Битумная композиция

Изобретение относится к битумным композициям и может быть использовано для получения битумных композиций, применяемых в дорожном строительстве. Разработана битумная композиция, применяемая в дорожном строительстве, включающая в себя смесь окисленного битума с нефтяным неокисленным нефтепродуктом. При этом в качестве неокисленного нефтепродукта содержит кубовый остаток ректификации продуктов каталитического крекинга вакуумного дистиллята и дополнительно содержит депрессорно-диспергирующую присадку при соотношении, соответственно, окисленный битум : кубовый остаток ректификации продуктов каталитического крекинга вакуумного дистиллята : депрессорно-диспергирующая присадка 97,2-99,5:0,4-2,5:0,1-0,3 мас.%. Техническим результатом является упрощение состава битумной композиции при одновременном улучшении качественных характеристик. 1 табл.

 

Изобретение относится к битумным композициям и может быть использовано для получения битумных композиций, применяемых в дорожном строительстве.

Известна битумная композиция, полученная смешением окисленного продукта на основе смеси асфальтита процесса пропановой деасфальтизации гудрона с добавкой, выбранной из группы: тяжелый газойль каталитического крекинга, тяжелый прямогонный газойль - фракция 470-520°C «слоп», экстракт селективной очистки остаточных масел в количестве 1-10% масс. на сырье процесса окисления, и гудрона в соотношении, соответственно, окисленный продукт: гудрон 30-35% масс. и 65-70% масс. (Патент РФ №2349625, 2009).

Недостатком битумной композиции является то, что не все нефтеперерабатывающие заводы имеют в своем составе установки пропановой деасфальтизации гудрона и, как следствие, не производят асфальтит процесса пропановой деасфальтизации гудрона, что ограничивает применение данной композиции.

Известна также битумная композиция, полученная путем вакуумной перегонки мазута с получением утяжеленного гудрона, содержащего не более 2% масс. парафиновых углеводородов и не менее 20% масс. парафинонафтеновых углеводородов. Утяжеленный гудрон затем смешивается с модифицирующими добавками (концентрат полициклических ароматических углеводородов, являющихся продуктами переработки нефти) с получением подготовленного гудрона. Подготовленный гудрон делят на две части, одна из которых окисляется кислородом воздуха при температуре 240-270°C, после чего в нее вводится оставшаяся неокисленная часть подготовленного гудрона в соотношении, необходимом для получения целевого продукта (Патент РФ №2235109, 2004).

Недостатком битумной композиции является то, что процесс ее получения является достаточно сложным: необходима глубокая вакуумная разгонка, при этом температура 10% выкипаемости гудрона составляет 563°C, что не всегда допустимо для ряда нефтей. Например, нефти, содержащие соединения ванадия и никеля, при вакуумной разгонке отгоняются до температуры 530°C, чтобы не иметь превышения количества соединений ванадия и никеля в вакуумных дистиллатах выше технологических норм гидрокрекинга.

Другим недостатком является сложность приготовления композиции, т.к. необходимо несколько стадий смешения: предварительного приготовления подготовленного гудрона и последующего смешения окисленного битума и подготовленного гудрона.

Наиболее близким аналогом заявляемого изобретения является композиция компаундированного битума, представляющая собой смесь окисленного битума с нефтяными неокисленными нефтепродуктами, в качестве которых используют: гудрон - фракцию с началом кипения 500°C, дистиллятную фракцию 480-610°C - «слоп» и экстракт селективной очистки остаточной масляной фракции при следующем соотношении компонентов, % масс.: гудрон - 1-5, «слоп» - 4-20, экстракт - 5-25, окисленный битум - остальное до 100. Компоненты смешивают в последовательности гудрон, «слоп», экстракт и к полученной 3-компонентной смеси добавляют окисленный битум (Патент РФ №2302447, 2007).

Недостатком композиции является многокомпонентность смеси, т.к. поддержание состава четырехкомпонентной смеси в оптимальных пределах (особенно при варьировании параметров качества сырьевых компонентов) сопряжено со значительными технологическими трудностями.

Следует отметить, что в 2011 г. Государственная компания «Автодор» выпустила стандарт СТО Автодор 2.1-2011 «Битумы нефтяные дорожные улучшенные. Технические условия» (г. Москва, 2011), в котором, исходя из необходимости улучшения качества и долговечности дорожного покрытия на основе асфальтобетона, резко ужесточила требования к качеству дорожных битумов по сравнению с требованиями ГОСТ 22245-90.

Особенно это коснулось нефтебитумов, применяемых во II и III дорожно-климатических зонах (это основная масса применяемых в Российской Федерации дорожных нефтебитумов) - марки БНД-85 по СТО Автодор 2.1-2011.

Существенное внимание в новом стандарте уделено изменению свойств битумов в ходе прогрева в тонкой пленке, моделирующего старение вяжущего (введено 5 дополнительных характеристик), а также вязкостным свойствам (4 характеристики).

Задачей изобретения является упрощение состава битумной композиции при одновременном улучшении качественных характеристик, позволяющих обеспечить полное соответствие получаемой композиции требованиям СТО Автодор 2.1-2011 марки БНДУ-85 (улучшенный).

Поставленная задача решается разработкой битумной композиции, применяемой в дорожном строительстве, включающей в себя смесь окисленного битума с неокисленным нефтепродуктом, которая отличается тем, что в качестве неокисленного нефтепродукта содержит кубовый остаток ректификации продуктов каталитического крекинга вакуумного дистиллята и дополнительно содержит депрессорно-диспергирующую присадку при соотношении, соответственно, окисленный битум : кубовый остаток ректификации продуктов каталитического крекинга вакуумного дистиллята : депрессорно-диспергирующая присадка 97,2-99,5:0,4-2,5:0,1-0,3% масс.

Для исследования использовались:

- битумы дорожные окисленные с КИШ 50°C (примеры 1.1-1.9), 51°C (примеры 2.1 и 2.2) и 53°C (примеры 3.2-3.4) (полные показатели приведены в таблице 1);

- кубовый остаток ректификации продуктов каталитического крекинга вакуумного дистиллята (английское название - «сларри») (Мейерс Р.А. «Основные процессы нефтепереработки», Санкт-Петербург, «Профессия», 2011, с. 199). Данный продукт остается в кубе ректификационной колонны после выделения бензина, легкого и тяжелого газойлей каталитического крекинга и в основном направляется на повторное смешение с катализатором в реакционную зону. Оптимизация процесса каталитического крекинга позволила выделить часть этого продукта для самостоятельного применения (в частности, как сырья для производства технического углерода - сажи), поэтому появилась возможность использовать данный продукт и в заявленной композиции.

Продукт имеет следующие показатели:

Плотность при 20°C - 1069 кг/м3;

Фракционный состав (% об.):

Н.К. - 321°C

10% - 368°C

20% - 377°C

30% - 387°C

40% - 398°C

50% - 412°C

60% - 426°C

70% - 446°C

80% - 475°C

90% - 503°C

К.К. - 529°C

- депрессорно-диспергирующая присадка фирмы БАСФ (Германия) Basoflux RD 4119 (или Basoflux RD 5119), которая является ингибитором парафиноотложений и депрессором температуры застывания в нефтях и тяжелых нефтяных фракциях.

Присадки Basoflux RD 4119 или Basoflux RD 5119 являются раличными товарными формами одного и того же активного вещества, различаясь только составом растворителя, поэтому результаты, получаемые с их применением, идентичны.

Кроме этого в сравнительных опытах использовались:

- модификатор битума ДСТ-30-01 (стирол-бутадиен-стирольный) производства ВФ ФГУП «НИИСК»;

- тяжелый газойль каталитического крекинга, имеющий следующие показатели:

Плотность при 20°C - 1000,2 кг/м3;

Фракционный состав (% об.):

Н.К. - 236°C

10% - 327°C

20% - 341°C

30% - 350°C

40% - 356°C

50% - 360°C

60% - 367°C

70% - 374°C

80% - 382°C

90% - 396°C

К.К. - 450°C

Также был выполнен сопоставительный опыт по композиции с применением гудрона, слопа, экстракта селективной очистки остаточной масляной фракции и окисленного битума (Патент РФ №2302447, 2007).

Битумную композицию готовят путем предварительного нагрева до 150°C исходного окисленного битума, введения в него добавок и перемешивания в течение 30 мин. Данные по составу и качеству полученных композиций дорожного битума представлены в табл. 1.

Следующие примеры из серии использования окисленных дорожных битумов являются сравнительными: с КИШ 50°C - 1.1, 1.2, и 1.6, 1.7, 1.8, 1.9, с КИШ 51°C - 2.1, а также с КИШ 53°C - 3.1.

Анализ полученных результатов показывает:

Предположение о том, что кубовый остаток ректификации продуктов каталитического крекинга, будучи концентратом тяжелых ароматических углеводородов, должен улучшить показатели качества базового окисленного битума, в примере 1.2 подтвердились: улучшились показатели качества по пенетрации при 25°C и 0°C, дуктильность при 25°C и 0°C. Однако не удалось достичь нормированной дуктильности при 25°C после окисления в тонкой пленке (73 при норме ≥80).

Было выдвинуто еще одно предположение о том, что вещества, диспергирующие парафины в нефтях и тяжелых нефтяных фракциях, должны также улучшать качество базового битума. Пример 1.6 подтвердил это предположение - улучшились показатели дуктильности при 25°C и 0°C, температура хрупкости, и частично пенетрации при 0°C. Однако показателей СТО Автодор 2.1-2011 по пенетрации при 25°C и дуктильности при 25°C после окисления в тонкой пленке достичь не удалось.

Примеры 1.7 и 1.8 с добавкой модификатора битума ДСТ-30-1 также не дали положительных результатов.

Пример 1.9 с применением 1% масс. добавки тяжелого газойля каталитического крекинга показывает, что динамическая вязкость составляет при 60°C - 231 Па·с, что ниже нормы СТО Автодор 2.1-2011 (≥250 Па·с), при этом не достигается показатель дуктильности после окисления в тонкой пленке (76 при норме ≥80).

Пример 4 с применением гудрона, слопа, экстракта селективной очистки остаточной масляной фракции и окисленного битума (Патент РФ №2302447, 2007) показал невозможность получения битума БНДУ-85 СТО Автодор 2.1-2011 по показателям динамической вязкости (204 Па·с вместо ≥250 Па·с), пенетрации при 25°C (67 вместо ≥70) и дуктильности после окисления в тонкой пленке при 25°C (72 при норме ≥80).

Добавление кубового остатка ректификации продуктов каталитического крекинга вакуумного дистиллята и депрессорно-диспергирующей присадки к базовому окисленному битуму в примерах 1.4, 1.5, 2.2, 3.2, 3.3, 3.4 обеспечили получение дорожного битума, полностью соответствующего требованиям на битум дорожный улучшенный БНДУ-85 по СТО Автодор 2.1-2011 «Битумы нефтяные дорожные улучшенные. Технические условия».

Примеры 1.3 и 3.4 показали граничное содержание депрессорно-диспергирующей присадки в композиции.

Таким образом, получена битумная композиция, применяемая в дорожном строительстве, позволяющая обеспечить полное соответствие требованиям СТО Автодор 2.1-2011 БНДУ-85 (улучшенный).

Битумная композиция, применяемая в дорожном строительстве, включающая в себя смесь окисленного битума с нефтяным неокисленным нефтепродуктом, отличающаяся тем, что в качестве неокисленного нефтепродукта содержит кубовый остаток ректификации продуктов каталитического крекинга вакуумного дистиллята и дополнительно содержит депрессорно-диспергирующую присадку при соотношении, соответственно, окисленный битум : кубовый остаток ректификации продуктов каталитического крекинга вакуумного дистиллята : депрессорно-диспергирующая присадка 97,2-99,5:0,4-2,5:0,1-0,3 мас.%.



 

Похожие патенты:

Изобретение относится к области нефтепереработки, в частности, к способу получения полисульфидного битума. Для получения полисульфидного битума осуществляют подготовку сырья путем вакуумной перегонки мазута в вакуумной колонне при остаточном давлении верха колонны 15-25 мм рт.ст., полученный гудрон подают в буферную емкость, где смешивают его с битумным компаундом, представляющим собой переокисленный битум с температурой размягчения Тразм=50-60°С, поступившим из верхней части окислительного реактора, подают полученную смесь с температурой не ниже 170°С в среднюю часть окислительного реактора под решетчатую тарелку, куда одновременно с сырьем подают воздушную массу в объеме до 160 м3/т сырья, при этом реакцию окисления в зоне первичного окисления ведут при температуре 215-230°С в течение 8-35 мин с последующим ее понижением до 190-210°С с получением битума, смешивают охлажденный до температуры 135 - 140°С полученный битум с расплавом серы в количестве до 10% от массы битума с последующей термостабилизацией при температуре 135-140°С в течение 60 мин, затем смешивают полученный сульфидный битум с жидкой стеариновой кислотой в количестве до 8% от массы битума с последующей термостабилизацией в течение не менее 240 мин с получением полисульфидного битума.

Изобретение относится к области металлургии, в частности к способам получения и подготовки электродного пека, предназначенного для производства анодной массы, угольной и графитированной продукции, конструкционных углеграфитовых материалов, и может найти применение в коксохимической или нефтеперерабатывающей промышленности.

Изобретение относится к способу и установке для получения битума из нефтяных остатков и может быть использовано в нефтеперерабатывающей промышленности для производства битумов различных марок.

Изобретение относится к способу получения битумов нефтяных дорожных и может быть использовано в дорожной, строительной и нефтеперерабатывающей отраслях промышленности.

Изобретение относится к способу получения битумов нефтяных дорожных и может быть использовано в дорожной, строительной и нефтеперерабатывающей отраслях промышленности.

Изобретение относится к способу получения компаундированного битума из остатков перегонки нефти (гудрон/полугудрон) и может быть использовано в нефтеперерабатывающей, дорожной или строительной отраслях промышленности.
Изобретение относится к области нефтепереработки, в частности к способу получения модифицированного олигомерно-сернистого битума. Для получения модифицированного битума осуществляют подготовку сырья путем вакуумной перегонки мазута в вакуумной колонне при остаточном давлении верха колонны 15-25 мм рт.ст.

Изобретение может быть использовано в области получения углеродных материалов, используемых в атомной энергетике, авиационной и космической технике, машиностроении.
Изобретение относится к способам получения пека-связующего для электродных материалов и может быть использовано в электродной промышленности. Проводят обработку воздухом смеси каменноугольного пека с нефтяным пеком или с тяжелыми нефтяными остатками в поле гидроударно-кавитационных импульсов.

Изобретение относится к области нефтепереработки, в частности к способу получения битума путем окисления. Способ включает обработку исходного сырья с получением целевого продукта и последующим его компаундированием с получением дорожного битума.

Изобретение относится к области строительных материалов и изделий, а именно к способу приготовления асфальтобетонной смеси. Способ приготовления асфальтобетонной смеси, содержащей битум в количестве 3-9 мас.%, гидролизный лигнин фракции от 0 до 2,5 мм влажностью 10-50% в количестве 3-10 мас.% и минеральный материал, включающий щебень в количестве 30-70 мас.% и песок из отсевов дробления - остальное, включает одновременную подачу гидролизного лигнина и разогретого до 130-150°С битумного вяжущего в смеситель с разогретым до 130-150°С минеральным материалом.

Изобретение относится к нефтехимической промышленности, в частности к получаемым из нефти продуктам, востребованным в автодорожной отрасли. Продукт предназначен для полимерно-битумных вяжущих (ПБВ), применяемых для дорожного строительства, для мастик и гидроизоляционных материалов.
Изобретение относится к дорожному строительству, а именно к производству жидких битумных материалов, которые могут найти широкое применение в качестве вяжущих для выполнения строительных, ремонтных, гидроизоляционных, монтажных и других видов работ.

Изобретение относится к области дорожного строительства, в частности к стабилизирующим добавкам, используемым при производстве щебеночно-мастичных асфальтобетонных смесей (ЩМАС).
Изобретение относится к дорожному строительству, а именно к технологии приготовления асфальтобетонных смесей для устройства верхнего и нижнего слоев покрытий дорожных одежд автомобильных дорог, велосипедных дорожек, тротуаров и площадок.

Группа изобретений относится к способу изготовления ленточного дорожно-строительного материала на основе полимерно-битумных вяжущих и может быть использована для обеспечения герметизации стыков и сопряжений при устройстве дорожных покрытий, мостовых сооружений и аэродромов.

Изобретение относится к способу получения привитых полимеров из полимера на основе конъюгированных звеньев диена и привитого компонента-производного тиола и может быть использовано для битум-полимерной композиции.

Изобретение относится к привитому полимеру GP, включающему основную цепь полимера Р и по меньшей мере один привитой компонент G, связанный с основной цепью полимера, причем привитой компонент G имеет общую формулу -S-R1-X-R2, в которой R1 и R2 независимо друг от друга представляют собой линейные или разветвленные, ненасыщенные или насыщенные углеводородные группы такие, что общее число атомов углерода в группах R1 и R2 составляет от 2 до 110; Х представляет собой амидную, амидо-кислотную функциональную группу, функциональную группу мочевины или уретана, причем привитой компонент G связан с цепью полимера Р через атом серы, при этом цепь Р получена в результате сополимеризации звеньев диена с сопряженными двойными связями и звеньев моновинилового ароматического углеводорода.

Изобретение относится к области строительного производства в автодорожной отросли и может быть применено при изготовлении асфальтобетона, в том числе с использованием нанотехнологий.

Изобретение относится к дорожному строительству, а именно к составам асфальтобетонной смеси. Асфальтобетонная смесь включает вяжущее на битумной основе и минеральную часть, содержащую щебень, шлаковый песок размером 0-5 мм и минеральный порошок, при этом вяжущее дополнительно включает серу при соотношении серы с битумом 10-40:60-90, указанное серобитумное вяжущее содержится в количестве 4,5-6,0 мас.% сверх 100% по отношению к минеральной части, в качестве минерального порошка смесь содержит порошкообразные отходы электродного производства, состоящие в основном из углерода, в качестве щебня - известняковый щебень и указанного песка - песок из шлаков Надеждинского металлургического комбината при следующем соотношении компонентов, мас.%: битум - 3,6-4,05 сверх 100% от минеральной части; сера - 0,45-2,4 сверх 100% от минеральной части; щебень - 50,5-60,0; шлаковый песок - 32,5-40,3; минеральный порошок - 6,5-11,0.

Изобретение раскрывает привитой полимер, содержащий цепь основного полимера Р, содержащую сопряженные диеновые звенья; по меньшей мере одну боковую привитую цепь G, представленную следующей общей формулой (1)R-(OCH2CH2)m-S-, (1)где R представляет собой насыщенную, линейную или разветвленную углеводородную цепь, содержащую по меньшей мере 18 атомов углерода, а m представляет собой целое число, варьирующееся в диапазоне от 0 до 20, при этом указанная привитая цепь G связана с цепью основного полимера Р через атом серы из формулы (1); и по меньшей мере одну привитую цепь G’, представленную следующей общей формулой (4)-S-R’-S-, (4)где R’ представляет собой углеводородную группу, насыщенную или ненасыщенную, линейную или разветвленную, циклическую и/или ароматическую, содержащую от 2 до 40 атомов углерода, необязательно содержащую один или несколько гетероатомов, при этом указанная привитая цепь G’ связана с цепью основного полимера Р с использованием каждого атома серы из формулы (4). Изобретение раскрывает способ получения привитого полимера и его применение для получения термообратимо сшитой композиции битум/полимер. Настоящее изобретение также относится к термообратимо сшитой композиции битум/полимер, содержащей такой привитой полимер, к способу ее получения и к битумной смеси, включающей такую композицию. Технический результат заключается в улучшении реологических свойств, в частности механических и эластических свойств, и когезионной способности термообратимо сшитых композиций битум/полимер. 6 н. и 14 з.п. ф-лы, 2 табл.
Наверх