Древесно-цементная смесь для изготовления строительных блоков

Изобретение относится к древесно-цементным смесям, которые содержат неорганические связующие и используются для изготовления строительных блоков в малоэтажном строительстве. Технический результат заключается в повышении экологичности и прочности материала. Древесно-цементная смесь для строительных блоков содержит опилки хвойных пород, цемент, жидкое стекло, хлорид кальция, полипропиленовые волокна, гранулы пенополистирола и талькохлорит в виде частиц крупностью до 500 микрометров, в том числе до 0,02% частиц крупностью до 0,5 микрометров, при соотношении компонентов, мас. %: портландцемент 38,4-45,4; опилки 45-52; хлорид кальция 2-9; жидкое стекло 3-10; талькохлорит 4-11; пенополистирол гранулированный 0,5-2; полипропиленовые волокна 0,1-0,2, причем добавка воды к смеси выполнена до получения водоцементного отношения 0,7-1,1. 2 табл.

 

Предлагаемое техническое решение относится к древесно-цементным смесям, которые содержат неорганические связующие и используются для изготовления строительных блоков в малоэтажном строительстве.

Известна арболитовая смесь по патенту RU 2455264 [1], содержащая цемент, древесную дробленку, известь, пенообразователь, жидкое стекло и листовое молотое стекло. Однако для получения данной смеси необходимы затраты ресурсов на производство древесной дробленки и молотого листового стекла, что отрицательно влияет на характеристики данной смеси по критериям ресурсосбережения и энергоэффективности.

Известен опилкобетон по патенту RU 2106322 [2] для изготовления строительных изделий, включающий, мас. %: портландцемент 30, гашеную известь 5, мелкий гравий или песок 10, опилки 30, глину 5 и воду 20. При использовании портландцемента марки 500 прочность опилкобетона при сжатии достигает 2,1 МПа. Однако гравий и песок увеличивают плотность и снижают теплоизоляционные свойства изделий из данной смеси.

Известен состав для изготовления строительных блоков по заявке RU 93058241/33 [3], содержащий (мас. % в сухом состоянии): опилки до 70%, цемент 20-50%, известь до 20%. Однако, такой состав не обеспечивает достаточную прочность строительных блоков.

Известна арболитовая смесь по патенту RU 2466952 [4], которая содержит древесную дробленку, гипс, мылонафт, стекловолокно, нарезанное на отрезки 3-15 мм. В данном случае отрезки стекловолокна, распределенные в смеси, выполняют функцию дисперсного армирования изделий из данной смеси, что уменьшает трещинообразование и, как следствие, повышает прочность блоков и плит из смеси. Однако, для получения данной арболитовой смеси необходимо дополнительное производство древесной дробленки, что отрицательно влияет на характеристики выпускаемой продукции по критериям ресурсосбережения и энергоэффективности.

Наиболее близким аналогом предлагаемой древесно-цементной смеси для изготовления строительных блоков является арболитовая смесь по патенту RU 2476399 [5], которая принята качестве прототипа. Указанная смесь содержит следующие компоненты, количество которых выражено в весовых частях: портландцемент 20-25; древесная дробленка 60,5-62; гипс 1-1,5; известь 1-1,5; асбестовое волокно длиной 5-50 мм 1-1,5; предварительно обожженные и молотые асбестоцементые отходы 10-15, причем водоцементное отношение составляет 0,9-1,1.

Однако для получения данной арболитовой смеси необходимы обжиг и помол асбестоцементных отходов, что отрицательно влияет на характеристики выпускаемой продукции по критериям ресурсосбережения и энергоэффективности. Кроме того, асбест в форме волокон является канцерогенным материалом, что существенно ограничивает область применения смеси.

Технический результат от применения предлагаемого технического решения заключается в улучшении экологических характеристик за счет применения канцерогенно безопасных компонентов и в обеспечении оптимальной для строительных блоков прочности.

Данный технический результат достигается за счет того, что древесно-цементная смесь для изготовления строительных блоков, содержит измельченную древесину в виде опилок хвойных пород, портландцемент, жидкое стекло, хлорид кальция, полипропиленовые волокна, причем дополнительно включает пенополистирол в видев гранул диаметром от 0,2 до 3 мм и талькохлорит в виде порошка с частицами крупностью не более 500 микрометров, в том числе до 0,02% частиц крупностью до 0,5 микрометров, включая наночастицы, при следующем соотношении компонентов, мас. %: портландцемент 38,4-45,4; опилки хвойных пород 45-52; хлорид кальция 2-9; жидкое стекло 3-10; талькохлорит 4-11; пенополистирол гранулированный 0,5-2; полипропиленовые волокна 0,1-0,2. При этом добавка воды к указанной смеси выполнена до получения водоцементного отношения, равного 0,7-1,1.

Получение предлагаемой смеси включает в себя следующие технологические операции.

Выполняется дозирование компонентов смеси. При этом в момент подачи на дозирование все компоненты должны иметь положительную температуру.

Перемешивают полипропиленовые гранулы с цементом, добавляют отходы камнеобработки в виде порошка талькохлорита и полипропиленовое волокно в виде указанных выше отрезков и опилки. Для перемешивания до получения однородной смеси используют, например, миксер с электроприводом для строительных смесей.

Добавляют воду и жидкое стекло.

Указанные компоненты перемешивают до получения однородной смеси, которой заполняют формы для получения блоков или плит.

В зимнее время формы должны иметь положительную температуру, но не более 40°C. Смесь в формах уплотняют, например, с помощью вибропресса. При этом частоту и амплитуду вибрирования подбирают так, чтобы избежать расслоения смеси.

Затем изделие выдерживают в формах до достижения распалубочной прочности. Признаком достижения распалубочной прочности является стабильность геометрической формы изделия при воздействии на него только его собственного веса после извлечения из формы.

Извлеченное из формы изделие выдерживают для набора достаточной для хранения на складе прочности в естественных условиях, при температуре воздуха 5-35°C. Отпускная прочность изделий достигается в течение 28 суток.

Прочность при сжатии образцов из предлагаемой смеси составляет 1,4-1,6 МПа, что в соответствии с установленными требованиями [6-8] достаточно для использования блоков, например, в качестве самонесущей теплоизоляции и внутриквартирных перегородок малоэтажных зданий.

Коэффициент теплопроводности материала из предлагаемой смеси в изделии, высушенном до постоянной плотности в естественных условиях, близких к условиям эксплуатации реальных конструкций, определенный зондовым методом, зависит от конкретного соотношения компонентов смеси в заявленных пределах и составляет от 0,11 до 0,18 Вт/м*К.

Плотность материала строительных блоков из предлагаемой смеси в возрасте 28 суток составляет 520-650 кг/м3.

Если доля цемента в смеси меньше 38,4 мас. %, то прочность блоков из данной смеси будет недостаточна. С увеличением доли цемента прочность возрастает. Однако увеличение доли цемента сверх 45,4 мас. % неэффективно, поскольку приращение прочности становится незначительным, но существенно возрастает плотность и ухудшаются теплоизоляционные свойства блоков и плит из данной смеси.

Если доля опилок хвойных пород в смеси меньше 45 мас. %, то существенно возрастает плотность и ухудшаются теплоизоляционные свойства блоков и плит из данной смеси. Однако, если доля опилок хвойных пород в смеси больше 52 мас. %, то для консолидации частиц опилок требуется увеличение доли цемента, что также увеличивает плотность и ухудшает теплоизоляционные свойства. Заявленный технический результат достигается только в случае применения опилок хвойных пород.

Если доля хлорида кальция в смеси меньше 2 мас. %, то эффективность его применения недостаточна. С увеличением этой доли эффективность его применения растет, однако, если его доля больше 9 мас. %, то рост эффективности его применения прекращается.

Тонкий слой жидкого стекла, образующийся на поверхности древесных частиц, повышает адгезию к цементу, что увеличивает прочность, а также увеличивает огнестойкость, поскольку указанный слой прекращает доступ воздуха к горящему материалу, и пламя гаснет. Если доля жидкого стекла в смеси меньше 3 мас. %, то эффективность его применения недостаточна. С увеличением этой доли прочность материала из данной смеси растет, однако, если доля жидкого стекла в смеси больше 10 мас. %, то эффективность его применения уменьшается, поскольку увеличивается плотность материала, ухудшаются теплоизоляционные свойства блоков, а рост прочности незначителен.

Талькохлорит в виде порошка, содержащий до 0,02% частиц крупностью до 0,5 микрометров, включая наночастицы, относится к отходам камнеобработки. Наличие указанных частиц крупностью до 0,5 микрометров способствует увеличению поверхности, приходящейся на единицу массы смеси, и по этой причине повышает прочность блоков из предлагаемой смеси. Если доля талькохлорита в смеси меньше 4 мас. %, то эффективность его применения недостаточна. С увеличением этой доли прочность материала из данной смеси растет. Однако, если доля больше 11 мас. %, то рост прочности замедляется и прекращается.

Полипропиленовые волокна выполняют функции армирующих элементов, что повышает прочность блоков из предлагаемой смеси. Если доля полипропиленовых волокон в смеси меньше 0,1 мас. %, то эффективность их применения недостаточна. С увеличением их доли прочность изделия из смеси растет за счет армирования материала. Однако если доля волокон больше 0,2 мас. %, то рост эффективности их применения незнчителен.

К указанной смеси компонентов добавляется вода в количестве, необходимом для получения водоцементного отношения в пределах от 0,7 до 1,1. Уменьшение количества воды не обеспечивает полного использования свойств цемента как вяжущего компонента. Увеличение количества воды приводит к уменьшению прочности изделий из смеси.

В качестве измельченной древесины в заявляемой смеси используются отходы лесопиления в виде опилок без дополнительной их обработки, что уменьшает затраты на получение заявляемой смеси. Все компоненты заявленной смеси являются экологически безопасными.

Талькохлорит в виде порошка образуется при камнеобработке одноименного минерала, известного также как стеатит, мыльный камень или горшечный камень. По своему химическому составу талкохлорит примерно на две трети состоит из двуокиси кремния и окиси магния (http://www.o-kamne.ru/page36.php), что обеспечивает его адгезию к цементу и прочность блоков из предлагаемой смеси.

В заявленной смеси технический эффект достигается за счет взаимодействия компонентов, количественное соотношение которых обеспечивает получение синергетического эффекта, итоговым проявлением которого является повышение эффективности использования экологически безопасных отходов камнеобработки и деревообработки, увеличение прочности изделий (блоков и плит) из предлагаемой смеси, а также упрощение технологии и уменьшение трудоемкости изготовления смеси и изделий из нее. Эти факторы положительно влияют на характеристики изделий из предлагаемой смеси по критериям ресурсосбережения, экологической безопасности и конкурентоспособности.

Пример технической реализации древесно-цементной смеси. При технической реализации заявляемой смеси использовались пылеватые отходы механической камнеобработки в виде частиц талькохлорита, гранулометрический состав которых достаточно однороден и включает в себя частицы с характерными размерами не более 500 микрометров, в том числе до 0,02% частиц крупностью до 0,5 микрометров, включая наночастицы, т.е. частицы крупностью до 100 нанометров.

При разработке заявляемой смеси учтено, что древесные опилки отличаются большой вариабельностью физико-механических свойств, зависящих, в числе других факторов, от типа лесопильного оборудования. Заявляемое техническое решение было реализовано с использованием опилок, гранулометрический состав которых приведен в таблице 1.

В таблице 2 приведены составы сырьевой смеси для изготовления строительных блоков.

При технической реализации заявляемой смеси может быть использован портландцемент марки М500 по ГОСТ 30515-97, жидкое стекло по ГОСТ 13078-81 плотностью 1,45 г/см3 с массовой долей двуокиси кремния 34,2% и силикатным модулем 2.6, хлорид кальция технический по ГОСТ 450-77, полипропиленовые волокна в виде отрезков длиной 18 мм по ТУ 2272-001-90345062-2012, отходы камнеобработки в виде частиц талькохлорита, вода водопроводная. В таблице 2 приведены составы предлагаемой смеси без учета воды, поскольку вода добавляется с учетом естественной влажности опилок до получения требуемого водоцементного отношения, находящегося в интервале от 0,7 до 1,1.

Библиография

1. Арболитовая смесь. Патент на изобретение RU 2455264. МПК C04B 38/10. Опубликовано: 10.07.2012.

2. Опилкобетон. Патент RU 2106322. МПК C04B 28/00; C04B 28/00; C04B 18:26; C04B 111:20. Опубликовано: 10.03.1998.

3. Состав для изготовления строительных блоков, строительный элемент и способ его изготовления. Заявка: RU 93058241. МПК E04C 2/10; B27N 3/02. Опубликовано: 10.01.1996.

4. Арболитовая смесь. Патент RU 2466952. МПК C04B 28/02. Опубликовано: 20.11.2012.

5. Арболитовая смесь. Патент RU 2476399 МПК C04B 28/04. Опубликовано: 27.02.2013

6. ГОСТ 19222-84. Арболит и изделия из него. Общие технические условия.

7. СН 549-82. Инструкция по проектированию, изготовлению и применению конструкций и изделий из арболита.

8. Наназашвили И.Х. Строительные материалы из древесно-цементной композиции // М., Стройиздат, 1990. - 415 с.

Древесно-цементная смесь для изготовления строительных блоков, содержащая измельченную древесину в виде опилок хвойных пород, портландцемент, жидкое стекло, хлорид кальция, полипропиленовые волокна, пенополистирол в виде гранул, отличающаяся тем, что дополнительно включает талькохлорит в виде порошка с частицами крупностью не более 500 микрометров, в том числе до 0,02% частиц крупностью до 0,5 микрометров, включая наночастицы, при следующем соотношении компонентов, мас. %:

портландцемент 38,4-45,4
опилки хвойных пород 45-52
хлорид кальция 2-9
жидкое стекло 3-10
талькохлорит 4-11
пенополистирол гранулированный 0,5-2,0
полипропиленовые волокна 0,1-0,2

причем добавка воды к указанной смеси выполнена до получения водоцементного отношения, равного 0,7-1,1.



 

Похожие патенты:
Изобретение относится к мелкозернистой самоуплотняющейся бетонной смеси и может быть использовано для ремонтных работ и для замоноличивания стыков сборных железобетонных конструкций, в том числе преднапряженных: балок, опор, мостовых плит, густоармированных поверхностей и, в частности, для труднодоступных участков конструкций, где по технологии требуется повышенная текучесть на стадии применения и высокая ранняя прочность.

Изобретение относится к области строительства, а именно к составам для инъекционного закрепления лессовых грунтов в основании существующих и вновь строящихся зданий и сооружений.

Изобретение относится к дорожному строительству и может быть использовано для устройства оснований и покрытий автомобильных дорог. Техническим результатом является повышение морозостойкости и прочности материалов из грунтовых, песчаных, и щебеночно-песчаных смесей, а также экономической эффективности строительства.

Изобретение относится к строительной индустрии, а именно к получению модифицированного экономически выгодного тяжелого бетона на основе отходов доломитового производства.

Изобретение относится к сухой клеевой смеси на цементной основе, применяемой в качестве плиточного клея для выполнения облицовки наружных фасадов и внутренних стен зданий керамической плиткой.

Группа изобретений относится к производству строительных материалов и может быть использована для получения бетонных строительных изделий, подвергающихся тепловлажностной обработке при твердении.

Настоящее изобретение относится к гидравлическому вяжущему, включающему в частях по массе: (a) от 20 до 60 частей портландцементного клинкера; (b) от 20 до 40 частей шлака; и (c) от 5 до 60 частей неорганического материала, отличного от клинкера и шлака; причем сумма (a), (b) и (c) равна 100 частям; где вяжущее дополнительно включает активатор шлака, включающий на 100 частей суммы (a) и (b): от 1,4 до 6,55 частей соли щелочного металла в выражении на эквивалент Na2O; и от 1,1 до 11,0 частей сульфата кальция в выражении на SO3.

Изобретение относится к составам сырьевых смесей, которые могут найти применение в качестве вяжущих строительных материалов. Технический результат заключается в повышении прочности изделий.

Изобретение относится к промышленности строительных материалов и может быть использовано промышленными и строительными организациями для огнезащиты строительных конструкций.

Изобретение относится к строительству автомобильных дорог и может быть применено для стабилизирования верхних рабочих слоев грунтовых оснований дорожных одежд.

Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении материалов на основе древесных заполнителей. Техническим результатом является создание дешевого строительного материала с обеспечением прочностных характеристик и плотности, снижение энергозатрат при производстве арболита и утилизация отходов за счет использования вторичного древесного заполнителя и бесцементного вяжущего, полученного на основе отходов промышленности.

Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении материалов на основе древесных заполнителей. Технический результат заключается в создании более дешевого строительного материала с обеспечением прочностных характеристик и плотности, улучшении качества изделий, снижении энергозатрат при производстве арболита и утилизации отходов.

Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении материалов на основе древесных заполнителей. Техническим результатом является улучшение условий гидратации цемента в арболитовой смеси, повышение прочности арболита, снижение энергозатрат и утилизация отходов.

Настоящее изобретение относится к технологии получения древесно-полимерных композиций. Описан способ получения теплоизоляционного материала на основе древесных и термопластичных отходов, включающий смешение наполнителя, связующего и химической добавки, отличающийся тем, что в качестве наполнителя используют древесную технологическую щепу толщиной 4±2 мм, в качестве связующего используют термопластичные пластмассы, состоящие из полиэтилентерефталата (ПЭТ), полистирола (ПС), полиэтилена низкого давления (ПЭНД) и полиэтилена высокого давления (ПЭВД) полимеров, в качестве химической добавки используют вспенивающий агент азодикарбонамид (ADC), предварительно смешанный со связующим, при этом смешение наполнителя и связующего с химической добавкой осуществляют при температуре 215±15°C, при соотношении всех компонентов смеси, масс.%: ПЭТ 11-13, ПС 12-14, ПЭНД 11-13, ПЭВД 10-13, азодикарбонамид 1-2, технологическая щепа 55-45, после смешения всех компонентов полученную смесь заливают в формы, формы закрывают крышкой, фиксируют запорами и выдерживают в течение 20-30 мин.

Изобретение относится к производству строительных материалов и изделий, а именно к способам изготовления легких бетонных изделий с древесным наполнителем, и может быть использовано в качестве конструкционного материала при строительстве домов, технических сооружений и т.д.
Изобретение относится к промышленности строительных материалов, в частности к производству стеновых и теплоизоляционных материалов и изделий из опилкобетона. Технический результат заключается в увеличении скорости набора прочности опилкобетонных штучных изделий в ранние сроки твердения без предварительной химической обработки и минерализации опилок.
Изобретение относится к промышленности строительных материалов, в частности к производству стеновых и теплоизоляционных материалов и изделий из опилкобетона. Технический результат заключается в увеличении скорости набора прочности опилкобетонных полнотелых кирпичей в ранние сроки твердения без предварительной химической обработки и минерализации опилок.

Изобретение относится к древесно-цементным смесям для изготовления теплоизоляционных и конструкционных строительных материалов. Технический результат заключается в повышении прочности и экологичности материала из предлагаемой смеси.

Изобретение относится к производству строительных материалов и может быть использовано для изготовления теплоизоляционных, конструкционно-теплоизоляционных и конструкционных бетонов для жилищного и гражданского строительства.
Изобретение относится к производству теплоизоляционных материалов и может быть использовано в строительстве жилых и промышленных зданий. Технический результат заключается в снижении теплопроводности с использованием вторичного волокнистого сырья.

Изобретение относится к линейным конструкциям верхнего строения рельсовых путей. Способ переработки древесных и термополимерных отходов с получением железнодорожных шпал включает смешение наполнителя и связующего и формование композиционной смеси. В качестве наполнителя используют древесные частицы толщиной 6±2 мм, шириной 15±2 мм, длиной до 50±4 мм. В качестве связующего используют вторичные термопластичные полимеры - полиэтилентерефталат, измельченные до условного диаметра 10 мм. Смесь нагревают до 100°С при соотношении компонентов: древесные частицы 70 мас. %, полиэтилентерефталат 30 мас. %. Затем полученную смесь нагревают до 200°С, формуют в пресс-форме под давлением 5±1 МПа и температуре стенок пресс-формы 210±5°С. Форму фиксируют запорами и выдерживают 15 мин. Предварительно охлаждают пресс-форму в проточной воде в течение 5 мин, далее конвекцией воздуха в течение 15 мин. Затем извлекают композиционный материал и выдерживают в течение 24 часов при температуре воздуха 18±3°С. Обеспечивается получение материала с повышенной прочностью и долговечностью. 1 ил., 1 табл.
Наверх