Гидравлическая система летательного аппарата

Изобретение относится к ракетной и авиационной технике и может найти применение в конструкциях гидросистем, реализующих несколько режимов управления. Гидравлическая система летательного аппарата содержит электроприводной насос (7) с регулируемой подачей, исполнительный двигатель (8), представленный в виде гидроцилиндров с поступательными движениями поршней, магистраль (10), соединяющую исполнительный двигатель (8) с электроприводным насосом (7). Система снабжена гидравлическим баком (1), внутри которого установлен с возможностью продольного перемещения поршень с подпружиненными демпферами, разделяющий гидравлический бак (1) на высоконапорную и низконапорную полости. Вход электроприводного насоса (7) соединен с низконапорной полостью гидравлического бака, а выход его соединен с высоконапорной полостью гидравлического бака и с входом в исполнительный двигатель (8), при этом электроприводной насос (7) и исполнительный двигатель (8) соединены с системой управления ракеты (12). Технический результат: уменьшение суммарного тепловыделения, габаритов и массы путем потребного увеличения мощности гидравлической системы в периоды программных маневров летательного аппарата с гидравлическим баком. 2 ил.

 

Изобретение относится к ракетной и авиационной технике и может найти преимущественное применение в конструкциях гидросистем, реализующих несколько режимов управления, например, в гиперзвуковых ракетах.

Известна гидросистема (см. Д.П. Попов «Механика гидро- и пневмоприводов», издательство МГТУ им. Баумана, 2002 г., стр. 18, рис. 1.2), которая имеет насос с регулируемой подачей, исполнительный двигатель, представленный в виде гидроцилиндров с поступательными движениями поршней, магистраль, соединяющую исполнительный двигатель с электроприводным насосом. Данная система реализует однорежимный тип управления. Однако для реализации нескольких режимов управления полета, отличающихся по потребной мощности в несколько раз в начале полета и на маршевом участке траектории в плотных слоях атмосферы, данную систему использовать нецелесообразно. В связи с тем что объем гидравлического аккумулятора ограничен, для обеспечения увеличения мощности гидросистемы в несколько раз приходится увеличивать располагаемую мощность гидронасоса, что приводит к увеличению массы и габаритов гидросистемы, а также увеличивает тепловыделение и объем рабочей жидкости.

Целью настоящего изобретения является уменьшение суммарного тепловыделения, габаритов и массы путем потребного увеличения мощности гидравлической системы в периоды программных маневров летательного аппарата с гидравлическим баком.

Указанная цель достигается тем, что гидравлическая система летательного аппарата содержит электроприводной насос с регулируемой подачей, исполнительный двигатель, представленный в виде гидроцилиндров с поступательными движениями поршней, магистраль, соединяющую исполнительный двигатель с электроприводным насосом. Гидравлическая система снабжена гидравлическим баком, внутри которого установлен с возможностью продольного перемещения поршень с подпружиненными демпферами, разделяющий гидравлический бак на высоконапорную и низконапорную полости. Вход электроприводного насоса соединен с низконапорной полостью гидравлического бака, а выход его соединен с высоконапорной полостью гидравлического бака и с входом в исполнительный двигатель (рулевыми агрегатами), при этом электроприводной насос и исполнительный двигатель соединены с системой управления (СУ) ракеты.

Изобретение поясняется чертежами, где на фиг. 1 изображена схема гидравлической системы летательного аппарата, на фиг. 2 изображен фрагмент системы в процессе работы: слева показан фрагмент гидравлической системы в установившемся первом режиме работы, справа - фрагмент гидравлической системы во втором режиме - режиме гидроаккумулятора за счет вытесненной рабочей жидкости из высоконапорной полости.

На фиг. 1-4 указаны позиции в следующем порядке:

1 - гидравлический бак;

2 - дифференциальный поршень;

3 - демпфер;

4 - высоконапорная полость;

5 - низконапорная полость;

6 - трубопровод;

7 - электроприводной гидронасос;

8 - приводной электродвигатель;

9 - обратный клапан;

10 - напорная магистраль;

11 - рулевые агрегаты;

12 - система управления;

13 - электрический кабель.

Гидравлическая система летательного аппарата содержит гидравлический бак 1, разделенный дифференциальным поршнем 2 с подпружиненными демпферами 3 на высоконапорную 4 и низконапорную 5 полости, соединенный трубопроводом 6 с двухрежимным электроприводным гидронасосом 7. Выход гидронасоса 7 соединен через обратный клапан 9 с напорной магистралью 10 и далее с рулевыми агрегатами 11. При этом гидронасос 7 и рулевые агрегаты 11 связаны с системой управления 12 летательного аппарата при помощи электрических кабелей 13.

Работа гидравлической системы происходит следующим образом.

На первом режиме работы запускается электроприводной гидронасос 7. Рабочая жидкость через обратный клапан 9 по напорной магистрали 10 поступает в рулевые агрегаты 11 и одновременно в высоконапорную полость 4 гидравлического бака 1, создавая через поршень 2 давление, необходимое для нормальной бескавитационной работы гидронасоса 7. При этом полости подпружиненных демпферов 3, размещенных в дифференциальном поршне 2, заполняются рабочей жидкостью и гидравлическая система работает в режиме минимальной мощности системы, соответствующей расходу утечек через рулевые агрегаты 11.

Для обеспечения стабилизации летательного аппарата гидравлическая система работает на втором режиме с максимальной мощностью. Система управления 12 через электрические кабели 13 выдает команду на подачу через обратный клапан 9 рабочей жидкости по трубопроводу 6 в высоконапорную полость 4 гидравлического бака 1 и в рулевые агрегаты 11, воспринимающие в это время большие аэродинамические нагрузки. При этом обратный клапан 9 закрывает выход гидронасоса 7, снижая мощность, потребляемую электродвигателем 8.

При окончании работы на втором режиме гидронасос 7 постепенно останавливается и поток рабочей жидкости поступает к рулевым агрегатам 11 при работе гидравлической системы с потреблением обычного режима мощности. При возникновении в гидравлической системе пиковых расходов (на любых режимах) давление в напорной магистрали 10 снижается и под действием перепада давлений, определяемого соотношением площадей, подпружиненные демпферы 3 разряжаются. Дифференциальный поршень 2 перемещается на величину А, вытесняя, как гидроаккумулятор, недостающий объем рабочей жидкости.

Таким образом, предложенное техническое решение позволило реализовать гидравлическую систему с уменьшенным суммарным тепловыделением и уменьшить габариты и массу путем потребного увеличения мощности гидравлической системы в периоды программных маневров летательного аппарата.

Гидравлическая система летательного аппарата, содержащая электроприводной насос с регулируемой подачей, исполнительный двигатель, представленный в виде гидроцилиндров с поступательными движениями поршней, магистраль, соединяющую исполнительный двигатель с электроприводным насосом, отличающаяся тем, что система снабжена гидравлическим баком, внутри которого установлен с возможностью продольного перемещения поршень с подпружиненными демпферами, разделяющий гидравлический бак на высоконапорную и низконапорную полости, вход электроприводного насоса соединен с низконапорной полостью гидравлического бака, а выход его соединен с высоконапорной полостью гидравлического бака и с входом в исполнительный двигатель, при этом электроприводной насос и исполнительный двигатель соединены с системой управления ракеты.



 

Похожие патенты:

Изобретение относится к авиационной технике, в частности к гидросистемам, обеспечивающим управление и контроль системы торможения колес шасси самолета. Система торможения колес шасси самолета содержит блок контроля равномерности торможения колес шасси и блок индикации.

Изобретение относится к области самолетостроения, в частности к системам управления створками люков водобаков противопожарного летательного аппарата. Гидросистема управления приводами створок люков водобаков противопожарного летательного аппарата содержит минимальное количество трехпозиционных распределителей для управления створками люков водобаков и замками створок, гидроцилиндры створок с плавающими поршнями и гидроцилиндры замков створок.

Изобретение относится к авиационной технике и касается электрогидравлических силовых приводов для управления летательными аппаратами. Электрогидравлический рулевой привод содержит электрогидравлический усилитель, гидроцилиндр, поршень и втулки цилиндра с пакетами уплотнений, полый шток с установленным внутри него ложным штоком и блок датчиков обратной связи.

Изобретение относится к области ракетостроения, в частности к способам и устройствам формирования управления газогидравлическим рулевым приводом. Способ заключается в том, что формируют синусоидальный сигнал, определяют модуль сигнала разности заданного и текущего значений давления, определяют интеграл модуля сигнала разности, суммируют модуль сигнала разности и интеграл модуля сигнала разности и полученный сигнал умножают на синусоидальный сигнал и суммируют с сигналом управления.

Изобретение относится к следящим электрогидравлическим системам управления, а именно к электрогидростатическому приводу с взводимым гидрокомпенсатором и клапаном демпфирования.

Изобретение относится к следящим электрогидравлическим системам управления, а именно к автономному электрогидравлическому приводу с комбинированным регулированием скорости выходного звена и клапаном демпфирования.

Изобретение относится к следящим электрогидравлическим системам управления, а именно к двухрежимному электрогидравлическому приводу с дополнительными режимами кольцевания и демпфирования выходного звена.

Изобретение относится к области авиации, более конкретно к гидравлической системе самолета. .

Изобретение относится к области электрогидромеханики. .

Изобретение относится к устройствам управления, преимущественно для ракетно-космической техники. .

Изобретение относится к измерительной технике, а именно к устройствам для выполнения работ по проверке и регулировке автопилота вертолета, в частности автопилота АП-34Б и составных элементов автопилота. Технический результат решения заключается в создании контрольно-проверочного комплекса для проведения проверок автопилотов вертолета и составных элементов его в полуавтоматическом режиме, что обеспечивает повышение надежности и достоверности результатов комплексной проверки параметров проверяемого оборудования во всех режимах функционирования, возможности проведения полуавтоматических проверок. Контрольно-проверочный комплекс для проверки автопилота выполнен содержащим персональный компьютер с программным обеспечением, который по входам и выходам соединен с блоком ввода команд и отображения информации, с блоком эталонных напряжений и измерительным блоком, при этом блок эталонных напряжений, служащий для формирования напряжений заданной амплитуды, частоты и фазы, соединен по выходу с измерительным блоком, который содержит однотипные взаимозаменяемые измерительные модули, модуль усилителей и вторичные источники питания и служит для создания электрических сигналов и измерения ответных сигналов объекта контроля, при этом измерительный блок соединен по входам и выходам через устройство коммутации и нормализации сигналов с объектом контроля, кроме этого, для создания заданного угла поворота вала датчика объекта контроля комплекс содержит установку поворотную, соединенную с персональным компьютером через модуль управления. 1 з.п. ф-лы, 1 ил.

Группа изобретений относится к области систем рулевых приводов летательных аппаратов, а именно к системам комбинированных рулевых приводов, содержащих рулевую машину с аэродинамическими рулями и газодинамическое устройство управления со сверхзвуковыми соплами. По первому варианту рулевая машина и газодинамическое устройство управления снабжены соответственно первым и вторым газовыми эжекторами, содержащими низконапорные сопла, сообщенные с дополнительно установленными первым и вторым воздухозаборниками набегающего потока, высоконапорные сопла, сообщенные соответственно с первым и вторым бортовыми источниками сжатого газа, запускаемыми на начальном участке траектории полета при малых скоростных напорах набегающего потока, и камеры смешения, соединенные с каналами подвода газа соответственно к рулевой машине и газодинамическому устройству управления. По второму варианту рулевая машина и газодинамическое устройство управления снабжены соответственно первым и вторым распределительными клапанами, содержащими рабочие полости, соединенные соответственно с каналами подвода газа к рулевой машине и газодинамическому устройству управления, и клапанные регулирующие органы, каждый из которых имеет по два жестко соединенных впускных затвора, расположенных между двумя соответствующими впускными седлами, причем два впускных седла сообщены с дополнительно введенными воздухозаборниками набегающего потока, а два противоположно расположенных впускных седла сообщаются соответственно с первым и вторым бортовыми источниками сжатого газа, запускаемыми на высотном участке траектории полета при малых скоростных напорах набегающего потока. Обеспечивается повышение экономичности системы привода. 2 н.п. ф-лы, 2 ил.
Наверх