Теплофикационная турбоустановка

Изобретение относится к области теплоэнергетики. В теплофикационной турбоустановке, содержащей теплофикационную турбину с отборами пара, подключенными к регенеративным и сетевым подогревателям, конденсатор с подключенным к нему основным эжектором, трубопровод основного конденсата турбины с включенными в него регенеративными подогревателями низкого давления, охладитель пара уплотнений турбины, деаэратор подпиточной воды тепловой сети с подключенными к нему трубопроводами исходной воды, греющего агента, деаэрированной подпиточной воды тепловой сети, трубопровод отработавшего пара основного эжектора подключен к патрубку греющего агента деаэратора подпиточной воды тепловой сети, а охладитель пара уплотнений турбины по охлаждающей среде включен в трубопровод исходной воды перед деаэратором подпиточной воды тепловой сети. Изобретение позволяет повысить надежность и экономичность работы установки за счет надежного охлаждения охладителя пара уплотнений турбины, отказа от охладителя основного эжектора и исключения необходимости рециркуляции основного конденсата через эти охладители в режимах работы турбины с малыми пропусками пара в конденсатор и, следовательно, исключения потерь теплоты от этих охладителей в конденсаторе турбины. 1 ил.

 

Изобретение относится к области теплоэнергетики и может быть использовано на теплофикационных турбоустановках.

Известен аналог - теплофикационная турбоустановка, содержащая теплофикационную турбину с отборами пара, подключенными к регенеративным и сетевым подогревателям. В трубопровод основного конденсата турбины между конденсатором турбины и регенеративными подогревателями низкого давления последовательно включены охладитель основного эжектора турбины и охладитель пара уплотнений. Теплофикационная турбоустановка также содержит деаэратор подпиточной воды тепловой сети с подключенным к нему трубопроводом исходной воды, в который включен подогреватель исходной воды. К трубопроводу основного конденсата турбины после охладителя основного эжектора турбины, охладителя пара уплотнений турбины и перед подогревателями низкого давления подключен трубопровод рециркуляции конденсата, который также подключен к конденсатору турбины (см. кн. В.Я. Рыжкина «Тепловые электрические станции», М.: Энергия, 1976, рис. 14-4 на с. 211). Этот аналог принят в качестве прототипа.

Недостаток аналога и прототипа заключается в пониженной надежности и экономичности работы теплофикационной турбоустановки при работе турбины с малыми пропусками пара в конденсатор, когда конденсата турбины недостаточно для охлаждения охладителя основного эжектора и охладителя пара уплотнений. Для увеличения расхода конденсата через эти охладители в известных аналогах включают рециркуляцию конденсата, приводящую к существенным потерям теплоты в конденсаторе турбины.

Техническим результатом, достигаемым настоящим изобретением, является повышение надежности и экономичности теплофикационной турбоустановки путем повышения эффективности охлаждения охладителя пара уплотнений турбины, отказа от охладителя основного эжектора и путем снижения потерь теплоты в конденсаторе в теплофикационных режимах с минимальными пропусками пара в конденсатор.

Для достижения этого результата предложена теплофикационная турбоустановка, содержащая теплофикационную турбину с отборами пара, подключенными к регенеративным и сетевым подогревателям, конденсатор с подключенным к нему основным эжектором, трубопровод основного конденсата турбины с включенными в него регенеративными подогревателями низкого давления, охладитель пара уплотнений турбины, деаэратор подпиточной воды тепловой сети с подключенными к нему патрубком греющего агента и трубопроводами исходной воды, деаэрированной подпиточной воды тепловой сети.

Особенность заключается в том, что трубопровод отработавшего пара основного эжектора подключен к патрубку греющего агента деаэратора подпиточной воды тепловой сети, а охладитель пара уплотнений турбины по охлаждающей среде включен в трубопровод исходной воды перед деаэратором подпиточной воды тепловой сети.

Новая взаимосвязь элементов теплофикационной турбоустановки позволяет повысить надежность и экономичность работы установки за счет надежного охлаждения охладителя пара уплотнений турбины, отказа от охладителя основного эжектора и исключения необходимости рециркуляции основного конденсата через эти охладители в режимах работы турбины с малыми пропусками пара в конденсатор и, следовательно, исключения потерь теплоты от этих охладителей в конденсаторе турбины.

Далее рассмотрим сведения, подтверждающие возможность осуществления изобретения с получением искомого технического результата.

На чертеже изображена принципиальная схема теплофикационной турбоустановки. Установка содержит теплофикационную турбину 1 с конденсатором 2, отборами пара, трубопровод 3 основного конденсата теплофикационной турбины 1 с включенными в него регенеративными подогревателями 4 низкого давления. Отборы пара теплофикационной турбины 1 подключены к регенеративным подогревателям 4 низкого давления и к сетевым подогревателям 5. К деаэратору 6 подпиточной воды тепловой сети подключены трубопровод 7 исходной воды с включенным в него охладителем 8 пара уплотнений турбины, патрубок 9 греющего агента с подключенным к нему трубопроводом 10 отработавшего пара основного эжектора и трубопровод 11 деаэрированной подпиточной воды тепловой сети. Трубопровод 11 деаэрированной подпиточной воды тепловой сети подключен к трубопроводу 12 тепловой сети перед сетевыми подогревателями 5.

Теплофикационная турбоустановка работает следующим образом.

Вырабатываемый в паровом котле пар направляется в теплофикационную турбину 1. Отработавший в турбине пар конденсируют в конденсаторе 2, после которого основной конденсат турбины подогревают в регенеративных подогревателях 4 низкого давления. Пар уплотнений турбины направляют в охладитель 8 пара уплотнений турбины, а отработавший пар основного эжектора направляют в патрубок 9 греющего агента деаэратора 6 по трубопроводу 10. В деаэратор 6 подпиточной воды тепловой сети подают нагретую в охладителе 8 пара уплотнений турбины исходную воду и через патрубок 9 в качестве греющего агента отработавший пар основного эжектора. Деаэрированная подпиточная вода тепловой сети по трубопроводу 11 отводится в трубопровод 12 тепловой сети. Благодаря включению охладителя 8 в трубопровод 7 деаэратора 6 и подключению трубопровода 10 к патрубку 9 греющего агента деаэратора 6, деаэратор 6 выполняет функцию охладителя основного эжектора, и создаются более благоприятные условия для охлаждения охладителя 8 пара уплотнений турбины.

Таким образом, новая взаимосвязь элементов позволяет обеспечить надежное охлаждение этого теплообменника в теплофикационных режимах с минимальными пропусками пара в конденсатор, отказаться от охладителя основного эжектора и снизить потери теплоты в конденсаторе.

Теплофикационная турбоустановка, содержащая теплофикационную турбину с отборами пара, подключенными к регенеративным и сетевым подогревателям, конденсатор с подключенным к нему основным эжектором, трубопровод основного конденсата турбины с включенными в него регенеративными подогревателями низкого давления, охладитель пара уплотнений турбины, деаэратор подпиточной воды тепловой сети с подключенными к нему трубопроводами исходной воды, греющего агента, деаэрированной подпиточной воды тепловой сети, отличающаяся тем, что трубопровод отработавшего пара основного эжектора подключен к патрубку греющего агента деаэратора подпиточной воды тепловой сети, а охладитель пара уплотнений турбины по охлаждающей среде включен в трубопровод исходной воды перед деаэратором подпиточной воды тепловой сети.



 

Похожие патенты:

Изобретение относится к теплоэнергетике. В способе работы теплоцентрали (ТЭЦ) с открытой теплофикационной системой с турбоагрегатами типа Р и ПТ и приключенной теплофикационной паровой турбиной, подключенной к промышленному паропроводу ТЭЦ и снабженной конденсатором с двумя поверхностями нагрева, в первой поверхности нагрева подогревают смешанные потоки холодной и подогретой в ней рециркулируемой сырой воды, для конденсации этих потоков на первой поверхности используют 70-75% от номинального расхода пара в конденсатор этой турбины, вторую поверхность нагрева конденсатора используют для конденсации 30-25% пара с пропуском через нее циркуляционной воды; кратность рециркуляции сырой воды, дополнительно подогреваемой в первой поверхности нагрева, регулируют с учетом расхода и температуры холодной сырой воды и ее температуры перед умягчением, паром из теплофикационного отбора приключенной турбины производят дополнительный подогрев сырой воды перед ее умягчением, а также подогрев декарбонизированной подпиточной воды.

Изобретение относится к области теплоэнергетики и может быть использовано для повышения экономичности теплофикационных турбин с двухступенчатым подогревом сетевой воды на режимах с повышенной по отношению к номинальной температурой прямой сетевой воды.

Изобретение относится к области теплоэнергетики. Способ контроля герметичности вакуумных систем турбоустановок, по которому по местам истечения пара избыточного давления визуально определяют неплотности вакуумной системы, опрессовку паром цилиндра среднего давления теплофикационной турбоустановки и подключенных к этому цилиндру сетевых подогревателей и регенеративных подогревателей низкого давления производят паром избыточного давления, который подают в цилиндр среднего давления, например, через паропровод отопительного отбора, при включенном валоповоротном устройстве турбоустановки, при полностью закрытой поворотной регулирующей диафрагме, при закрытой запорной арматуре на паропроводах отборов к деаэратору питательной воды и подогревателям высокого давления и при открытой запорной арматуре на паропроводах отборов к сетевым подогревателям и регенеративным подогревателям низкого давления.

Изобретение относится к области теплоэнергетики. Теплофикационная турбоустановка содержит теплофикационную турбину с отборами пара, подключенными к регенеративным и сетевым подогревателям, конденсатор, трубопровод основного конденсата турбины с включенными в него охладителем пара уплотнений турбины и регенеративными подогревателями низкого давления, охладитель основных эжекторов, деаэратор подпиточной воды тепловой сети с подключенными к нему трубопроводами исходной воды, греющего агента, деаэрированной подпиточной воды тепловой сети.

Изобретение относится к энергетике. Теплофикационная турбоустановка содержит теплофикационную турбину с отборами пара, подключенными к регенеративным и сетевым подогревателям, конденсатор, трубопровод основного конденсата турбины с включенными в него охладителем основных эжекторов и регенеративными подогревателями низкого давления, охладитель пара уплотнений турбины, деаэратор подпиточной воды тепловой сети с подключенными к нему трубопроводами исходной воды, греющего агента, деаэрированной подпиточной воды тепловой сети.

Изобретение относится к энергетике. Способ контроля герметичности вакуумных систем турбоустановок, по которому по местам истечения пара избыточного давления визуально определяют неплотности вакуумной системы, причём опрессовку паром цилиндров низкого и среднего давления теплофикационной турбоустановки и подключенных к этим цилиндрам конденсатора, сетевых подогревателей и регенеративных подогревателей низкого давления производят на горячей турбине, непосредственно после ее останова, паром избыточного давления, который подают в цилиндр среднего давления при включенном валоповоротном устройстве турбоустановки, при открытой поворотной регулирующей диафрагме, при закрытой запорной арматуре на паропроводах отборов к деаэратору питательной воды и подогревателям высокого давления и при открытой запорной арматуре на паропроводах отборов к сетевым подогревателям и регенеративным подогревателям низкого давления.

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электростанциях. Способ включает вырабатывание пара в паровом котле и подачу его в теплофикационную турбину, отборы пара которой направляют на регенеративные и сетевые подогреватели, а отработавший пар турбины направляют в конденсатор турбины.

Изобретение относится к области теплоэнергетики и может быть использовано в тепловых электростанциях. Способ включает вырабатывание пара в паровом котле и подачу его в теплофикационную турбину.

Изобретение относится к области энергетики. В способе работы тепловой электрической станции в паровой турбине используют систему маслоснабжения подшипников паровой турбины с маслоохладителем, утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара и утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре.

Изобретение относится к области энергетики. В способе работы тепловой электрической станции, по которому отработавший пар поступает из первой паровой турбины в паровое пространство конденсатора, внутри конденсаторных трубок которого протекает охлаждающая жидкость, а пар отопительных параметров из отборов паровой турбины поступает в паровое пространство нижнего и верхнего подогревателей, внутри которых протекает охлаждающая жидкость, в тепловой электрической станции используют конденсационную установку, имеющую конденсатор второй паровой турбины, осуществляют утилизацию высокопотенциальной теплоты пара, при этом утилизацию тепловой энергии осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре.

Изобретение относится к области теплоэнергетики и предназначено для использования на тепловых электростанциях. Тепловая электрическая станция содержит парогазовую установку с газовой турбиной, компрессором газотурбинной установки, камерой сгорания, котлом-утилизатором, паровой турбиной с конденсатором, к которому подключены трубопроводы охлажденной и нагретой циркуляционной воды. В трубопровод нагретой циркуляционной воды включен основной испаритель теплонасосной установки (ТНУ), дополнительный испаритель ТНУ включен в линию охлаждения циклового атмосферного воздуха перед компрессором газотурбинной установки. Основной конденсатор ТНУ включен в трубопровод основного конденсата паровой турбины, дополнительный конденсатор ТНУ включен в линию нагрева циклового атмосферного воздуха перед компрессором газотурбинной установки. Изобретение позволяет повысить экономичность и надежность тепловой электрической станции за счет снижения потерь теплоты нагретой циркуляционной воды, уменьшения мощности устройств для охлаждения нагретой циркуляционной воды конденсатора паровой турбины, постоянного поддержания оптимальной температуры циклового атмосферного воздуха для газотурбинной установки, а также исключения возможности обледенения входной части компрессора газотурбинной установки в холодный период года. 1 ил.

Изобретение относится к области теплоэнергетики. Теплофикационная турбоустановка содержит теплофикационную турбину с отборами пара, подключенными к регенеративным и сетевым подогревателям, конденсатор, охладитель пара уплотнений турбины, трубопровод основного конденсата турбины с включенными в него охладителем основных эжекторов и регенеративными подогревателями низкого давления, деаэратор добавочной питательной воды с подключенными к нему трубопроводами исходной воды, греющего агента, деаэрированной добавочной питательной воды. Охладитель пара уплотнений турбины включен по охлаждающей среде в трубопровод греющего агента деаэратора добавочной питательной воды, трубопровод конденсата охладителя пара уплотнений турбины подключен к теплообменнику, включенному по охлаждающей среде в трубопровод исходной воды деаэратора добавочной питательной воды, а трубопровод деаэрированной добавочной питательной воды подключен к трубопроводу основного конденсата турбины между конденсатором и охладителем основных эжекторов. Изобретение позволяет повысить надежность и экономичность работы установки за счет полезного использования конденсата охладителя пара уплотнений турбины, надежного охлаждения охладителя основных эжекторов и охладителя пара уплотнений турбины, исключить необходимость рециркуляции основного конденсата через эти охладители в режимах работы турбины с малыми пропусками пара в конденсатор и, следовательно, исключить потери теплоты от этих охладителей в конденсаторе турбины. 1 ил.

Изобретение относится к теплоэнергетике, в частности к тепловым электростанциям промышленных предприятий, где применяются башенные или вентиляторные градирни. Конденсационная паротурбинная электростанция, содержащая котельную установку, паротурбинную установку и электрические устройства, обеспечивающие выработку электроэнергии потребителю. Электростанция также содержит градирню, которая выполнена с системой оборотного водоснабжения, причем данная система имеет раздельные гидравлические контуры приготовления и потребления воды для градирни, и при этом содержит два бака для сбора воды с системой подпитки воды, затрачиваемой на испарение. Также каждая из форсунок, размещенных в верхней части оросительного устройства градирни, содержит цилиндрический полый корпус с соплом и центральным сердечником. Изобретение позволяет повысить эффективность работы электростанции, а также позволяет достигнуть рационального использования вторичных энергоресурсов. 1 з.п. ф-лы, 8 ил.

Изобретение относится к энергетике и может быть использовано на тепловых электрических станциях. Тепловая электрическая станция содержит конденсатор паровой турбины, декарбонизатор с воздуховодом, систему оборотного водоснабжения. Система оборотного водоснабжения включает градирню, которая состоит из вытяжной башни и водосборного бассейна, причём вытяжная башня градирни снабжена водораспределительным лотком с разбрызгивающими соплами, оросительным устройством и водоуловителем. При этом форсунка декарбонизатора для распыления жидкости содержит полый корпус с соплом и центральным сердечником. Изобретение позволяет повысить экономичность тепловой электрической станции. 1 з.п. ф-лы, 2 ил.

Изобретение относится к энергетике и может быть использовано на тепловых электрических станциях. Система оборотного водоснабжения градирни, включающая градирню, водоприемный колодец, самотечный водовод, циркуляционный насос, напорный трубопровод к конденсатору паровой турбины и сливной напорный трубопровод к градирне, состоящей из вытяжной башни и водосборного бассейна. Система оборотного водоснабжения дополнительно снабжена форсункой коллектора, который размещён в верхней части корпуса градирни, при этом форсунка содержит полый корпус с соплом и центральным сердечником, корпус выполнен с каналом для подвода жидкости, причём в нижней части центрального цилиндрического сердечника закреплен полый конический завихритель, коническая обечайка которого фиксируется посредством, по крайней мере, трех спиц. Изобретение позволяет повысить экономичность тепловой электрической станции. 3 ил.

Изобретение относится к области энергетики и может быть применено для обеспечения экономичности и автономности систем энергоснабжения. Комбинированная тепло- и электрогенерирующая установка состоит из водогрейного котла районной тепловой сети (РТС), подключенного к контуру сетевой воды, включающему тракт первичной горячей сетевой воды, связанный с тепловыми потребителями, и тракт обратной сетевой воды, связанный с насосом сетевой воды, и энергоустановки на низкокипящем рабочем теле (НКРТ). Энергоустановка содержит парогенератор, включенный в паросиловой контур, турбину с электрогенератором, питательный насос и конденсатор, запорно-регулирующие задвижки. Энергоустановка снабжена дополнительным контуром последовательно соединенных плоских и вакуумных солнечных коллекторов, включающим насос, теплообменник и регулирующий вентиль, причем теплообменник включен в паросиловой контур энергоустановки последовательно, горячим выходом присоединен к парогенератору, а холодным входом - к выходу питательного насоса. Изобретение позволяет получить дополнительную электрическую мощность. 1 ил.

Изобретение относится к энергетике. Способ работы теплоэлектрической станции с регенеративным циклом Ренкина может быть использован на атомных электрических станциях (АЭС) и тепловых электрических станциях (ТЭС). В способе работы теплоэлектрической станции с регенеративным циклом Ренкина, по которому вырабатываемый в котле пар направляют в пароперегреватель, турбину, конденсируют в конденсаторе и деаэрируют, корпус цилиндра турбины снабжают протоками и используют их для регенеративного подогрева конденсата, при этом по протокам прокачивают конденсат в направлении против тока пара в турбине. Изобретение позволяет процесс расширения пара вести по политропе, эквидистантной кривой регенерации тепла, что, в свою очередь, позволяет получить наиболее выгодный по КПД регенеративный цикл Карно. Реализация способа позволяет выполнить теплоэлектрическую станцию с регенеративным циклом Ренкина более интегрированной (компактной), менее металлоемкой и, следовательно, более надежной и менее затратной при сооружении. Кроме того, способ работы теплоэлектрической станции с регенеративным циклом Ренкина дополнительно выполняют по крайней мере с одним промежуточным (вторичным) перегревом пара. 1 з.п. ф-лы, 2 ил.

Изобретение относится к электроэнергетике и может быть использовано для разнесения топливных затрат между видами производимой энергии на теплоэлектроцентралях (ТЭЦ) и в энергообъединениях для оптимизации режимов их работы в целях экономии топлива и улучшения экологической обстановки в стране в целом. Предлагаемый способ позволяет увеличить экономию топлива за счет оптимизации режимов работы ТЭЦ как комбинированного источника по производству электрической и тепловой энергии, максимизировать прибыль производителя и минимизировать себестоимость производства электрической и тепловой энергии. Это достигается тем, что в известном способе распределения топливных затрат на ТЭЦ, при котором для заданного состава работающего оборудования (котлов и турбин) распределяют расход материального энергоресурса (расход топлива, пара) между производством электрической и тепловой энергий по критерию максимизации прибыли за счет регулирования отбора пара с турбин с помощью регулирующего клапана части высокого давления турбинного отделения, определяют энергетические характеристики станции на основе принципа равенства относительных приростов расхода топлива, а также строят на их основе характеристику предельных издержек станции по каждому сезону года и предельных доходов станции на основе кривых спроса по сезонам года, определяют объем оптимальной электрической мощности станции, при этом в начале осуществляют оптимальное распределение электрической энергии тепловых электростанций с учетом ограничений по вынужденному теплофикационному режиму по критерию максимизации прибыли, затем распределяют тепловую энергию между агрегатами станции по методу для оптимизации режимов работы станции по электрической энергии, а далее осуществляют разнесение топливных затрат (топлива, пара) между видами производимой энергии (электрической и тепловой) путем регулирования значений отборов пара с турбин с помощью регулирующего клапана части высокого давления турбинного отделения по критерию максимума прибыли и в результате находят оптимальный режим работы станций для комбинированного способа производства электрической и тепловой энергии, на заключительном этапе производят корректировку распределения нагрузки на станции на основе сравнения результатов наивыгоднейшего распределения электроэнергии между агрегатами станции по сезонам года и результатов управления функционированием станции как источника комбинированного производства и распределяют расход топлива между выработкой электрической и тепловой энергий на станции по разработанной модели оптимального распределения электроэнергии между ее агрегатами по критерию максимизации прибыли. 5 ил.

Изобретение относится к области теплоэнергетики. В теплофикационной турбоустановке, содержащей теплофикационную турбину с отборами пара, подключенными к регенеративным и сетевым подогревателям, конденсатор с подключенным к нему основным эжектором, трубопровод основного конденсата турбины с включенными в него регенеративными подогревателями низкого давления, охладитель пара уплотнений турбины, деаэратор подпиточной воды тепловой сети с подключенными к нему трубопроводами исходной воды, греющего агента, деаэрированной подпиточной воды тепловой сети, трубопровод отработавшего пара основного эжектора подключен к патрубку греющего агента деаэратора подпиточной воды тепловой сети, а охладитель пара уплотнений турбины по охлаждающей среде включен в трубопровод исходной воды перед деаэратором подпиточной воды тепловой сети. Изобретение позволяет повысить надежность и экономичность работы установки за счет надежного охлаждения охладителя пара уплотнений турбины, отказа от охладителя основного эжектора и исключения необходимости рециркуляции основного конденсата через эти охладители в режимах работы турбины с малыми пропусками пара в конденсатор и, следовательно, исключения потерь теплоты от этих охладителей в конденсаторе турбины. 1 ил.

Наверх