Способ определения стойкости к радиационным и температурным воздействиям наноэлектронного резонансно-туннельного диода (ртд) на основе многослойных algaas (алюминий, галлий, арсеникум) полупроводниковых гетероструктур



Способ определения стойкости к радиационным и температурным воздействиям наноэлектронного резонансно-туннельного диода (ртд) на основе многослойных algaas (алюминий, галлий, арсеникум) полупроводниковых гетероструктур
Способ определения стойкости к радиационным и температурным воздействиям наноэлектронного резонансно-туннельного диода (ртд) на основе многослойных algaas (алюминий, галлий, арсеникум) полупроводниковых гетероструктур
Способ определения стойкости к радиационным и температурным воздействиям наноэлектронного резонансно-туннельного диода (ртд) на основе многослойных algaas (алюминий, галлий, арсеникум) полупроводниковых гетероструктур
Способ определения стойкости к радиационным и температурным воздействиям наноэлектронного резонансно-туннельного диода (ртд) на основе многослойных algaas (алюминий, галлий, арсеникум) полупроводниковых гетероструктур

Владельцы патента RU 2606174:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана" (МГТУ им. Н.Э. Баумана) (RU)

Использование: для определения стойкости к радиационным и температурным воздействиям наноэлектронного резонансно-туннельного диода. Сущность изобретения заключается в том, что способ определения стойкости к радиационным и температурным воздействиям наноэлектронного резонансно-туннельного диода (РТД) на основе многослойных AlGaAs (алюминий, галлий, арсеникум) полупроводниковых гетероструктур заключается в последовательном приложении циклов радиационных воздействий на партию РТД, доза которых постепенно накапливается в каждом цикле, и температурных воздействий, время воздействия которых постепенно увеличивается, с тем, чтобы получить вызванное ими изменение вольт-амперной характеристики (ВАХ) в рабочей области не менее чем на порядок больше погрешности измерения, в определении количества циклов радиационных и температурных воздействий путем установления ВАХ, соответствующей параметрическому отказу для конкретного применения РТД, в построении семейства ВАХ, в определении на основе анализа кинетики ВАХ скорости деградации РТД и в определении стойкости к радиационным и температурным воздействиям РТД на основе полученной скорости деградации РТД. Технический результат: обеспечение возможности определения стойкости к радиационным и температурным воздействиям наноэлектронного резонансно-туннельного диода. 1 з.п. ф-лы, 3 ил.

 

Изобретение относится к электронным приборам, в частности к полупроводниковым приборам, и может быть использовано для определения стойкости к радиационным и температурным воздействиям наноэлектронного резонансно-туннельного диода (РТД) на основе многослойных AlGaAs (алюминий, галлий, арсеникум) полупроводниковых гетероструктур.

К числу основных требований, предъявляемых к характеристикам бортовых систем космических аппаратов, относятся требования высокой надежности и стойкости к дестабилизирующим факторам космического пространства (КП).

Наибольшие трудности в обеспечении указанных требований практически на всех этапах развития космонавтики возникали при создании радиоэлектронных систем, так как именно для них характерны наиболее высокие темпы роста функциональной и аппаратной сложности, а темпы роста требований к их надежному функционированию существенно превышают темпы роста надежности элементной базы.

Ионизирующее излучение состоит из потока первичных заряженных ядерных частиц (электроны, протоны и тяжелые заряженные частицы), коротковолновое электромагнитное излучение (рентгеновское и гамма-излучение), а также вторичных ядерных частиц - продуктов ядерных превращений, связанных с первичным излучением. Основные эффекты воздействия ионизирующего излучения (ИИ) на радиоэлектронную аппаратуру (РЭА) связаны с ионизационными и ядерными потерями энергии первичных и вторичных частиц. Эти эффекты могут вызвать параметрический отказ полупроводниковых приборов и интегральных схем (ИС) вследствие накопления дозы ИИ, а также возникновение одиночных сбоев и отказов от воздействия отдельных высокоэнергетических ядерных частиц.

Влияние космической плазмы может проявляться на высоких орбитах полета космического аппарата (КА) через электризацию диэлектрических защитных и термоизолирующих покрытий. При достижении критического заряда происходит внутренний локальный электростатический пробой, который может привести к отказу или сбою в работе прибора.

При воздействии теплового излучения Солнца, а также при попадании в зону тени от других объектов происходит неравномерный разогрев конструкций КА, приводящий к значительным циклическим изменениям температуры поверхности КА. В результате возникают температурные градиенты, которые могут приводить к возникновению термоэлектродвижущей силы (термоЭДС). Кроме того, температурные эффекты приводят к изменению характеристик полупроводниковых приборов и ИС, входящих в состав РЭА КА. В условиях невесомости ухудшается тепловой режим работы РЭА, так как отсутствует конвекционный обмен тепла.

Результатом воздействия космического вакуума на элементы и узлы КА являются отсутствие конвективного теплообмена и теплопроводности и изменение электрических свойств материалов.

Из уровня техники известны ряд патентов, направленных на улучшение характеристик полупроводниковых приборов и интегральных схем (ИС), работающих в вышеуказанных условиях.

Известен способ отбраковки микросхем, изготовленных на КНД (кремний на диэлектрике) структурах, по стойкости к радиационному воздействию (см. RU №2411527 С1, кл. G01R 31/28, 10.02.2011).

Изобретение относится к области электронной техники, в частности предназначено для отбраковки микросхем, изготовленных на КНД (кремний на диэлектрике) структурах, по радиационной стойкости. Способ отбраковки микросхем, изготовленных на КНД структурах, по стойкости к радиационному воздействию заключается в поэтапном облучении микросхем малой дозой, выборе статического тока потребления в качестве критериального параметра, определяющего радиационную стойкость микросхем, восстановлении исходных параметров микросхем путем их дополнительного облучения при заземленных выводах. Разбраковку осуществляют за один этап облучения при тестовой дозе, определяемой по результатам облучения определительной группы микросхем из производственной партии.

Недостатком известного способа является низкая надежность, связанная с уменьшенной разовой дозой облучения микросхем.

Известен способ разделения интегральных микросхем по радиационной стойкости и надежности (см. RU №2254587 С1, кл. G01R 31/26, 20.06.2005).

Изобретение относится к области электронной техники, в частности предназначено для разделения интегральных микросхем по уровням радиационной стойкости и надежности. Сущность: облучают поэтапно с количеством этапов не менее двух партии микросхем малой дозой ионизирующего излучения (от нескольких крад до нескольких десятков крад). Измеряют их стандартные электрические параметры и минимальное напряжение питания каждой микросхемы, при котором сохраняется ее функционирование. Строят дозовые зависимости, описывающие изменение стандартных параметров и минимального напряжения функционирования под действием облучения. С их помощью прогнозируют для каждой микросхемы дозу отказа, при которой хотя бы один стандартный параметр достигнет своего предельного значения или минимальное напряжение питания достигнет номинального значения напряжения питания микросхемы. Надежность микросхем определяют после отжига облученных микросхем по отклонению значения одного или нескольких стандартных параметров или минимального напряжения питания от их исходных значений до облучения.

Недостатком известного способа является сложность, связанная определением надежности микросхем после отжига.

В известных способах исследуются микросхемы и при этом определяются заранее заданные предельные параметры.

В последние годы в микроэлектронике СВЧ (сверхвысоких частот) все шире используются новые полупроводниковые материалы, такие как нитрид галлия GaN, карбид кремния SiC, кремний-германий SiGe. Не теряет своих позиций и арсенид галлия GaAs. На гетероструктурах AlGaN/GaN создаются мощные полевые транзисторы с высокой подвижностью электронов. На гетероструктурах SiGe разрабатываются биполярные транзисторы, способные работать на частотах в сотни гигагерц, Перечисленные материалы используются при создании современной в значительной степени новой элементной базы микроэлектроники, в частности наноэлектронного резонансно-туннельного диода (РТД) на основе многослойных AlGaAs (алюминий, галлий, арсеникум) полупроводниковых гетероструктур.

Технический результат, на достижение которого направлено изобретение, заключается в определении стойкости к радиационным и температурным воздействиям наноэлектронного резонансно-туннельного диода (РТД) на основе многослойных AlGaAs полупроводниковых гетероструктур, определении необходимости доработок конструкторского и технологического характера, направленных на повышение стойкости РТД к действию указанных факторов и, соответственно, повышение надежности радиоэлектронной аппаратуры на основе РТД в условиях действия ионизирующих излучений и температурного фактора.

Указанный технический результат достигается тем, что способ определения стойкости к радиационным и температурным воздействиям наноэлектронного резонансно-туннельного диода (РТД) на основе многослойных AlGaAs полупроводниковых гетероструктур заключается в последовательном приложении циклов радиационных воздействий на партию РТД, доза которых постепенно накапливается в каждом цикле, и температурных воздействий, время воздействия которых постепенно увеличивается, с тем, чтобы получить вызванное ими изменение вольт-амперной характеристики (ВАХ) в рабочей области не менее чем на порядок больше погрешности измерения, в определении количества циклов путем установления ВАХ, соответствующей параметрическому отказу для конкретного применения РТД, в построении семейства ВАХ, в определении на основе анализа кинетики ВАХ скорости деградации РТД и в определении стойкости к радиационным и температурным воздействиям РТД на основе полученных данных по скорости деградации РТД.

Указанный технический результат достигается также тем, что температурные воздействия осуществляют в области 300°C.

Изобретение будет понятно из последующего описания и приложенных к нему чертежей.

На фиг. 1 показана типовая структура и энергетическая диаграмма РТД. По оси ординат диаграммы приведены: Е - ось энергий, Ef - уровень Ферми, Ес - дно зоны проводимости.

На фиг. 2 показаны вольтамперные характеристики (ВАХ) РТД, полученные в результате действия циклов термических воздействий и циклов ионизирующих воздействий гамма-квантами. На оси абсцисс приведены значения напряжения - U на РТД в вольтах, на оси ординат приведены значения тока - I в амперах.

На фиг. 3 показаны искажения энергетической диаграммы в результате действия циклов термических и ионизирующих воздействий.

РТД состоит из двух контактных областей 1 (см. фиг. 1 и фиг. 3), выполненных из легированного GaAs и AuGeNi (золото, никель, германий), спейсеров 2, выполненных из GaAs, и резонансно-туннельной гетероструктуры в составе трех чередующихся областей: потенциальных барьеров 3, выполненных из AlyGa1-yAs, где y - молярная доля Al (алюминия), и расположенной между ними потенциальной ямы 4, выполненной из GaAs, различающихся шириной запрещенной зоны и толщиной слоя. Потенциальная яма и потенциальные барьеры имеют толщину от нескольких единиц до нескольких десятков нм (см. Ivanov Yu.A., Meshkov S.A., Sinjakin V.Yu., Fedorenko I.A., Fedorkova N.V., Fedorov I.B., Shashurin V.D. Increase of quality of radio-electronic systems of new generation due to application of resonant tunneling nanodiodes. Nanoengineering. 2011. №1, pp. 34-43).

Способ определения стойкости к радиационным и температурным воздействиям наноэлектронного резонансно-туннельного диода (РТД) на основе многослойных AlGaAs полупроводниковых гетероструктур осуществляется следующим образом.

Формируется партия РТД объемом N не менее 30 штук, которая подвергается воздействию циклов радиационных воздействий, чтобы получить вызванное ими изменение ВАХ в рабочей области не менее чем на порядок больше погрешности измерения. Доза радиационных воздействий постепенно накапливается в каждом цикле, а время температурных воздействий постепенно увеличивается. Температурные воздействия осуществляют преимущественно в области 300°C.

Радиационное облучение может производиться с помощью источника γ-квантов 60Со, например, ГИК-17М. Для температурного воздействия может использоваться лабораторная электронагревательная печь, например СНОЛ 6/11.

Цикл радиационных и температурных воздействий состоит из следующих действий. Сначала партия РТД облучается дозой, при которой изменение ВАХ диодов не менее чем на порядок больше погрешности измерений. Изменение ВАХ регистрируется измерительным прибором (например, совместное использование микрозондового устройства (МЗУ) «ЛОМО 900072» и источника питания с цифровым управлением «Agilent 3640A DC Power Supply»). Затем партия РТД подвергается температурному воздействию, время и температура воздействия выбираются такими, при которых изменение ВАХ диодов не менее чем на порядок больше погрешности измерений. Изменение ВАХ регистрируется измерительным прибором. ВАХ партии РТД измеряются в каждом цикле радиационных и температурных воздействий.

После каждого цикла радиационных и температурных воздействий измеряются ВАХ партии РТД. На фиг. 2 приведена ВАХ 5, полученная до температурных и ионизирующих воздействий. После первого цикла радиационных и температурных воздействий получена ВАХ 6, соответственно после последующих циклов получены ВАХ 7 и ВАХ 8. Как видно из фиг. 2, вольтамперные характеристики 6-8 незначительно отличаются друг от друга. После дополнительных воздействий получены ВАХ 9 и ВАХ 10, вольтамперные характеристики которых резко отличаются от начальной.

Количество циклов определяется путем установления ВАХ, соответствующей параметрическому отказу для конкретного применения РТД. Критическая ВАХ соответствует такому состоянию РТД, в котором он не может выполнять функции нелинейного преобразования радиосигналов для обеспечения заданных показателей назначения преобразователя (функционального устройства) на его основе, т.е. наступает параметрический отказ. Критическая ВАХ РТД находится путем имитационного моделирования параметров нелинейного преобразователя с различными формами ВАХ, полученными в результате радиационных и температурных воздействий, и сравнения их с допустимыми значениями. За критическую принимается такая ВАХ, при которой хотя бы один функциональный параметр (показатель назначения) преобразователя выходит за допустимые пределы (см. Мешков С.А., и др. Перспективы разработки нелинейных преобразователей радиосигналов на базе резонансно-туннельных нанодиодов, Вестник Московского государственного технического университета им. Н.Э. Баумана. Серия «Приборостроение», 2012, №4 (89), с. 100-113).

Деградация резонансно-туннельной гетероструктуры РТД в виде искажения энергетической диаграммы в результате действия циклов термических и ионизирующих воздействий показана на фиг. 3. Повреждения вносятся не только в гетероструктуру, но и в контактные области РТД.

На основе построенного семейства ВАХ определяется смещение ВАХ, которое характеризует скорость деградации РТД. Использование полученной скорости деградации РТД производится по методикам, изложенным в книге Проников А.С. Параметрическая надежность машин. М., Изд-во МГТУ им. Н.Э. Баумана, 2002, 560 с. и книге Чеканов А.Н. Расчеты и обеспечение надежности электронной аппаратуры: учебное пособие, М., КНОРУС, 2012, 440 с.

Изобретение позволяет определить стойкость к радиационным и температурным воздействиям наноэлектронного резонансно-туннельного диода (РТД) на основе многослойных AlGaAs полупроводниковых гетероструктур, определить необходимость доработок конструкторского и технологического характера, направленных на повышение стойкости РТД к действию указанных факторов и, соответственно, повысить надежность радиоэлектронной аппаратуры на основе РТД в условиях действия ионизирующих излучений и температурного фактора.

1. Способ определения стойкости к радиационным и температурным воздействиям наноэлектронного резонансно-туннельного диода (РТД) на основе многослойных AlGaAs полупроводниковых гетероструктур, характеризующийся последовательным приложением циклов радиационных воздействий на партию РТД, доза которых постепенно накапливается в каждом цикле, и температурных воздействий, время воздействия которых постепенно увеличивается, с тем, чтобы получить вызванное ими изменение вольт-амперной характеристики (ВАХ) в рабочей области не менее чем на порядок больше погрешности измерения, определением количества циклов путем установления ВАХ, соответствующей параметрическому отказу для конкретного применения РТД, построением семейства ВАХ, определением на основе анализа кинетики ВАХ скорости деградации РТД и определением стойкости к радиационным и температурным воздействиям РТД на основе полученной скорости деградации РТД.

2. Способ по п. 1, отличающийся тем, что температурные воздействия осуществляют в области 300°C.



 

Похожие патенты:

Использование: для отбраковки полупроводниковых приборов. Сущность изобретения заключается в подаче на каждый прибор из группы однотипных приборов неизменные напряжения питания, приложении последовательности циклов ионизирующего излучения, доза которого накапливается в каждом цикле с тем, чтобы получить вызванное ею приращение интегрального низкочастотного шума прибора над шумами его исходного состояния, анализе приращений интегрального шума с ростом накопленной дозы, определении приращения интегрального шума, достигнутого к моменту окончания М-го цикла, с которого начинают уверенно фиксироваться изменения рабочего тока прибора, выбраковке приборов тех типов, у которых среднее значение приращения интегрального шума на единицу дозы, достигнутое к моменту окончания М-го цикла, оказывается больше, чем у приборов других типов.

Изобретение относится к встроенному логическому анализатору и, в частности, к программируемому встроенному логическому анализатору для анализа электронной схемы.

Использование: для выяснения причин отказов устройства или для оценки качества процесса производства внутренней части электронного устройства. Сущность изобретения заключается в том, что способ, в котором выполняют анализ образца электронного устройства посредством замера некоторого свойства в нескольких точках указанного образца и подвергают, до выполнения анализа, указанные несколько точек, по меньшей мере, одной обработке, увеличивающей различие указанного свойства, по меньшей мере, в двух элементах образца электронного устройства, представляющих собой, по меньшей мере, два слоя пакета слоев, включенного в электронное устройство, при этом указанная обработка включает резку пакета слоев таким образом, что создается различие морфологии в поверхности среза, по меньшей мере, между двумя из указанных слоев пакета.

Изобретение относится к технике измерения тепловых параметров полупроводниковых приборов и интегральных микросхем и может быть использовано для контроля качества и оценки температурных запасов цифровых интегральных микросхем на выходном и входном контроле.

Использование: для контроля качества цифровых интегральных микросхем КМОП логическими элементами и оценки их температурных запасов. Сущность изобретения заключается в том, что способ включает подачу напряжения на контролируемую микросхему, переключение логического состояния греющего логического элемента последовательностью периодических импульсов, измерение изменения температурочувствительного параметра, определение теплового сопротивления, при этом греющий логический элемент переключается высокочувствительными импульсами, а в качестве температурочувствительного параметра используют длительность периода следования низкочастотных импульсов, генерируемых мультивибратором, и мультивибратор состоит из логического элемента контролируемой микросхемы и логического элемента образцовой микросхемы, работающей вместе с пассивными элементами мультивибратора при неизменной температуре.

Изобретение относится к технике измерения параметров элементов электрических цепей и может быть использовано для измерения параметров элементов многоэлементных двухполюсников, в том числе параметров элементов эквивалентных схем замещения полупроводниковых приборов.

Изобретение относится к измерительной технике, представляет собой устройство для определения исправности полупроводниковых диодов и может быть использовано для автоматического бесконтактного контроля технического состояния мостовых диодных выпрямителей.

Изобретение относится к области тестирования дискретных объектов большой размерности. Техническим результатом является повышение глубины локализации неисправностей.

Изобретение относится к технике испытаний и может быть использовано при наземной экспериментальной отработке радиоэлектронной аппаратуры космических аппаратов в диапазоне давлений окружающей среды от атмосферного до соответствующего глубокому вакууму.

Изобретение относится к микроэлектронике, а именно к способам испытаний интегральных схем (ИС) на коррозионную стойкость. Сущность: перед испытанием ИС проводят проверку внешнего вида, электрических параметров и проверку герметичности, нагревают до температуры плюс 125°С со скоростью не более 100°С/мин, выдерживают при этой температуре 1 ч, резко охлаждают до минус 55°С со скоростью не более 100°С/мин, выдерживают при данной температуре 0,5 ч, плавно нагревают до плюс 2°С в течение 1 ч.

Использование: для контроля тепловых свойств цифровых интегральных схем. Сущность изобретения заключается в том, что способ заключается в разогреве цифровой интегральной схемы ступенчатой электрической греющей мощностью известной величины и в измерении в определенные моменты времени в процессе разогрева цифровой интегральной схемы температурочувствительного параметра с известным температурным коэффициентом, по изменению которого рассчитывают приращение температуры активной области цифровой интегральной схемы, с целью упрощения способа и уменьшения погрешности измерения переходной тепловой характеристики для задания электрической греющей мощности нечетное число (n>1) логических элементов контролируемой цифровой интегральной схемы соединяют по схеме кольцевого генератора, подключают его к источнику питания, в заданные моменты времени ti измеряют мгновенную мощность, потребляемую цифровой интегральной схемой от источника питания, и частоту колебаний кольцевого генератора, а значение переходной тепловой характеристики в момент времени t находят по формуле: где и - частота колебаний кольцевого генератора в моменты времени t0=0 и ti соответственно, - температурный коэффициент частоты колебаний кольцевого генератора, Рср(ti)=[Р(0)+P(ti)]/2 - средняя мощность, потребляемая цифровой интегральной схемой за время от начала нагрева t0=0 до момента времени ti, а P(0) и P(ti) - мгновенная мощность, потребляемая цифровой интегральной схемой в моменты времени t0=0 и ti соответственно. Технический результат: обеспечение возможности упрощения способа и уменьшения погрешности измерения тепловой переходной характеристики цифровых интегральных схем. 2 ил.

Изобретение относится к области микроминиатюризации и технологии радиоэлектронной аппаратуры и может быть использовано для контроля параметров микросхем при их производстве. Технический результат: повышение точности и достоверности определения нагрузочной способности микросхем. Сущность: устройство содержит генератор прямоугольного напряжения 1, испытуемую микросхему 2, рабочую микросхему 3, вольтметр 4, элементы нагрузки 5-1…5-k, коммутатор 6, элемент И 7, компаратор 8, счетчик импульсов 9, источник опорного напряжения 10. В устройстве последовательно соединены генератор прямоугольного напряжения 1, рабочая микросхема 3, элемент И 7 и счетчик импульсов 9, а также источник опорного напряжения 10 и компаратор 8. Входная клемма испытуемой микросхемы 2 также подключена к выходу генератора прямоугольного напряжения 1. Сигнальные входы вольтметра 4 и коммутатора 6 объединены и подключены к выходной клемме испытуемой микросхемы 2. Управляющие входы вольтметра 4 и коммутатора 6 объединены и также подключены к выходу рабочей микросхемы 3. Выход вольтметра 4 связан со вторым входом компаратора 8, выход которого подключен ко второму входу элемента И 7. Каждый из выходов коммутатора 6 подключен к входу одноименного элемента нагрузки 5-1…5-k. 1 ил.

Устройство для определения нагрузочной способности микросхем относится к области микроминиатюризации и технологии радиоэлектронной аппаратуры и может быть использовано для контроля параметров микросхем при их производстве. Технический результат заключатся в повышении точности и достоверности определения нагрузочной способности микросхем. Устройство для определения нагрузочной способности микросхем содержит генератор прямоугольного напряжения 1, испытуемую микросхему 2, вольтметр 3, элементы нагрузки 4-1…4-k, коммутатор 5, элемент И 6, компаратор 7, счетчик импульсов 8 и источник опорного напряжения 9. 1 ил.

Изобретение относится к электроизмерительной технике и может быть использовано для бесконтактного непрерывного контроля исправности электротехнических объектов переменного тока. Устройство содержит: датчик напряженности внешнего магнитного поля, размещенного вблизи объекта контроля, выход которого связан с входом усилителя; узкополосный фильтр, настроенный на частоту 2ω (ω - частота питающего объект переменного напряжения), выход которого подключен к входам двух компараторов логического блока, имеющих различные уровни срабатывания. При этом к выходу компаратора, имеющего меньший уровень срабатывания, подключены входы логических элементов И-НЕ и И. Ко второму входу логического элемента И-НЕ подключены выход компаратора с большим уровнем срабатывания и второй индикатор блока индикации, а выход логического элемента И-НЕ подключен ко второму входу логического элемента И, к выходу которого подключен первый индикатор. Причем датчик напряженности выполнен в виде трех одинаковых ортогонально размещенных цилиндрических обмоток, начальные выводы которых соединены между собой и заземлены, а конечные выводы подключены соответственно к усилителям, каждый из которых соединен со своим квадратором, выходы которых соединены с входами суммирующего устройства, а выход суммирующего устройства подключен к устройству извлечения квадратного корня, соединенного с интегратором, выход которого, в свою очередь, подключен к входу полосового фильтра. Технический результат заключается в повышении надежности работы устройства. 2 ил.

Изобретения могут использоваться в электронной, космической, авиационной, военной и других отраслях промышленности. Способ измерения электрических параметров или характеристик объекта исследования, установленного в электронном устройстве или блоке без демонтажа объекта исследования с печатной платы, на которой он установлен, заключается в том, что посредством подключающего устройства измерительного оборудования или прибора подключают объект исследования - электрически соединяют его с таким оборудованием или прибором, согласно изобретению используют как минимум один специальный электронный компонент – Тест-ключ, который выполнен с возможностью замыкания и размыкания электрической цепи, подключенной к паре его выводов, при этом Тест-ключ электрически соединяют последовательно с объектом исследования, для чего его располагают непосредственно перед или за объектом исследования в соответствии с электрической схемой упомянутых устройства или блока, причем один из выводов пары электрически соединяют с заданным полюсом объекта исследования, в то время как другой - с тем местом или участком электрической цепи измеряемых устройства или блока, с которым этот полюс должен быть электрически соединен, при этом исключают соединение самого такого полюса с указанным местом посредством стационарно установленного проводника, причем обеспечивают возможность электрического соединения с таким полюсом подключающего устройства упомянутых оборудования или прибора, для чего обеспечивают возможность физического доступа извне к электрически соединенному с ним проводнику до, во время или после подключения объекта исследования к упомянутым оборудованию или прибору, но перед измерением, посредством управляющего состоянием Тест-ключа воздействия обеспечивают размыкание ключа, соответствующего упомянутому полюсу объекта исследования, за счет чего отключают объект исследования от электрической цепи упомянутых устройства или блока, после чего диагностируют объект исследования, электрически развязанный с электрической цепью упомянутых устройства или блока или с ее частью, причем не менее чем на время измерений или, по крайней мере, не менее чем на время тестирования объекта исследования упомянутым оборудованием или прибором поддерживают Тест-ключ в разомкнутом состоянии, тогда как по окончании измерений или тестирования объекта исследования непосредственно или отсрочено обеспечивают замыканием Тест-ключа подключение объекта исследования к указанной цепи для обеспечения возможности штатного функционирования диагностируемого устройства или блока. Технический результат, достигаемый при использовании изобретений, заключается в снижении затрат времени на проведение диагностики и настройки электронных устройств или блоков, что обеспечивается за счет снижения затрат времени на измерение распаянных на печатных платах объектов исследования и исключения деструктивного влияния на них процесса измерения в виду исключения необходимости их полного и частичного демонтажа с плат. 5 н. и 20 з.п. ф-лы, 3 ил.

Изобретение относится к электроизмерительной технике и может быть использовано для бесконтактного автоматизированного контроля параметров и диагностики технического состояния объектов, функционирование которых состоит из периодически повторяющихся циклов. Способ контроля и диагностики состояния сложных объектов, функционирование которых состоит из периодически повторяющихся циклов, заключается в регистрации сигнала информационного параметра состояния объекта, создании из этого сигнала его искаженного заведомо известным методом образа (реплики), получении характеристической кривой путем подачи на вход X осциллографа сигнала информационного параметра состояния, а на вход У - его образа (реплики) и сравнении наблюдаемой характеристической кривой с предварительно созданным банком эталонных характеристических кривых дефектных состояний объекта и на основании совпадения этих кривых установлении наличия соответствующего дефекта. При этом внутри периода изменения информационного параметра стробоскопическим методом выделяется область, наиболее полно отражающая наличие имеющегося дефекта, которая при необходимости может перемещаться в пределах периода, а также изменяться по длительности, и для этой области формируется характеристическая кривая, которая сравнивается с предварительно созданными соответствующими характеристическими кривыми из банка эталонных характеристических кривых дефектных состояний объекта контроля. Предлагаемый способ позволяет реализовать возможность углубленного анализа состояния сложных объектов, процесс функционирования которых состоит из периодически повторяющихся циклов за счет повышения точности и достоверности результатов измерения и высокочувствительного алгоритма их обработки. 4 ил.

Изобретение относится к электронной промышленности, в частности к средствам и методам тестирования электронных компонентов, в том числе при их производстве. Предложен способ тестирования электронных компонентов, включающий следующие этапы: осуществляют размещение по меньшей мере одного тестируемого электронного компонента на заданной позиции в емкости для тестирования; осуществляют опускание термогруппы, смонтированной над контактной поверхностью с контактными прессорами, расположенными в соответствии с расположением электронных компонентов, и содержащей по меньшей мере один элемент Пельтье, на указанный по меньшей мере один электронный компонент, причем прессоры соприкасаются с электронными компонентами без зазора; осуществляют управление питанием указанной термогруппы для достижения заданной температуры по меньшей мере одним указанным элементом Пельтье и по меньшей мере одним электронным компонентом, при этом изменение температуры при помощи прессоров происходит за счет теплопроводности; осуществляют тестирование параметров по меньшей мере одного электронного компонента при заданной температуре; прекращают тестирование электронных компонентов с последующим подъемом термогруппы и извлечением по меньшей мере одного электронного компонента из емкости для тестирования. Технический результат - повышение эффективности тестирования и снижение уровня механического стресса электронных компонентов. 12 з.п. ф-лы, 3 ил.

Изобретение относится к электронной промышленности, в частности к средствам и методам тестирования электронных компонентов, в том числе при их производстве. Предложен способ тестирования электронных компонентов, включающий следующие этапы: осуществляют размещение по меньшей мере одного тестируемого электронного компонента на заданной позиции в емкости для тестирования; осуществляют опускание термогруппы, смонтированной над контактной поверхностью с контактными прессорами, расположенными в соответствии с расположением электронных компонентов, и содержащей по меньшей мере один элемент Пельтье, на указанный по меньшей мере один электронный компонент, причем прессоры соприкасаются с электронными компонентами без зазора; осуществляют управление питанием указанной термогруппы для достижения заданной температуры по меньшей мере одним указанным элементом Пельтье и по меньшей мере одним электронным компонентом, при этом изменение температуры при помощи прессоров происходит за счет теплопроводности; осуществляют тестирование параметров по меньшей мере одного электронного компонента при заданной температуре; прекращают тестирование электронных компонентов с последующим подъемом термогруппы и извлечением по меньшей мере одного электронного компонента из емкости для тестирования. Технический результат - повышение эффективности тестирования и снижение уровня механического стресса электронных компонентов. 12 з.п. ф-лы, 3 ил.

Изобретение относится к технике испытаний и может быть использовано при наземной экспериментальной отработке и при приемочных испытаниях радиоэлектронной аппаратуры космических аппаратов на стойкость к инициированию вторичной дуги при работе аппаратуры на напряжениях, превышающих падение потенциала на дуге, в условиях имитации космического пространства, включая плазменное окружение, имитирующее плазму первичного разряда. Техническим результатом данного изобретения является устранение сквозных дефектов сплошности защитного покрытия путем восстановления полимерного покрытия на токоведущих проводниках испытываемой аппаратуры, что ведет к снижению риска повреждения радиоэлектронной аппаратуры в процессе испытания при сохранении достоверности испытаний. Способ испытания радиоэлектронной аппаратуры космических аппаратов на стойкость к вторичному дугообразованию заключается в воздействии плазмой, имитирующей плазму первичного разряда, на испытываемую аппаратуру в активном (рабочем) состоянии под напряжением, превышающим падение потенциала на дуге. Для достижения технического результата непосредственно перед испытанием работающей аппаратуры в плазменном окружении и в едином цикле с испытанием выполняется процедура осаждения полимера в местах нарушения защитного полимерного покрытия, при этом для осаждения полимера используется тот же источник плазмы, который используется для формирования плазменного окружения, имитирующего плазму первичного разряда. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области электротехники и может быть использовано в лампах. Техническим результатом является обеспечение возможности питания от двух различных типов трансформаторов. Выходные схемы (1) для приема выходных сигналов из трансформаторов (2) содержат фильтры (11) и выключатели (12). В случае магнитных/электронных трансформаторов фильтры (11) активируются/деактивируются, например, для выполнения/не выполнения фильтрации посторонних сигналов, поступающих из преобразователей (4). Фильтры (11) могут содержать конденсаторы. Выключатели (12) могут содержать плавкие предохранители. Выходные сигналы магнитных/электронных трансформаторов содержат сигналы относительно низкой/высокой частоты, которые дают в результате токи относительно небольшой/большой силы, протекающие через конденсаторы; эти токи будут обуславливать перегорание/не перегорание плавких предохранителей. Конденсаторы при их активации формируют вместе с индуктивностями рассеяния магнитных трансформаторов фильтры подавления электромагнитных помех. Альтернативно, схемы (1) могут дополнительно содержать датчики (13) для обнаружения типов трансформаторов и для управления выключателями (12) в ответ на результаты обнаружения. В этом случае датчики (13) могут быть выполнены с возможностью обнаружения частотных сигналов в выходных сигналах и содержат устройства (15) сравнения для выполнения сравнения результатов (14) обнаружения с пороговыми значениями. 5 н. и 10 з.п. ф-лы, 6 ил.

Использование: для определения стойкости к радиационным и температурным воздействиям наноэлектронного резонансно-туннельного диода. Сущность изобретения заключается в том, что способ определения стойкости к радиационным и температурным воздействиям наноэлектронного резонансно-туннельного диода на основе многослойных AlGaAs полупроводниковых гетероструктур заключается в последовательном приложении циклов радиационных воздействий на партию РТД, доза которых постепенно накапливается в каждом цикле, и температурных воздействий, время воздействия которых постепенно увеличивается, с тем, чтобы получить вызванное ими изменение вольт-амперной характеристики в рабочей области не менее чем на порядок больше погрешности измерения, в определении количества циклов радиационных и температурных воздействий путем установления ВАХ, соответствующей параметрическому отказу для конкретного применения РТД, в построении семейства ВАХ, в определении на основе анализа кинетики ВАХ скорости деградации РТД и в определении стойкости к радиационным и температурным воздействиям РТД на основе полученной скорости деградации РТД. Технический результат: обеспечение возможности определения стойкости к радиационным и температурным воздействиям наноэлектронного резонансно-туннельного диода. 1 з.п. ф-лы, 3 ил.

Наверх