Применение трансгенных растений лесных древесных пород в качестве биологических моделей при прогнозировании круговоротов азота и углерода в лесных экосистемах

Изобретение относится к области биохимии, в частности к применению трансгенных растений лесных древесных пород в качестве биологических моделей при прогнозировании круговоротов азота и углерода в лесных экосистемах. При этом указанное применение включает лабораторный эксперимент по длительному разложению образцов различных органов растений, данные которого используются в модели динамики органического вещества ROMUL. Изобретение позволяет эффективно применять трансгенные растения в качестве биологических моделей при прогнозировании круговоротов азота и углерода в лесных экосистемах. 6 з.п. ф-лы, 5 ил., 3 табл., 5 пр.

 

Изобретение относится к области экологии, в частности к математическому моделированию круговорота элементов в лесных экосистемах.

Известен способ определения скорости разложения растительных остатков, состоящий в оценке потери массы листьев различных видов деревьев в процессе их разложения в лабораторных условиях (микрокосме) в почвенной смеси неопределенного состава при одном значении температуры и одном значении влажности в течение 16 месяцев (De Angelis P., Chigwerewe K.S., Mugnozza G.E.S. Litter quality and decomposition in a CO2-enriched Mediterranean forest ecosystem // Plant and Soil, 2000, 224:31-41). К недостаткам этого известного способа следует отнести низкую точность выбранного метода анализа (потеря массы) и весьма значительный интервал между измерениями (один раз в четыре месяца). Уменьшение интервала между измерениями весьма затруднено, так как каждое новое измерение требует использования нового набора образцов - после проведения измерений они становятся непригодными для дальнейшего использования в эксперименте.

Также известен способ определения скорости разложения растительных остатков, состоящий в оценке эмиссии СО2 с помощью газового хроматографа в процессе разложения корней трансгенных растений гибридного тополя с измененной лигнификацией и соотношением азот:углерод, проходящем в лабораторных условиях в почвенной смеси неопределенного состава при одном значении температуры и одном значении влажности в течение 5 месяцев (Pilate G., Guiney Е., Holt K. et al. Field and pulping performances of transgenic trees with altered lignification // Nature Biotechnology, 2002, 20:607-12).

К недостаткам данного способа следует отнести короткую продолжительность эксперимента (5 месяцев), в течение которого разложению подвергаются только быстроразлагаемые фракции растительной биомассы, и отсутствие математического моделирования влияния последствий выращивания данных растений в значительных масштабах и в течение длительного периода времени на экосистему.

Наиболее близким известным прототипом является способ математического моделирования разложения органического вещества, состоящий в оценке скорости разложения растительных остатков в лабораторных условиях в почвенной смеси неопределенного состава при одном значении температуры и одном значении влажности путем определения потери массы в течение одного года и использования полученных данных в модели динамики органического вещества ROMUL (Безрукова М.Г., Быховец С.С, Грабарник П.Я. и др. Анализ неопределенности параметров модели разложения органического вещества: байесовский подход // Известия Самарского научного центра РАН, 2009, 11:1424-1429).

К недостаткам ближайшего прототипа следует отнести низкую точность выбранного метода анализа; жестко заданные значения температуры и влажности, не позволяющие оценить влияние их колебаний в естественных условиях на скорость разложения; неопределенный состав почвенной смеси, который может оказывать значительное влияние на процесс разложения и не позволяет сравнивать результаты из различных исследований; невозможность использования полученных результатов для растений тех же видов, но с модифицированным соотношением азота и углерода, которое оказывает значительное влияние на скорость разложения.

В литературе отсутствуют данные по использованию трансгенных растений в качестве биологических моделей для математического моделирования круговорота элементов в экосистемах.

Целью изобретения является прогнозирование круговорота азота и углерода в лесных экосистемах при выращивании трансгенных растений лесных древесных пород с заданными характеристиками в условиях меняющегося климата.

Поставленная задача решается благодаря тому, что в способе математического моделирования разложения органического вещества, включающем лабораторный эксперимент по длительному разложению образцов различных органов растений, данные которого используются в модели динамики органического вещества ROMUL, предусмотрено следующее отличие: объектом служат трансгенные растения древесных лесных пород с различными заданными характеристиками, вызывающими в химическом составе растений изменение соотношения азота и углерода.

Кроме того, предложенный способ отличается тем, что:

- длительность разложения растительных образцов составляет не менее одного года;

- оценка скорости разложения проводится путем определения эмиссии CO2 с помощью газового хроматографа с определенной периодичностью отбора проб воздуха;

- периодичность отбора проб воздуха составляет не менее 8 отборов в первые 10 недель разложения и не менее 8 отборов в последующее время;

- в качестве образцов используются различные органы (листья для лиственных пород или хвоя для хвойных пород, корни, стебли) одного и того же генотипа растения;

- разложение проводится в стерилизованном песке с добавлением водной вытяжки лесного растительного опада;

- разложение проводится в условиях с различными значениями (не менее трех) физических параметров, в качестве которых выступают температура и влажность.

Способ осуществляется следующим образом.

Песок, просеянный через сито 0,5 мм, промывают водопроводной водой в течение нескольких часов при периодическом перемешивании и затем не менее трех раз дистиллированной водой. Промытый песок высушивают при 105°С в течение 12 часов и затем прокаливают при 200°С в течение 3 часов. Определяют влагоемкость прокаленного песка по Минееву (2001). Растительную массу (отдельно стебли, корни, листья) измельчают секатором или ножницами и растирают в фарфоровой ступке до однородной массы, после чего высушивают при 65°С в течение трех суток. Влагоемкость растительной массы определяют аналогично песку. В стеклянные пробирки с резиновыми пробками объемом 12-15 мл добавляют растительную массу и песок в соотношении 1:10-1:20 по весу и тщательно перемешивают. Масса песка не должна превышать 2 г. Погрешность при взвешивании растительной массы и песка не должна превышать 1%. Для обеспечения разложения в пробирки добавляют 50 мкл водной вытяжки из лесного растительного опада (10 г опада заливают 0,5 л водопроводной воды, перемешивают в течение 1 ч и фильтруют) и дистиллированную воду в количестве, необходимом для достижения определенной доли влажности от влагоемкости песка и растительной массы (не менее трех вариантов). В качестве контроля используют пробирку с песком без увлажнения. Все пробирки (кроме контрольной) взвешивают с точностью до 1 мг и помещают в термостаты, обеспечивающие погрешность не более 1°C, с различной температурой (не менее трех вариантов). Для каждого варианта используют не менее трех пробирок. В ходе эксперимента пробирки периодически (не реже одного раза в месяц) взвешивают и в случае уменьшения массы более чем на 10% от начальной восполняют потерю массы дистиллированной водой до исходного значения. В течение года через определенные промежутки времени (в соответствии с планом эксперимента, но не менее 16 раз) из пробирок с помощью шприца отбирают пробы воздуха, в котором с помощью газового хроматографа определяют содержание углекислого газа. После отбора проб пробирки помещают под вытяжку, открывают и проветривают не менее 30 минут. Полученные данные используют для расчета в модели динамики органического вещества ROMUL.

Изобретение позволяет повысить точность прогнозирования круговорота азота и углерода в лесных экосистемах за счет использования более точного метода, получения большего числа данных за счет более частых измерений и использования образцов различных органов растений одного и того же вида и оценить влияние на круговорот элементов выращивания трансгенных растений с заданными характеристиками, вызывающими изменение соотношения азот:углерод, существенно влияющего на скорость разложения растительных остатков. Получение данных для различных значений температуры и влажности позволит прогнозировать круговорот элементов для различных сценариев изменения климата.

Пример 1. Влияние различных заданных характеристик трансгенных растений древесных лесных пород на соотношение азота и углерода

В ходе генетической трансформации березы рекомбинантным геном глутаминсинтетазы GS1 с целью повышения продуктивности был получен ряд клонов с ускоренным ростом и измененным соотношением азота и углерода в стеблях. Характеристики данных растений представлены в таблице 1.

В ходе генетической трансформации осины рекомбинантным геном ксилоглюканазы Xeg с целью изменения структуры и механических свойств клеточной стенки был получен ряд клонов с измененными содержанием пентозанов и соотношением азота и углерода в различных органах растений. Характеристики данных растений представлены в таблице 2.

В ходе генетической трансформации осины инвертированными повторами гена 4-кумарат-КоА-лигазы 4CL с целью модификации содержания лигнина был получен ряд клонов с измененными содержанием лигнинов и соотношением азота и углерода в различных органах растений. Характеристики данных растений представлены в таблице 3.

Пример 2. Влияние изменения соотношения азота и углерода в трансгенных растениях березы с геном глутаминсинтетазы на скорость разложения

Соотношение углерод:азот считается хорошим показателем скорости разложения растительных остатков, и наличие рекомбинантного гена глутаминсинтетазы в стеблях березы привело к заметному повышению содержания азота (снижению величины C/N) и увеличению потерь углерода при разложении стеблей березы с рекомбинантным геном глутаминсинтетазы GS1 (фиг. 1). Наиболее заметное повышение скорости разложения наблюдалось у клонов GS-8b и GS-9b, тогда как клон GS-11b практически не отличался от контрольных нетрансгенных растений.

Линейная обратная зависимость между скоростью разложения стеблей березы с рекомбинантным геном глутаминсинтетазы и величиной C/N в растительной ткани (фиг. 2) оказалась достоверной (R2=0.95), поэтому наблюдаемые различия скоростей разложения, скорее всего, связаны с различным содержанием азота в стеблях березы, которое может быть связано с переносом рекомбинантного гена глутаминситетазы GS1.

Пример 3. Влияние типа органа растения на скорость разложения

Кумулятивная эмиссия СО2 при разложении различных органов трансгенной осины с геном Xeg отражает скорость разложения растительных тканей (фиг. 3). Листья разлагаются быстрее, чем стебли, а стебли - быстрее, чем корни.

Пример 4. Влияние температуры на скорость разложения

Влияние температуры на скорость разложения трансгенных растений показано на примере контрольных и трансгенных растений осины с геном Xeg (фиг. 4а и 4б). Скорость разложения листьев и стеблей осины существенно зависела от температуры инкубирования. Она была максимальной при температуре 22°C и минимальной - при 2°C.

Пример 5. Влияние влажности на скорость разложения

Влияние влажности на скорость разложения растительных тканей показано на примере трансгенных растений осины с геном Xeg (фиг. 5а и 5б). Листья и стебли осины разлагались примерно одинаково при влажности 20 и 50% ППВ. Повышение влажности до 80% ППВ привело к небольшому (около 10%) увеличению скорости разложения листьев и стеблей как трансгенных, так и нетрансгенных растений.

Краткое описание чертежей

Фиг. 1. Скорость разложения стеблей березы при различной величине C/N.

Фиг. 2. Зависимость скорости разложения стеблей березы от величины C/N.

Фиг. 3. Кумулятивная эмиссия CO2 при разложении различных органов трансгенной осины с геном Xeg.

Фиг. 4. Влияние температуры на скорость разложения различных органов осины (а - листья; б - стебли).

Фиг. 5. Влияние влажности на скорость разложения различных органов осины (а - листья; б - стебли).

1. Применение трансгенных растений лесных древесных пород в качестве биологических моделей при прогнозировании круговоротов азота и углерода в лесных экосистемах, включающее лабораторный эксперимент по длительному разложению образцов различных органов растений, данные которого используются в модели динамики органического вещества ROMUL, отличающееся тем, что образцами служат трансгенные растения лесных древесных пород, обладающие по сравнению с аналогами дикого типа измененным соотношением азота и углерода в химическом составе растений.

2. Применение по п. 1, отличающееся тем, что длительность разложения растительных образцов составляет не менее одного года.

3. Применение по п. 1, отличающееся тем, что оценка скорости разложения проводится путем определения эмиссии СО2 с помощью газового хроматографа с определенной периодичностью отбора проб воздуха.

4. Применение по п. 1, отличающееся тем, что периодичность отбора проб воздуха составляет не менее 8 отборов в первые 10 недель разложения и не менее 8 отборов в последующее время.

5. Применение по п. 1, отличающееся тем, что в качестве образцов используются различные органы (листья для лиственных пород или хвоя для хвойных пород, корни, стебли) одного и того же генотипа растения.

6. Применение по п. 1, отличающееся тем, что разложение проводится в стерилизованном песке с добавлением водной вытяжки лесного растительного опада.

7. Применение по п. 1, отличающееся тем, что разложение проводится в условиях с различными значениями (не менее трех) физических параметров, в качестве которых выступают температура и влажность.



 

Похожие патенты:

Изобретение относится к сельскому хозяйству. Меристемные растения опрыскивают 0,1% раствором ПАБК, куда вводят 0,1% биопрепарата Фитолавина при температуре 20-25°С, а при повторном опрыскивании в фазе 3-4 листьев в раствор дополнительно добавляют 0,2-0,3% гумата калия.

Изобретение относится к области биотехнологии растений. Изобретение представляет собой способ сохранения качественных характеристик культуры in vitro некоторых древесных видов растений (лимонник китайский, рододендрон, сирень, береза повислая), включающий размножение микропобегов на искусственных питательных средах, где через 7-10 дней после культивирования в стандартных условиях побеги помещают в условия с температурой 4-8°С и уровнем освещенности 500-1000 люкс на срок до 8 (лимонник китайский, береза повислая) или до 12 месяцев (рододендрон, сирень).
Изобретение относится к области декоративного садоводства. Изобретение представляет собой способ размножения растений фритиллярий методом in vitro, включающий стерилизацию эксплантов, разделение их на части, посадку на питательную среду Данстена и Шорта, отделение микролуковиц от эксплантов, их укоренение и адаптацию, отличающийся тем, что после разделения эксплантов их помещают на питательную среду Данстена и Шорта, содержащую 6 г/л агара с добавлением - 5 мкМ 6-бензиламинопурина и 2 мкМ α-нафтилуксусной кислоты, после культивирования на данной среде микролуковицы размножают на безгормональной среде Данстена и Шорта в течение 4 недель при освещении 3 клк 16 ч свет/ 8 ч темнота при температуре 24°C, укореняют и адаптируют в контейнерах со сфагновым мхом, в темноте, при температуре 7°C, в течение 2 месяцев.

Изобретение относится к сельскохозяйственной биотехнологии. Изобретение представляет собой способ культивирования лимона in vitro, заключающийся в том, что стерильные пазушные почки предварительно культивируют до появления микропобегов на питательной среде МС с добавлением БАП 0,1 мг/л, НУК 0,5 мг/л, агар 0,7%, затем вычленяют из них меристемы размером 0,4-0,6 мм с 2-3 примордиями и прививают их на подвой, выращенный in vitro на среде WPM, дополненной БАП 1 мг/л, ГК 2 мг/л, агар 0,7%, микропривитые растения культивируют на среде WPM с добавлением БАП 1 мг/л, ГК 2 мг/л, агар 7 г/л, сахарозы 20 г/л.

Изобретение относится к биотехнологии. Представлен способ получения моноклональной линии растительных клеток от гетерологичной популяции растительных клеток, включающий следующие стадии.

Изобретение относится к области биохимии. Предложена система контроля фотосинтетического и дыхательного СО2-газообмена в культуре in vitro.

Изобретение относится к биотехнологии. Изобретение представляет собой способ получения растений-регенерантов лапчатки белой (Potentilla alba L.) в условиях гидропоники, включающий использование черенков материнских растений, размножение и выращивание, где в качестве эксплантов используются черенки материнских растений, которые высаживают на питательную среду по прописи Мурасиге-Скуга (MS), содержащую 0,5 мкМ БАП для введения в культуру ткани, через 20-30 суток развившиеся побеги пересаживают для микроразмножения на питательную среду Мурасиге-Скуга (MS), содержащую 0,5 мкМ БАП+0,25 мкМ ИМК+0,05 мкМ ГК, укореняют побеги на агаризированной среде Мурасиге-Скуга, дополненной 1 мкМ НУК, затем растения-регенеранты вынимают из культуральных сосудов, отмывают корни в дистиллированной воде от агара, закрепляют в кассетах и помещают в гидропонную установку на 90 суток для адаптации и выращивания растительного лекарственного сырья на питательной среде Мурасиге-Скуга, содержащей 1/4 состава макросолей, 1/4 состава микросолей, полный набор витаминов, хелата железа и кальция хлористого, при температуре 24-26°C, режим освещения: 16 часов день, 8 часов ночь.

Изобретение относится к области сельского хозяйства, в частности картофелеводства. В способе выращивают мини-клубни оздоровленного картофеля в защищенном грунте, полученные от пробирочных растений.

Изобретение относится к области биотехнологии растений и лесному хозяйстве. Изобретение представляет собой способ подготовки микропобегов in vitro ясеня, осины, ивы для последующего укоренения в условиях ex vitro, включающий перенос растений после стадии мультипликации на питательную среду WPM для элонгации, с добавлением сахарозы 30 г/л, агар-агара 9 г/л, инозитола 100 мг/л, пиридоксина 0,1 мг/л, тиамина 0,1 мг/л и никотиновой кислоты 0,5 мг/л, где в среду для элонгации добавляют глутамин в концентрации 0,5 или 1,0 ммоль/л, при этом культивирование растений осуществляется при повышенной освещенности - от 5 до 8 тыс.

Изобретение относится к области биотехнологии растений и лесному хозяйству. Изобретение представляет собой способ криоконсервации пазушных почек in vitro растений осины, заключающийся в изоляции пазушных почек, предварительном их обезвоживании в средах, содержащих осмолитики, переносе почек в криопробирки, криоконсервации криопробирок с почками в жидком азоте, оттаивании почек и посткриогенной регенерации из них растений, отличающийся тем, что на этапе обезвоживания перед быстрым замораживанием сначала почки помещают в раствор I, содержащий питательную среду и осмолитики (WPM с добавлением к сахарозе (0,2-0,5М) глицерола (1,7-2,5М)), затем почки переносят в раствор II, содержащий питательную среду и осмолитики (WPM, сахароза (0,2-0,5М), глицерол (2,5-3,5М), этиленгликоль (1-1,5М), диметилсульфоксид (1,5-2М)), с последующим переносом в жидкость для замораживания (WPM, содержащая сахарозу (0,2-0,5М), глицерол (3,5-4М), этиленгликоль (1,5-2,5М), диметилсульфоксид (1,5-2М)).

Изобретение относится к биотехнологии и может быть использовано в фармацевтической и пищевой промышленности. Способ предусматривает бактериальную трансформацию экспланта корня ювенильного растения Silene linicola агробактериальным штаммом R-1601 A. Rhizogenes. Трансформированные корни от экспланта отделяют и культивируют. Изолированные корни культивируют первые два пассажа на среде Гамборга с добавлением 250 мг/л цефотаксима, последующие пассажи выращивают на среде Гамборга с добавлением 500 мг/л гидролизата казеина. Изобретение позволяет обеспечить постоянный высокий темп роста изолированных корней Silene linicola К1601 на безгормональных питательных средах при высоком уровне биосинтеза видоспецифичных экдистероидов. 3 ил., 2 табл., 2 пр.
Способ получения растений-регенерантов из репродуктивных органов Brassica oleracea L. in vitro относится к области биотехнологии предназначен для культивирования in vitro пыльников и завязей Brassica oleracea L. и может быть использован для получения нового исходного материала для создания сортов. Задача изобретения ускорить процесс селекции. Это достигается за счет того, что к питательной среде Мурасиге и Скуга в качестве индукторов эмбриогенеза добавляют растительные экстракты, полученные из репродуктивных органов капусты белокочанной, с применением в качестве растворителя DMSO в концентрации 1-1,5 мл/100 мл питательной среды.

Изобретение относится к области биотехнологии и репродуктивной биологии растений. Изобретение представляет собой способ регенерации растений Бобовника анагировидного in vitro, включающий предварительную обработку сухих семян, поверхностную стерилизацию и культивирование на питательной среде для проращивания, отличающийся тем, что в качестве предварительной обработки семена Бобовника анагировидного заливают горячей водой при температуре от 90-100°С и оставляют на 20-30 минут до остывания воды, поверхностную стерилизацию осуществляют, помещая семена в 1%-ный водный раствор синтетического моющего средства на 15 минут при постоянном помешивании, а затем промывая проточной водой в течение 15-20 минут, культивирование осуществляют в течение 3-4 недель, после чего развившиеся проростки высаживают в стаканчики с почвенным субстратом и помещают в микропарник на 4-6 недель для адаптации к нестерильным условиям, где питательная среда содержит минеральные соли и витамины по MS, 20 г/л сахарозы, 7 г/л агара, дополнительно содержит 2.2 μМ БАП, в качестве питательной среды выбрана среда WPM с добавлением 2.2 μМ БАП. Изобретение позволяет сократить трудоемкость и длительность процесса получения посадочного материала, а также упростить процесс получения посадочного материала. 3 з.п. ф-лы, 2 табл., 2 ил., 1 пр.

Изобретение относится к области биотехнологии и сельского хозяйства. Изобретение представляет собой способ адаптации растений-регенерантов земляники, включающий этап адаптации, где растения-регенеранты земляники крупноплодной в период адаптации увлажняют трижды за период через равные промежутки времени свежеприготовленной водной суспензией кремнийсодержащего механокомпозита на основе рисовой шелухи и зеленого чая, приготовленной путем перемешивания кремнийсодержащего механокомпозита и воды комнатной температуры в концентрации 3 г/л и последующего настаивания в течение 1 часа при комнатной температуре, а в промежутках увлажняют дистиллированной водой. Изобретение позволяет успешно акклиматизировать землянику крупноплодную благодаря подкормке микрорастений на стадии адаптации кремнийсодержащим механокомпозитом на основе рисовой шелухи и зеленого чая. 1 табл.

Изобретение относится к области сельского хозяйства. Изобретение представляет собой способ размножения трансгенных растений клевера лугового методом культуры почек in vitro, включающий выделение почек из поверхностно стерилизованных в течение 5 мин в 0,1%-ном водном растворе диоцида и 4-5 раз промытых в стерильной воде отрезков стеблей длиной 1,5-2.0 см с пазушными почками вегетирующих трансгенных растений клевера лугового и помещение их на агаризованную питательную среду Гамборга В5, где вначале отрезки стеблей с пазушными почками длиной 1,5-2,0 см промывают в проточной водопроводной воде (10 мин) и после поверхностной стерилизации при встряхивании отделенные пазушные почки культивируют на агаризованной среде Гамборга В5 с 2,0 мг/л БАП до размера не менее 4,0 мм, а затем 4 пассажа на агаризованной среде Гамборга В5 с 2,0 мг/л БАП и 50 мг/л канамицина до образования морфогенной ткани только с зелеными побегами, при этом размноженными трансгенными (канамицин устойчивыми) растениями являются растения-регенеранты клевера лугового, образовавшие корни не менее 50 мм на агаризованной среде Гамборга В5 с 2,0 мг/л БАП и 50 мг/л канамицина. Изобретение позволяет повторно вводить в культуру in vitro трансгенные растения клевера лугового, получать длительно культивируемую морогенную ткань, изучать экспрессию введенных генов в вегетативно размноженных трансгенных растениях клевера лугового. 2 табл., 2 пр.
Изобретение относится к биотехнологии и сельскому хозяйству. Изобретение представляет собой способ клонального размножения растений в автотрофных условиях на гидропонике, в котором клональное размножение растений осуществляют путем черенкования регенерантов и укоренения черенков на питательной среде, где укоренение черенков проводят в автотрофных условиях на гидропонике с использованием жидких питательных сред, содержащих только минеральные элементы, культивирование растений осуществляют при нормальных, либо повышенных концентрация СО2 в посеве, при интенсивности облучения посева не менее 60 Вт ФАР/м2, орошение и аэрация оснований черенков и корневой системы растений производят путем периодического подтопления их питательным раствором. Изобретение позволяет достигнуть стабильности воспроизводства исходного генотипа, высокой скорости размножения растений-регенерантов, а также их быстрой адаптации при высадке в грунт или гидропонику. 3 з.п. ф-лы.

Изобретение относится к области биотехнологии. Изобретение представляет собой способ получения растений хризантемы килеватой (Chrysanthemum carinatum Schousb.) в условиях in vitro путем введения в культуру клеток семян с целью каллусообразования и последующей регенерации растений, заключающийся в том, что стерилизованные семена помещают на питательную среду Мурасиге-Скуга с добавлением 0,7% агар-агара, 1 мг/л 6-бензиламинопурина, 0,1-1 мг/л индолил-3-уксусной кислоты, доведенную до 1 л стерильной дистиллированной водой, культивируют в течение одного пассажа до появления каллуса, не более 26 суток, затем каллусы пересаживают на питательную среду Мурасиге-Скуга с половинной концентрацией всех компонентов и 0,7% агар-агара, добавляют 0,2-1 мг/л 6-бензиламинопурина и культивируют 2-4 пассажа до появления растений-регенерантов. Изобретение позволяет достигнуть высокого процента регенерации растений хризантемы килеватой. 2 табл., 6 пр.

Изобретение относится к области биотехнологии растений. Изобретение представляет собой способ повышения эффективности культивирования in vitro березы повислой, лимонника китайского, рододендрона и сирени, включающий размножение микропобегов на искусственных питательных средах в течение трех недель в сочетании с микрочеренкованием побегов, допуская на экспланте не более двух пазушных почек. Изобретение позволяет повысить частоту мультипликации, частоты укоренения в условиях in vitro и ex vitro и эффективность адаптации. 3 табл.

Изобретение относится к области биотехнологии. Изобретение представляет собой способ клонального микроразмножения растений сем. Betulaceae, включающий размещение верхушечных и боковых почек на агаризованной питательной среде Мурасиге-Скуга in vitro для индукции микропобегов и их элонгации, с переносом на жидкую среду для укоренения, где индукцию микропобегов осуществляют из апикальной ткани вегетативных почек экспланта, индукцию, элонгацию и мультипликацию полученных микропобегов проводят на агаризованной питательной среде, содержащей минеральную основу по Мурасиге-Скуга и дополнительно включающей 0,25-2,0 мг/л БАП, 20000-30000 мг/л сахарозы, 6000 мг/л агара, а укоренение осуществляют размещением одновременно необходимого количества микропобегов в сосуде на перфорированной площадке, закрепленной выше уровня жидкой питательной среды, содержащей уменьшенную вдвое концентрацию макросолей по Мурасиге-Скуга, включающей дополнительно 0,2-0,6 мг/л ИМК и 15000-20000 мг/л сахарозы, и осуществляют в автоматическом режиме циклическое чередование процессов экспозиции микропобегов в воздушной среде, влажностью 80-90%, и погружения их в жидкую питательную среду на 1-3 мин 2-3 раза в сутки путем подъема ее уровня, с дополнительной аэрацией воздуха внутри сосуда по 2-4 минуты через равные промежутки времени от 10 до 15 раз в сутки в течение 16-часового фотопериода. Изобретение позволяет повысить скорость роста и развития микропобегов, активировать корнеобразование in vitro, увеличить приживаемость. 2 табл.

Изобретение относится к области биотехнологии растений. Способ включает культивирование оздоровленных растений картофеля in vitro путем микрочеренкования на питательную среду, содержащую макро- и микроэлементы по прописи Мурасиге-Скуга, Fe-хелат, агар-агар, витамины по Уайту, аскорбиновую кислоту и сахарозу, получение растений-регенерантов и получение микроклубней картофеля. При этом этиолированные проростки (1-1,5 см) стерилизуют в 0,1%-ном растворе диацида в течение 3-5 мин с последующей трехкратной промывкой стерильной дистиллированной Н2О. Для культивирования микрорастений и образования микроклубней используют стеклянные банки (900 мл) с металлической крышкой и отверстием в крышке для внесения питательной среды и микрорастений. Закрывают отверстие ватно-марлевой пробкой и покрывают фольгой. В питательную среду для клубнеобразования вносят сахарозу 81000-85000 мг/л, феруловую кислоту 1-2 мг/л, кинетин 1-2 мг/л, тиамин 1-1,2 мг/л при температуре 20°С. Условия светового дня – 8 ч (5000 лк), условия полной темноты – 16 ч, культивируют в течение 30 дней до образования микроклубней. Способ позволяет получать оздоровленный отечественный картофель, свободный от скрытой вирусной инфекции и обладающий отличными качественными характеристиками, прост в использовании, экологически безопасен и может быть использован на картофелевыращивающих предприятиях. 1 табл., 3 пр.
Наверх