного периода. Если градиент температуры в зоне пластики 1,9°С и более по сравнению с окружающими тканями, делают заключение о развитии гнойно-септического осложнения. Простой и неинвазивный способ обеспечивает объективную оценку локального статуса и соответственно своевременную диагностику раневых осложнений в послеоперационном периоде и возможность своевременной коррекции тактики лечения, что позволяет улучшить ближайшие и отдаленные результаты лечения больных с данной патологией, сократить пребывание пациентов в стационаре. 1 пр.

Изобретение относится к судебной медицине и криминалистике, высокотехнологичной лучевой диагностике для установления причины и механизма смерти, идентификации личности погибших при неотложных следственных действиях после осмотра трупа на месте обнаружения. Сканирование мертвого тела выполняют при его нахождении в герметичном мешке в положении на спине, режим сканирования - непрерывный спиральный. Исследуют последовательно зоны: туловище - от С7 позвонка до нижнего края лонной кости; нижние конечности - от верхнего края вертлужной впадины до кончиков больших пальцев стоп. Для сканирования зоны «туловище» (Т) используют параметры: толщина среза сканирования - 0,9 мм, толщина среза реконструкции просмотра изображения - 2-3 мм, kV - 120, mAs - 250, инкремент - 0,45, коллимация - 128×0,625, питч - 0,993, скорость ротации трубки - 0,5, матрица - 512×512, поле изображения - 350. Для сканирования зоны «нижние конечности» (НК): толщина среза сканирования - 0,9 мм, толщина среза реконструкции просмотра изображения - 2 мм, kV - 120, mAs - 175, инкремент - 0,45, коллимация - 64×0,625, питч - 0,297, скорость ротации трубки - 0,4, матрица - 768×768, поле изображения - 150. Для просмотра изображений зоны Т используют режимы: костный с шириной окна C1500-W3000, мягкотканный с шириной окна C60-W350, легочный - ширина окна C500-W1500; для просмотра изображений зоны НК используют режимы: костный с шириной окна С1500-W3000, мягкотканный с шириной окна C60-W350. Проводят построение для зоны Т мультипланарных реконструкций в сагиттальной и корональной плоскостях и трехмерных реконструкций с цветным картированием металла, реконструкций максимальной и минимальной интенсивности. Проводят построение для зоны НК мультипланарных реконструкций в сагиттальной и корональной плоскостях и трехмерных реконструкций с цветным картированием металла, реконструкций максимальной интенсивности. Все полученные результаты используют при идентификации личности, установлении причин смерти. Способ обеспечивает исчерпывающую точность с оптимально информативными параметрами исследования, ускорение исследования и получение результатов, в том числе неотложно, без проведения классической аутопсии, с исключением возможности заражения персонала. 1 табл.

Группа изобретений относится к медицинской технике, а именно к системам компьютерной визуализации перфузии. Система содержит компьютерный томографический сканер, пульт, который управляет сканером на основании протокола сканирования, средство оценки данных, которое определяет, указывает ли уровень контраста в данных изображения, по существу, отсутствие контраста, накопление контраста или вымывание контраста, и пульт управляет сканером. Способ визуализации перфузии заключается в получении данных с первой частотой дискретизации до определения накопления контраста и получение данных со второй частотой дискретизации, которая больше, чем первая частота дискретизации, во время накопления контраста. Использование изобретений позволяет снизить накопление дозы облучения. 2 н. и 7 з.п. ф-лы, 3 ил.

Наверх