Уменьшение образования алюмосиликатной накипи в процессе байера

В изобретении обеспечивают способ подавления нарастания алюмосиликатной накипи в контуре циркуляции щелока оборудования процесса Байера. Способ включает добавление в поток подавляющей образование алюмосиликатной накипи композиции, содержащей одну или более молекул на основе определенного силана, в жидкостной контур циркуляции щелока. Такие ингибиторы накипи снижают образование накипи и, посредством этого, увеличивают пропускную способность по жидкости, увеличивают промежуток времени, в течение которого может работать оборудование процесса Байера, и снижают потребность в дорогих и опасных промывках кислотой оборудования процесса Байера. В результате этого изобретение обеспечивает значительное снижение общих затрат на эксплуатацию процесса Байера. 11 з.п. ф-лы, 2 пр., 2 табл., 2 ил.

 

Перекрестная ссылка на родственные заявки

Данная заявка является частичным продолжением находящейся на стадии рассмотрения заявки 12/567116, поданной 25 сентября, 2009 г.

Уровень техники

Данное изобретение относится к композициям веществ и способам их применения для обработки накипи в различных потоках промышленных процессов, в частности, к определенным небольшим молекулам на основе силана, которые оказались особенно эффективными при обработке алюмосиликатной накипи в потоке процесса Байера.

Как описано наряду с другими публикациями в US 6814873, содержание которого включено в данную заявку полностью посредством ссылки, процесс Байера применяют для получения оксида алюминия из бокситовой руды. В процессе используют щелочной раствор для извлечения растворимого ценного оксида алюминия из боксита. После растворения ценного оксида алюминия и удаления нерастворимых отходов из технологического потока, растворимый оксид алюминия осаждают в виде твердого тригидрата алюминия. Оставшийся щелочной раствор, известный как «щелок» и/или «отработанный щелок», затем подают рециклом на более ранние стадии процесса и используют для обработки нового боксита. Это таким образом формирует жидкостной контур циркуляции. Для целей данной заявки, в данном описании используют термин «щелок». Однако, подача рециклом щелока в пределах жидкостного контура циркуляции имеет свои сложности.

Боксит часто содержит диоксид кремния в различных формах и количестве. Часть диоксида кремния не является реакционноспособной, поэтому он не растворяется и остается в виде твердого материала в контуре циркуляции Байера. Другие формы диоксида кремния (например, глины) являются реакционноспособными и растворяются в щелочи при добавлении в щелоки процесса Байера, таким образом увеличивая концентрацию диоксида кремния в щелоке. По мере того, как щелок многократно проходит через контур циркуляции процесса Байера, концентрация диоксида кремния в щелоке дополнительно возрастает, в конечном счете до величины, при которой он взаимодействует с алюминием и гидрокарбонатом натрия с образованием нерастворимых частиц алюмосиликата. Твердые частицы алюмосиликата наблюдают по меньшей мере в двух формах, содалита и канкринита. Эти и другие формы алюмосиликата обычно называют «продуктом десиликации» или «ПДС», и для целей данной заявки употребляют этот термин.

ПДС может иметь формулу 3(Na2O⋅Al2O3⋅2SiO2⋅0-2H2O)⋅2NaX, где X представляет собой OH-, Cl-, , . Поскольку ПДС имеет ретроградную растворимость (осаждение возрастает при более высоких температурах) и он может выпадать в осадок в виде тонкого слоя накипи из твердых нерастворимых кристаллических частиц, его нарастание в оборудовании процесса Байера создает проблемы. По мере накопления ПДС в трубах процесса Байера, вентилях, теплообменном оборудовании и другом технологическом оборудовании, он образует узкие места для потока и закупорки, и может отрицательно влиять на пропускную способность по щелоку. Кроме того, из-за его теплопроводных свойств, накипь ПДС на поверхности теплообменника снижает эффективность теплообмена.

Эти отрицательные эффекты обычно сдерживают посредством использования режима удаления накипи, который включает извлечение технологического оборудования из линии и физическую или химическую обработку и удаление накипи. Следствием такого типа режима являются значительные и регулярные периоды простоя ответственного оборудования. Дополнительно, в процессе удаления накипи часто используют опасные концентрированные кислоты, такие как серная кислота, и это создает нежелательную угрозу безопасности.

Другим способом сдерживания операторами технологического процесса Байера нарастания концентрации диоксида кремния в щелоке является преднамеренное осаждение ПДС в виде неприкрепленных кристаллов, вместо накипи. Обычно стадию «десиликации» в процессе Байера используют для снижения концентрации диоксида кремния в растворе посредством осаждения диоксида кремния как ПДС, в виде легко отделяющегося осадка. Несмотря на то, что такая десиликация снижает общую концентрацию диоксида кремния в щелоке, полное устранение диоксида кремния из раствора практически невозможно, и изменение условий процесса в различных частях контура циркуляции (например, в теплообменнике) может привести к изменению растворимости ПДС, что приводит к последующему осаждению в виде накипи.

Предшествующие попытки регулирования и/или снижения накипи ПДС в процессе Байера включали добавление полимерных материалов, содержащих три алкилоксигруппы, соединенные с одним атомом диоксида кремния, как описано в US 6814873 B2, US 2004/0162406 A1, 2004/0011744 A1, 2005/0010008 A2, WO 2008/045677 A1 и Max HT™ Sodalite Scale Inhibitor: Plant Experience and Impact on the Process, Donald Spitzer et. al., pages 57-62, Light Metals 2008 (2008); полное содержание указанных документов включено в данную заявку посредством ссылки.

Однако при получении и применении таких полимеров с привитыми триалкоксисилановыми цепями может возникать нежелательная степень вязкости, создавая трудности при обращении и распределении полимера в щелоке процесса Байера. Другие предшествующие попытки, направленные на борьбу с накоплением загрязняющего вещества, описаны в US 5650072 и US 5314626; оба документа включены в данную заявку во всей полноте посредством ссылки.

Таким образом, несмотря на ряд способов, доступных для операторов технологического процесса Байера, чтобы регулировать и сдерживать образование накипи ПДС, существует очевидная потребность в улучшенном способе предотвращения или уменьшения образования накипи ПДС на оборудовании процесса Байера. Уровень техники, описанный в данном разделе, не подразумевает признания того, что любой патент, публикация или другая информация, на которую ссылаются в данном описании, является «известным уровнем техники» для данного изобретения, если таковое не указано специально. Кроме того, данный раздел не следует понимать в том смысле, что проведен патентный поиск и не существует другой относящейся к данному изобретению информации, как определено в 37 C.F.R §1.56(a).

Краткое описание изобретения

По меньшей мере одно воплощение относится к способу уменьшения кремнийсодержащей накипи в процессе Байера, включающему стадию добавления в щелок Байера подавляющего образование алюмосиликатной накипи количества продукта реакции между содержащей амин молекулой и взаимодействующей с амином молекулой, содержащей по меньшей мере одну реакционноспособную группу в молекуле и по меньшей мере одну Si(OR)n группу в молекуле, где n=1, 2 или 3 и R=Н, C112алкил, арил, Na, K, Li или NH4; или смеси таких продуктов реакции.

Другое воплощение относится к способу уменьшения алюмосиликатной накипи в процессе Байера, включающему стадию добавления в щелок Байера эффективного количества продукта реакции между: 1) содержащей амин небольшой молекулой и 2) взаимодействующей с амином небольшой молекулой, содержащей по меньшей мере одну взаимодействующую с амином группу в молекуле и по меньшей мере одну Si(OR)n группу в молекуле, где n=1, 2 или 3 и R=Н, C1-C12 алкил, арил, Na, K, Li или NH4; или смеси таких продуктов реакции, и 3) неполимерного взаимодействующего с амином гидрофобного углеводорода.

По меньшей мере одно воплощение относится к способу уменьшения образования ПДС в процессе Байера, включающему стадию добавления в поток процесса Байера подавляющей образование алюмосиликатной накипи смеси продуктов, определенных выше.

Краткое описание чертежей

Ниже представлено подробное описание изобретения с конкретными ссылками на чертежи, где:

на Фиг.1 представлен график, демонстрирующий характер протекания периодической реакции по изобретению.

На Фиг.2 представлен график, демонстрирующий характер протекания полунепрерывной реакции по изобретению.

Подробное описание изобретения

В целях данной заявки, употребляемые термины имеют следующее определение.

«Полимер» означает химическое соединение, включающее в основном повторяющиеся структурные звенья, каждое из которых содержит два или более атомов. В то время как многие полимеры имеют большую молекулярную массу, более 500, некоторые полимеры, такие как полиэтилен, могут иметь молекулярную массу менее 500. Термин «полимер» включает сополимеры и гомополимеры.

«Небольшая молекула» означает химическое соединение, включающее в основном неповторяющиеся структурные звенья. Поскольку олигомер (содержащий более 10 повторяющихся звеньев) и полимер в основном включают повторяющиеся структурные звенья, они не являются небольшими молекулами. Небольшие молекулы могут иметь молекулярную массу выше и ниже 500. Термины «небольшая молекула» и «полимер» являются взаимоисключающими.

«Загрязняющее вещество» означает отложения материала, которые накапливаются на оборудовании при производственном и/или химическом процессе; этот осадок может быть нежелательным и может повышать стоимость и/или снижать эффективность процесса. ПДС представляет собой разновидность загрязняющего вещества.

«Амин» означает молекулу, содержащую один или более атомов азота и по меньшей мере одну группу вторичного амина или первичного амина. По этому определению, моноамины, такие как додециламин; диамины, такие как гександиамин, и триамины, такие как диэтилентриамин, все представляют собой амины.

«ГПС» представляет собой 3-глицидоксипропилтриметоксисилан.

«Алкилокси» означает группу, имеющую структуру OX, где X является углеводородом, а O является кислородом. Этот термин также можно использовать на равных основаниях с термином «алкокси». Обычно в данной заявке кислород связан как с X группой, так и с атомом кремния небольшой молекулы. Когда X содержит один атом углерода, алкилоксигруппа состоит из метильной группы, связанной с атомом кислорода. Когда X содержит два атома углерода, алкилоксигруппа состоит из этильной группы, связанной с атомом кислорода. Когда X содержит три атома углерода, алкилоксигруппа состоит из пропильной группы, связанной с атомом кислорода. Когда X содержит четыре атома углерода, алкилоксигруппа состоит из бутильной группы, связанной с атомом кислорода. Когда X содержит пять атомов углерода, алкилоксигруппа состоит из пентильной группы, связанной с атомом кислорода. Когда X содержит шесть атомов углерода, алкилоксигруппа состоит из гексильной группы, связанной с атомом кислорода.

«Моноалкилокси» означает, что к атому кремния присоединена одна алкилоксигруппа.

«Диалкилокси» означает, что к атому кремния присоединены две алкилоксигруппы.

«Триалкилокси» означает, что к атому кремния присоединены три алкилоксигруппы.

«Синтетический щелок» или «синтетический отработанный щелок» представляет собой полученную в лабораторном масштабе жидкость, используемую для экспериментов, состав которой в отношении оксида алюминия, гидрокарбоната натрия и щелочи соответствует щелоку, получаемому при подаче рециклом через процесс Байера.

«Щелок Байера» представляет собой щелок, который действительно прошел через процесс Байера в промышленном оборудовании.

В случае, когда вышеприведенные определения или описание, изложенное где-либо еще в материалах заявки, не соответствуют значению (явно выраженному или подразумеваемому), которое обычно используют в словарях или сформулированному в источнике, включенном посредством ссылки в данную заявку, термины, употребляемые в описании и формуле изобретения, следует конкретно понимать согласно определению или описанию, изложенному в данной заявке, а не согласно общему определению, представленному в словарях, или определению, изложенному в документе, включенном посредством ссылки. В свете вышесказанного, в том случае, когда термин можно истолковать только с помощью словаря, следует руководствоваться определением термина в Kirk-Othmer Encyclopedia of Chemical Technology, 5th Edition, (2005), (Published by Wiley, John&Sons, Inc.) чтобы понять значение термина в формуле изобретения.

В процессе Байера для получения оксида алюминия бокситовая руда проходит стадию измельчения, и оксид алюминия, вместе с рядом примесей, включающих диоксид кремния, растворяют в добавляемом щелоке. Затем смесь обычно пропускают через стадию десиликации, на которой диоксид кремния намерено осаждают в виде ПДС, чтобы снизить количество диоксида кремния в растворе. Суспензию перемещают на стадию выщелачивания, на которой растворяется оставшийся реакционноспособный диоксид кремния, таким образом снова увеличивая концентрацию в растворе диоксида кремния, который может впоследствии образовывать дополнительное количество ПДС по мере увеличения температуры процесса. Затем щелок отделяют от нерастворенных твердых веществ и оксид алюминия извлекают посредством осаждения в виде гиббсита. Отработанный щелок заканчивает прохождение контура его циркуляции по мере пропускания через теплообменник и обратно на стадию измельчения. Накипь ПДС накапливается в ходе процесса Байера, но в особенности на стадии выщелачивания, и в наибольшей степени, на или вблизи теплообменника, через который проходит рециркулируемый щелок.

В данном изобретении было обнаружено, что дозированное добавление различных типов продуктов на основе силана может снизить количество образующейся накипи ПДС.

По меньшей мере в одном воплощении эффективное количество продукта, представляющего собой небольшую молекулу на основе силана, добавляют на каком-либо участке или стадии в контур циркуляции щелока процесса Байера, что минимизирует или предотвращает накопление ПДС в емкостях или оборудовании по контуру циркуляции щелока.

По меньшей мере в одном воплощении небольшая молекула включает продукт реакции между амином и по меньшей мере одним взаимодействующим с амином силаном, причем кремний в силане может быть соединен с одной, двумя или тремя алкилоксигруппами.

По меньшей мере в одном воплощении небольшая молекула представляет собой продукт реакции между содержащей амин небольшой молекулой и взаимодействующей с амином молекулой, содержащей по меньшей мере одну взаимодействующую с амином группу в молекуле и по меньшей мере одну Si(OR)n группу в молекуле, где n=1, 2 или 3 и R=Н, С112 алкил, арил, Na, K, Li или NH4, или смесь таких продуктов реакции.

По меньшей мере в одном воплощении способ уменьшения образования содержащей алюмосиликат накипи в процессе Байера включает следующие стадии:

- добавление в поток процесса Байера подавляющего образование алюмосиликатной накипи количества композиции, включающей по меньшей мере одну молекулу, состоящую по меньшей мере из трех компонентов, компонента R1, компонента R2 и компонента R3, причем компоненты в молекуле расположены в соответствии с основной формулой:

где молекула может представлять собой по меньшей мере одно из следующих соединений: карбонаты, бикарбонаты, карбаматы, мочевины, амиды и их соли, и

(i) R1 выбран из группы, состоящей из Н, алкила, амина, структуры (А) и структуры (В)

(ii) R2 выбран из группы, состоящей из Н, алкила, амина, G и Е,

где G представляет собой соединение, выбранное из группы, состоящей

из 3-глицидоксипропилтриметоксисилана,

3-глицидоксипропилтриалкоксисилана,

3-глицидоксипропилалкилдиалкоксисилана,

3-глицидоксипропилдиалкилмоноалкоксисилана,

3-изоцианатопропилтриалкоксисилана,

3-изоцианатопропилалкилдиалкоксисилана,

3-изоцианатопропилдиалкилмоноалкоксисилана,

3-хлорпропилтриалкоксисилана,

3-хлорпропилалкилдиалкоксисилана и

3-хлорпропилдиалкилмоноалкоксисилана,

причем G возможно подвергнуто гидролизу,

Е представляет собой 2-этилгексил глицидиловый эфир, С322 глицидиловый эфир, С322 изоцианат, С322 хлорид, С322 бромид, С322 йодид, С322 сульфатный эфир, С322 фенолглицидиловый эфир и любое их сочетание,

(iii) R3 выбран из группы, состоящей из Н, алкила, амина, G и Е, и

(iv) n является целым числом от 2 до 6,

причем по меньшей мере один из R2 и R3 представляет собой G.

По меньшей мере в одном воплощении R1 независимо выбран из группы, состоящей из моноизопропаноламина, этилендиамина, диэтилентриамина, тетраэтиленпентамина, изофорондиамина, ксилолдиамина, бис(аминометил)циклогексана, гександиамина, С,С,С-триметилгександиамина, метилен-бис(аминоциклогексана), насыщенных жирных аминов, ненасыщенных жирных аминов, таких как олеиламин и сойамин, N-(жирный алкил)-1,3-пропандиамина, такого как кокоалкилпропандиамин, олеилпропандиамин, додеци л пропан диамин, (гидрированный талловый алкил)пропандиамин и (таловый алкил)пропандиамин, и любого их сочетания.

По меньшей мере в одном воплощении G подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (I), (II), (III), (IV), (V), (VI), (VII), (VIII), (IX) и любого их сочетания:

По меньшей мере в одном воплощении G подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (X), (XI), (XII), (XIII), (XIV), (XV), (XVI), (XVII), (XVIII), (XIX) и любого их сочетания:

По меньшей мере в одном воплощении G подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (XX), (XXI), (XXII) и любого их сочетания:

По меньшей мере в одном воплощении G подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (XXIII), (XXIV), (XXV), (XXVI), (XXVII) и любого их сочетания:

По меньшей мере в одном воплощении G подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (XXVIII), (XXIX), (XXX), (XXXI), (XXXII) и любого их сочетания:

По меньшей мере в одном воплощении G не подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (XXXIII), (XXXIV), (XXXV), (XXXVI), (XXXVII), (XXXVIII), (XXXIX), (XL), (XLI) и (XLII) и любого их сочетания:

По меньшей мере в одном воплощении G не подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (XLIII), (XLIV), (XLV), (XLVI), (XLVII), (XLVIII), (XLIX), (L), (LI), (LII) и любого их сочетания:

По меньшей мере в одном воплощении G не подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (LIII), (LIV), (LV) и любого их сочетания:

По меньшей мере в одном воплощении G не подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (LVI), (LVII), (LVIII), (LIX), (LX) и любого их сочетания:

По меньшей мере в одном воплощении G не подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (LXI), (LXII), (LXIII), (LXIV) и любого их сочетания:

По меньшей мере в одном воплощении небольшая молекула присутствует в растворе в количестве от приблизительно 0,01 до приблизительно 100 масс.%. Композиция может дополнительно включать один компонент, выбранный из группы, состоящей из аминов, активирующих веществ, противовспенивающих веществ, сопоглотителей, ингибиторов коррозии, красящих веществ и любых их сочетаний. Композиция может включать растворитель, выбранный из группы, состоящей из воды, спиртов, полиолов, других промышленных растворителей, органических растворителей и любых их сочетаний. Компоненты могут быть выделены из реакции в форме твердого вещества, выпавшей фазы, соли и/или кристаллической фазы при pH от 0 до 14.

Хотя некоторые из небольших молекул упомянуты в различных документах известного уровня техники, их применение для абсолютно неродственных заявок и их эффективность для уменьшения образования накипи в процессе Байера является полностью неожиданным. Некоторые источники, в которых упомянуты такие или подобные небольшие молекулы, включают патент США US 6551515; научные труды: Ethylenediamine attached to silica as an efficient, reusable nanocatalyst for the addition of nitromethane to cyclopentenone, DeOliveira, Edimar; Prado, Alexander G.S., Journal of Molecular Catalysis (2007), 271 (1-2), 6369; Interaction of divalent copper with two diaminealkyl hexagonal mesoporous silicas evaluated by adsorption and thermochemical data, Sales, Jose; Prado, Alexander; and Airoldi, Claudio, Surface Science. Volume 590, Issue 1, pp.51-62 (2005) и Epoxide silyant agent ethylenediamine reaction product anchored on silica gel-thermodynamics of cation-nitrogen interaction at solid/liquid interface, Journal of Noncrvstaline Solids. Volume 330, Issue 1-3, pp.142-149 (2003); международные патентные заявки: WO 2003/002057 A2, WO 2002/085486, WO 2009/056778 A2 и WO 2009/056778 A3; патенты Франции: 2922760 A1 и 2922760 B1; Европейский патент: 2214632 A2 и заявку на патент Китая: CN 101747361.

Эффективность таких небольших молекул является неожиданной, поскольку согласно указаниям известного уровня техники, эффективными являются только высокомолекулярные полимеры. Предполагали, что эффективность полимера зависит от их гидрофобной природы и их размера. Это было подтверждено тем фактом, что поперечно-сшитые полимеры являются еще более эффективными, чем полимеры с одной цепью. В результате было сделано предположение, что небольшие молекулы служат только в качестве строительных блоков для этих полимеров и сами по себе не являются эффективными. (WO 2008/045677 [0030]). Более того, в научной литературе отмечено, что «небольшие молекулы, содержащие … группировку Si-O3, не являются эффективными для предотвращении образовании накипи содалита … поскольку … объемная группа … в существенной степени препятствует внедрению молекулы в растущий содалит». Max HT™ Sodalite Scale Inhibitor: Plant Experience and Impact on the Process, Donald Spitzer et. al., pages 57, Light Metals 2008, (2008). Однако, недавно обнаружено, что в действительности, как дополнительно поясняется в представленных примерах, небольшие молекулы, такие как описанные в данной заявке, все-таки являются эффективными для уменьшения образования накипи ПДС.

Полагают, что существует по меньшей три преимущества использования ингибиторов на основе небольших молекул, в противоположность полимерным ингибиторам с множеством повторяющихся звеньев силана и гидрофобных фрагментов. Первое преимущество состоит в том, что меньшая молекулярная масса продукта означает, что существует большее количество доступных активных ингибирующих группировок вокруг центров кристаллизации ПДС на стадии образования ПДС. Второе преимущество состоит в том, что более низкая молекулярная масса обеспечивает повышенную скорость диффузии ингибитора, что в свою очередь способствует быстрому прикреплению молекул ингибитора к затравочным кристаллам ПДС. Третье преимущество состоит в том, что более низкая молекулярная масса позволяет избежать высокой вязкости продукта, и следовательно, делает обращение с продуктом и введение его в поток процесса Байера более удобным и эффективным.

Примеры

Вышеизложенное лучше понять при обращении к нижеследующим примерам, которые представлены с целью иллюстрации и не предполагают ограничения области защиты изобретения.

Пример синтеза путем взаимодействия A, E и G

При типичной реакции синтеза три составляющие: A (например, гександиамин), G (например, 3-глицидоксипропилтриметоксисилан) и E (например, этилгексил глицидиловый эфир) помещают в подходящую реакционную емкость при температуре 23-40°C и обеспечивают возможность смешивания. Затем реакционную емкость подогревают до 65-70°C, в течение этого времени начинается реакция и выделяется большое количество теплоты. Реакция становится самоподдерживающейся и, в зависимости от масштаба реакции, может достигать температур вплоть до 125-180°C (см. Фиг.1). Обычно реакцию прерывают по прошествии 1-2 часов и затем обеспечивают возможность охлаждения смеси. В качестве аспекта настоящего изобретения, эту не гидролизованную полученную смесь можно подходящим образом отделить в виде жидкости, или геля, или твердого вещества. Альтернативно, полученную реакционную смесь можно подвергать гидролизу, с помощью ряда способов, для приготовления раствора гидролизованной полученной смеси в воде. Гидролиз алкоксисилановых групп в компоненте G приводит к образованию соответствующего спирта (например, метанола, этанола и т.д., в зависимости от алкоксисилана, используемого при синтезе).

Обычно специалист в данной области техники проводит раскрытие эпоксидного кольца с помощью реакционноспособного амина в периодическом режиме (при котором компоненты смешивают), при нагревании до температуры инициирования выше комнатной температуры (например, 50-65°C), позволяя температуре реакции достигать значений вплоть до 125-180°C. Это может вызвать внутреннее поперечное сшивание и протекание побочных реакций, что часто требуется в процессах производства смолы.

Однако, по меньшей мере в одном воплощении предусматривают использование непрерывного или полунепрерывного способа синтеза, который обеспечивает ряд преимуществ по сравнению с традиционно используемым периодическим способом. Это включает добавление только части компонентов G и E, либо вместе, либо последовательно, либо отдельно в форме медленной подачи для инициирования первичной реакции раскрытия эпоксидного кольца, с последующей медленной непрерывной подачей двух компонентов G и E (либо вместе, либо отдельно и одновременно, либо последовательно). Этот способ позволяет намного лучше управлять реакцией в целом, температурой реакции, и обеспечивает лучший общий выход активных соединений в продукте, также избегая нежелательных побочных реакций (см. Фиг.2).

По меньшей мере в одном воплощении в реакции синтеза используют 3-глицидоксипропилтриметоксисилан в качестве компонента G. Длительное воздействие при высоких температурах выше 120°C может привести к внутренним реакциям сочетания и множественному замещению реакционноспособными аминными группами, такими как гександиамин или этилендиамин. Получаемые не гидролизованные продукты реакции превращаются в гель за более короткий период времени, что сопровождается увеличением вязкости продукта реакции. Использование полунепрерывного или непрерывного способа, или отдельной, или медленной последовательной, или независимой, или объединенной подачи эпоксидов E и G в реакционную смесь обеспечивает лучшее регулирование температуры реакции, благодаря чему снижают количество метанола, который образуется и выделяется в ходе реакции. Кроме того, реакционная смесь обладает более низкой вязкостью и в ней протекает меньше нежелательных побочных реакций (см. таблицу I).

Таблица I.
Данные синтеза A:G:E путем проведения реакции различными способами
№ партии Способ Температура реакции °C (°F) Вязкость промежуточного продукта реакции, сПз MeOH выделенный, кг (фунт)
1 Периодический 116-129 (240-265) 550 4,5 (9,8)
2 Партия за партией 107-113 (225-235) 240 0,73 (1,6)
3 Полунепрерывный 82-104 (180-220) 65 0,32 (0,7)

Примеры относительного подавления образования накипи ПДС различными небольшими молекулами A:G:E, образованными в результате описанной выше реакции синтеза.

Определение характеристики подавления образования накипи для небольших молекул обычно проводят следующим образом.

1) Небольшое количество силиката натрия (0,25-1,5 г/л по SiO2) добавляют в отработанный щелок процесса Байера при комнатной температуре, чтобы увеличить концентрацию диоксида кремния в щелоке.

2) В части такого образца щелока добавляют различное количество нового подавляющего образование накипи соединения или смеси.

3) Обработанные и необработанные (или контрольные) образцы щелока подвергают воздействию повышенной температуры от 96 до 150°C в течение от 4 до 6 ч.

4) Затем образцы охлаждают и измеряют количество накипи ПДС, образовавшейся в каждом обработанном образце щелока, и сравнивают с количеством, образовавшимся в необработанных или контрольных образцах.

В качестве примера, в таблице II представлены сравнительные данные по подавлению накипи ПДС для нескольких смесей A:G:E, синтезированных с использованием описанной выше реакции синтеза, с различными компонентами на основе аминов в качестве основного компонента.

Таблица II.
Сравнительные данные по подавлению накипи ПДС для различных синтезированных реакционных смесей A:G:E, где A - амин, G - глицидоксипропилтриметоксисилан, E - 2-этилгексил глицидиловый эфир
Количество накипи ПДС, мг, в зависимости от обработки % снижения накипи ПДС относительно контрольного образца
A - используемый амин Необраб. Малая доза Большая доза Малая доза Большая доза
Гександиамин 26,20 0,18 0,06 99,3% 99,8%
Этилендиамин 27,30 20,40 8,12 25,3% 70,3%
Диэтилентриамин 26,70 18,30 10,27 31,5% 61,5%
Тетраэтилен-пентаамин 24,60 22,50 16,80 8,5% 31,7%
1-амино-2-пропанол 26,20 3,50 0,05 86,6% 99,8%

Хотя данное изобретение может быть реализовано во многих различных формах, в данной заявке представлены на чертежах и описаны подробно конкретные воплощения изобретения. Настоящее описание представлено в качестве иллюстрации основных положений изобретения и не предполагает ограничения изобретения представленными конкретными воплощениями. Все патенты, патентные заявки, научные труды и любые другие документы, на которые ссылаются в данном описании, включены во всей полноте посредством ссылки. Кроме того, изобретение охватывает любые возможные сочетания некоторых или всех различных воплощений, описанных в данной заявке и включенных в данную заявку.

Представленное выше описание является иллюстративным и не исчерпывающим. На основе данного описания, специалист в данной области техники может предположить множество изменений и альтернатив. Все такие альтернативы и изменения считаются включенными в область защиты, определенную формулой изобретения, где термин «включающий» означает «включающий, но не ограничивающий». Специалисты в данной области техники могут обнаружить другие эквиваленты конкретным воплощениям, описанным в данной заявке, которые также охватываются формулой изобретения.

Все диапазоны и параметры, раскрытые в данном описании, следует понимать как охватывающие любые и все поддиапазоны, допускаемые и входящие в состав этих диапазонов, и каждое число между предельными значениями. Например, установленный диапазон «от 1 до 10» следует рассматривать как включающий любые и все поддиапазоны между (и включительно) минимальным значением 1 и максимальным значением 10; то есть все поддиапазоны, начинающиеся с минимального значения 1 или более (например, от 1 до 6,1) и заканчивающиеся значением 10 или менее (например, от 2,3 до 9,4, от 3 до 8, от 4 до 7), и наконец, каждое число 1, 2, 3, 2, 5, 6, 7, 8, 9 и 10 в пределах диапазона.

Этим завершается описание предпочтительных и альтернативных воплощений изобретения. Специалист в данной области техники может обнаружить другие эквиваленты конкретному описанному воплощению, которые охватываются формулой изобретения, приложенной к настоящему документу.

1. Способ уменьшения образования содержащей алюмосиликат накипи в процессе Байера, включающий следующие стадии:

- добавление в поток процесса Байера подавляющего образование алюмосиликатной накипи количества композиции, включающей по меньшей мере одну молекулу, состоящую по меньшей мере из трех компонентов, компонента R1, компонента R2 и компонента R3, причем компоненты в молекуле расположены в соответствии с основной формулой:

где молекула может представлять собой по меньшей мере одно из следующих соединений: карбонаты, бикарбонаты, карбаматы, мочевины, амиды и их соли, и

R1 выбран из группы, состоящей из Н, алкила, амина, структуры (А) и структуры (В)

R2 выбран из группы, состоящей из Н, алкила, амина, G и Е,

где G представляет собой соединение, выбранное из группы, состоящей

из 3-глицидоксипропилтриметоксисилана,

3-глицидоксипропилтриалкоксисилана,

3-глицидоксипропилалкилдиалкоксисилана,

3-глицидоксипропилдиалкилмоноалкоксисилана,

3-изоцианатопропилтриалкоксисилана,

3-изоцианатопропилалкилдиалкоксисилана,

3-изоцианатопропилдиалкилмоноалкоксисилана,

3-хлорпропилтриалкоксисилана,

3-хлорпропилалкилдиалкоксисилана и

3-хлорпропилдиалкилмоноалкоксисилана,

причем G возможно подвергнуто гидролизу,

Е представляет собой 2-этилгексил глицидиловый эфир, С322 глицидиловый эфир, С322 изоцианат, С322 хлорид, С322 бромид, С322 йодид, С322 сульфатный эфир, С322 фенолглицидиловый эфир и любое их сочетание,

R3 выбран из группы, состоящей из Н, алкила, амина, G и Е, и

n является целым числом от 2 до 6,

причем по меньшей мере один из R2 и R3 представляет собой G.

2. Способ по п. 1, в котором R1 независимо выбран из группы, состоящей из моноизопропаноламина, этилендиамина, диэтилентриамина, тетраэтиленпентамина, изофорондиамина, ксилолдиамина, бис(аминометил)циклогексана, гександиамина, С,С,С-триметилгександиамина, метилен-бис(аминоциклогексана), насыщенных жирных аминов, ненасыщенных жирных аминов, таких как олеиламин и сойамин, N-(жирный алкил)-1,3-пропандиамина, такого как кокоалкилпропандиамин, олеилпропандиамин, додецилпропандиамин, (гидрированный талловый алкил)пропандиамин и (талловый алкил)пропандиамин, и любого их сочетания.

3. Способ по п. 1, в котором G подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (I), (II), (III), (IV), (V), (VI), (VII), (VIII), (IX) и любого их сочетания:

4. Способ по п. 1, в котором G подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (X), (XI), (XII), (XIII), (XIV), (XV), (XVI), (XVII), (XVIII), (XIX) и любого их сочетания:

5. Способ по п. 1, в котором G подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (XX), (XXI), (XXII) и любого их сочетания:

6. Способ по п. 1, в котором G подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (XXIII), (XXIV), (XXV), (XXVI), (XXVII) и любого их сочетания:

7. Способ по п. 1, в котором G подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (XXVIII), (XXIX), (XXX), (XXXI) (XXXII) и любого их сочетания:

8. Способ по п. 1, в котором G не подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (XXXIII), (XXXIV), (XXXV), (XXXVI), (XXXVII), (XXXVIII), (XXXIX), (XL), (XLI), (XLII) и любого их сочетания:

9. Способ по п. 1, в котором G не подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (XLIII), (XLIV), (XLV), (XLVI), (XLVII), (XLVIII), (XLIX), (L), (LI), (LII) и любого их сочетания:

10. Способ по п. 1, в котором G не подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (LIII), (LIV), (LV) и любого их сочетания:

11. Способ по п. 1, в котором в не подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (LVI), (LVII), (LVIII), (LIX), (LX) и любого их сочетания:

12. Способ по п. 1, в котором G не подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (LXI), (LXII), (LXIII), (LXIV), (LXV) и любого их сочетания:



 

Похожие патенты:

Изобретение относится к устройству, способам и системам для обработки ливневой воды и удаления осадка и взвешенных твердых веществ из воды, сбрасываемой с монтажных, строительных и других площадок, где следует избегать сброса взвешенных твердых веществ в прибрежные системы или ливневые канализации, а также, в частности, для сепарации песка, масла, биомассы и прочих наносов из воды, уменьшения количества пищевых и азотистых соединений в обработанной воде.

Изобретение относится к области водоочистки. Устройство содержит металлический или пластиковый корпус, соединённый со сборником фильтрата.

Изобретение может быть использовано для безреагентной очистки промышленных отвальных, дренажных вод, в алмазодобывающей промышленности, горной промышленности и гидротехнических сооружениях для предварительной подготовки воды.

Устройство для слива осветленной воды относится к водоочистным сооружениям, в частности биологической очистки сточных вод, и может быть использовано для отвода осветленной воды в отстойниках, в усреднителях с переменным уровнем, в сгустителях осадка.

Изобретение относится к способам и устройствам для обработки загрязненной газообразными соединениями и твердыми веществами технологической воды и может быть использовано для очистки технологической воды из установок мокрой очистки технологического газа, в частности из установок для восстановительной плавки или из плавильного газогенератора.

Водораспределитель относится к очистке природных, техногенных и бытовых сточных вод и может быть использован в процессах очистки природных или сточных вод методами осаждения или напорной флотации.
Изобретение может быть использовано для удаления из воды и водных растворов нежелательных примесей в виде газов и/или летучих соединений. Для осуществления способа подают жидкость в камеру, проводят аэрацию жидкости в камере посредством эжекции ею воздуха и удаляют из камеры газы и/или летучие примеси, выделяющиеся из жидкости.

Изобретение относится к способу и системе для мониторинга в режиме реального времени свойств водного потока технологического процесса. Способ включает обеспечение исходного водного раствора, происходящего из указанного процесса, при этом водный поток содержит твердые вещества, имеющие первые характеристики осаждения; добавление модифицирующего агента в исходный водный раствор со скоростью добавления, достаточной для получения модифицированного водного потока, содержащего твердое вещество, имеющее вторые характеристики осаждения, отличные от первых характеристик осаждения; отбор образца исходного водного раствора или модифицированного водного потока, любой комбинации потоков, включающей модифицированный водный поток или любую часть модифицированного водного потока, периодически с места отбора проб в осадительную камеру, имеющую объем; и измерение характеристик осаждения твердого вещества в образце локально в осадительной емкости как функции времени.

Изобретение относится к способу и системе для обработки водного потока, имеющего первую скорость потока и содержащего твердое вещество, обладающее первыми характеристиками осаждения, при этом способ включает добавление в водный поток модифицирующего агента в количестве, достаточном для изменения первых характеристик осаждения водного потока, с получением модифицированного водного потока, содержащего твердое вещество, обладающее вторыми характеристиками осаждения, отличными от первых характеристик осаждения; отбор в периодическом режиме образцов модифицированного водного потока в осадительную емкость, имеющую объем; определение характеристики осаждения твердых веществ образцов в осадительной емкости; и подачу модифицированного водного потока в установку для разделения, на которой твердое вещество отделяют от модифицированного водного потока.

Изобретение может быть использовано для безреагентной очистки оборотных промышленных вод от взвешенных, сапонитсодержащих шламовых частиц, а также уплотнения сапонитсодержащего осадка.

Изобретение относится к области физики и может быть использовано: для безреагентной очистки оборотных промышленных вод (ПВ) от сапонитсодержащих частиц и безреагентного уплотнения сапонитсодержащего осадка; для безреагентной очистки сточных ПВ от взвешенных веществ в отстойниках и на полях поверхностной фильтрации. Способ заключается в использовании по меньшей мере одной карты намыва - ограниченной со всех сторон водоупорными дамбами: внешней, внутренней и двумя боковыми, части хвостохранилища с наклонным дном в сторону водозабора, формировании, усилении и излучении бегущих гидроакустических волн звукового и ультразвукового диапазонов частот с амплитудой акустического давления не менее 102 Па на расстоянии 1 м от соответствующего гидроакустического излучателя, воздействии на промышленную воду бегущими гидроакустическими волнами звукового и ультразвукового диапазонов частот в районе сброса промышленной воды и в центральной части - на пути движения промышленной воды к району водозабора, гидроакустической коагуляции сапонитсодержащих частиц в районе сброса промышленной воды и в центральной части, гидроакустической дегазации промышленной воды в центральной части и в районе сброса промышленной воды на карту намыва, уплотнении сапонитсодержащего осадка в районе сброса промышленной воды и в центральной части, гидроакустическом уплотнении тел всех водоупорных дамб. Очистку осуществляют в движущемся потоке промышленной воды. Излучение бегущих гидроакустических волн звукового и ультразвукового диапазонов частот осуществляют в импульсном и в непрерывном режиме. Дополнительно в районе сброса промышленной воды и в центральной части карты намыва используют гидроакустическое осаждение исходных и ранее акустически коагулированных сапонитсодержащих частиц, путем направленного сверху вниз излучения бегущих гидроакустических волн звукового и ультразвукового диапазонов частот. В районе сброса промышленной воды на карту намыва используют гидравлическое осаждение сапонитсодержащих частиц, движущихся в потоке промышленной воды по дну верхней части карты намыва путем их физического сцепления с уже находящимися на дне сапонитсодержащими частицами. В способе дополнительно используют отстойник, входы которого соединены с выходами всех карт намыва, а выход которого соединен с входом обогатительной фабрики. Технический результат: быстрое и качественное разделении на две фазы - жидкое и твердое, повышение качества обогащения, уменьшение износа оборудования простым способом при минимальных финансово-временных затратах с обеспечением медицинской безопасности для человека и экологической безопасности для окружающей природной среды в целом. 7 ил.

Изобретение относится к области физики и может быть использовано для безреагентной очистки от взвешенных веществ и коллоидных частиц с размером частиц менее 0,5 мкм, а также от тяжелых металлов и солей промышленных сточных (карьерных, отвальных, дренажных и т.д.) вод. Способ безреагентной очистки сточных вод заключается в акустической коагуляции и последующем гравитационном осаждении преимущественно среднедисперсных взвешенных веществ в главном отстойнике и в первом дополнительном отстойнике, в акустической коагуляции и последующем гравитационном осаждении преимущественно тонкодисперсных взвешенных веществ во втором дополнительном отстойнике и в третьем дополнительном отстойнике, в акустической коагуляции и последующем гравитационном осаждении преимущественно коллоидных частиц, тяжелых металлов и солей, в акустическом уплотнении осадка с применением гидроакустических волн звукового и ультразвукового диапазонов частот с амплитудой звукового давления не менее, соответственно, 101 Па и 102 Па на расстоянии 1 м от соответствующего гидроакустического излучателя, в качестве главного отстойника и первого дополнительного отстойника используют, соответственно, верхний и нижний блоки секций отстойника грубой очистки воды, в качестве второго дополнительного отстойника используют каскадный отстойник тонкой очистки воды, в качестве третьего дополнительного отстойника используют поля поверхностной фильтрации, акустическую коагуляцию осуществляют только в бегущих гидроакустических волнах звукового и ультразвукового диапазонов частот, дополнительно акустическую коагуляцию и последующее гравитационное осаждение взвешенных веществ, коллоидных частиц, тяжелых металлов и солей осуществляют в третьем дополнительном отстойнике. Изобретение обеспечивает повышение качества очистки сточных вод. 10 ил.

Изобретение относится к области физики и может быть использовано для безреагентной очистки оборотных вод (ОВ) от сапонитсодержащих шламовых частиц (ССШЧ), от взвешенных веществ (ВВ) в отстойниках и на полях поверхностной фильтрации; от коллоидных частиц (КЧ) и, попутно, от тяжелых металлов (ТМ). Хвостохранилище обогатительной фабрики (ОФ) предварительно разделяют на отсеки, центральную часть и пруд-отстойник. В процессе производственной деятельности загрязненную ОВ (пульпу), перемещаемую по прямолинейному участку пульповода от ОФ к району ее сброса в соответствующий отсек хвостохранилища, акустически обрабатывают при помощи навесного акустического модуля на пульповоде. Пульпу, сбрасываемую из пульповода в соответствующий отсек хвостохранилища, повторно акустически обрабатывают в отсеке. Предварительно очищенную в отсеке ОВ снова акустически обрабатывают после ее сброса в центральный отсек хвостохранилища. В процессе акустической обработки осуществляют: акустическую коагуляцию ССШЧ (в пульповоде, отсеке и центральной части хвостохранилища); акустическую дегазацию ОВ (в отсеке и в центральной части хвостохранилища); акустическое уплотнение осадка (в отсеке и в центральной части хвостохранилища); акустическое уплотнение тел водоупорных дамб (в отсеке); акустическое осаждение исходных и ранее акустически коагулированных ССШЧ в отсеке и в центральной части хвостохранилища; гравитационное осаждение ранее акустически коагулированных ССШЧ (в отсеке, центральной части и в пруду-отстойнике хвостохранилища); акустико-гравитационно-гидравлическое осаждение ССШЧ в верхних частях отсека (в районе пляжных зон). ОВ внутри отсека и в центральной части хвостохранилища от района ее соответствующего сброса до района ее соответствующего перелива направляют (при помощи рассредоточенных выпусков из пульповода, первых - в отсеках, переливных труб и вторых - в пруду-отстойнике, переливных труб, а также преграждающих дамб - в центральной части хвостохранилища) по максимально протяженному пути; последовательный перелив из отсека в центральную часть хвостохранилища, в пруд-отстойник и водозабор на ОФ (через водозаборный колодец) осуществляют только верхнего (не более 20% от высоты столба воды). Технический результат изобретения заключается в быстром и качественном разделении на две фазы - жидкое и твердое сапонитсодержащих хвостов обогащения обогатительной фабрики; в быстрой и качественной очистке ОВ от ССШЧ; в быстром и качественном уплотнении ССО; в качественном уплотнении тел водоупорных дамб относительно простым способом при минимальных финансово-временных затратах с обеспечением медицинской безопасности для человека и экологической безопасности для окружающей природной среды в целом. 9 ил.

Изобретение может быть использовано для сгущения продуктов обогащения обогатительных фабрик, гидрометаллургии, для очистки оборотных промышленных вод, для подготовки питьевой воды и дальнейшего использования сгущенного осадка в качестве сырья. Способ сгущения пульпы с использованием акустических волн включает ее очистку от крупнодисперсных, среднедисперсных, тонкодисперсных и коллоидных шламовых частиц в грязевом отстойнике, смешивание в главном отстойнике грубо осветленной пульпы с раствором химического реагента, предварительно приготовленным и акустически диспергированным, механическое перемешивание пульпы с раствором химического реагента и одновременное облучение их в главном отстойнике, гравитационное сгущение осадка, забор сгущенного осадка из главного отстойника и его предварительную акустическую сушку до влажности не более 50%, транспортировку сгущенного и акустически высушенного осадка и его последующее обезвоживание, транспортировку сгущенного и обезвоженного осадка для его глубокой переработки или утилизации. В качестве главного отстойника используют сгуститель, в котором пульпу с раствором химического реагента облучают гидроакустическими волнами звукового и ультразвукового диапазонов частот с амплитудой акустического давления не менее 104 Па на расстоянии 1 м от соответствующего гидроакустического излучателя. Осуществляют воздействие на пульпу в грязевом отстойнике при помощи гидроакустических волн звукового и ультразвукового диапазонов частот с амплитудой акустического давления не менее 102 Па на расстоянии 1 м от соответствующего гидроакустического излучателя. Осуществляют воздействие на сгущаемый осадок при помощи гидроакустических волн звукового и ультразвукового диапазонов частот с амплитудой акустического давления не менее 102 Па на расстоянии 1 м от соответствующего гидроакустического излучателя. Изобретение позволяет эффективно сгущать осадок и осветлять пульпу относительно простым способом при минимальных финансово-временных затратах с обеспечением медицинской безопасности для человека и экологической безопасности для окружающей природной среды. 8 ил.

Изобретение относится к способу и устройству для обработки промышленных сточных вод и/или питьевой воды с помощью электрохимических способов и процессов дополнительного окисления. После подготовительной фазы гравитационного осаждения следует основная обработка, состоящая из электрокоагуляции, электроокисления и электрофлотации за счет действия металлических наборов электродов, изготовленных из нержавеющей стали, стали и алюминия соответственно с одновременной дезинфекцией/окислением озоном, УФ-излучением и ультразвуковой обработкой, а также рециркуляцией в электромагнитном поле. По окончании основной обработки смесь флокул и воды подвергают коагуляции/флокуляции под действием электрохимически образованных из стали и алюминия флокул при медленном введении озона. Следующая фаза представляет собой отделение осадка от чистой воды, которую выгружают в сборный резервуар через песочный фильтр и фильтр из активированного угля для удаления легких плавучих флокул. При необходимости воду подвергают окислению при одновременном действии УФ-излучения и озона для окончательного разложения органических веществ и аммиака, а также возможных остатков микробиологического загрязнения. Изобретение обеспечивает установку для обработки промышленных сточных вод, в которой используют электрохимические способы. 2 н. и 45 з.п. ф-лы, 4 ил., 8 табл., 4 пр.

Изобретение относится к гидротехнике, а именно к сооружениям для комплексной очистки воды от влекомых и части взвешенных наносов при водозаборе в каналы, трубопроводы и аванкамеры насосных станций. Пескогравиеловка включает основную приемную емкость 1, в которой размещен пустотелый цилиндр 2, сопряженный с подводящим водоводом 4. Ниже оголовка цилиндра 2 в основной емкости 1 размещен отражательный экран 6 с радиальными ответвлениями с соплами 8. Сопла 8 ориентированы таким образом, что каждое сопло 8 экрана 6 направлено вовнутрь полости емкости 1 с закручиванием потока и созданием направленного тока воды по окружной плоскости цилиндрической емкости 1. Емкость 1 разделена поперечной перегородкой 11 с перепускными окнами 12 на две полости 13 и 14. В нижней части стенки пустотелого цилиндра 2 выполнены отверстия 5 под острым углом в сторону внутренней стенки емкости 1. Верхняя часть стенки емкости 1 выполнена выпускным отверстием 15, которое смещено относительно перепускных окон 12 в поперечной перегородке 11. Дно емкости 1 имеет наклон к горизонтальной оси устройства. В центре емкости 1 выполнено промывное отверстие 18 с промывным трубопроводом 19. Емкость 1 в верхней части ее стенки с помощью выпускного окна 15 сообщена с отводящим трубопроводом 16 чистой воды. В таком конструктивном решении и режиме гидродинамических условий работы наносонасыщенного потока наносы будут поступать непосредственно сразу в сбросной коллектор за счет вращающейся воды и смыва их с наклонных стенок дна, а чистая вода, успокоившаяся выше перегородки, будет поступать из верхних слоев в отводящий трубопровод 16 и далее потребителю. Повышается эффективность непрерывной очистки воды от донных и взвешенных наносов, а также обеспечивается возможность регулирования гидравлической структуры потока в распределителе подачи воды, выполненном в виде отражательного экрана с радиальными ответвлениями, с соплами и водоотделительного устройства в целом, а также упрощается конструкция. 2 з.п. ф-лы, 2 ил.

Изобретение относится к сепарационному устройству для удаления частиц из жидкости. Сепарационное устройство содержит корпус (12), имеющий первую (19) и вторую (40) сепарационные камеры, перегородки для создания препятствия внутри второй камеры (40), отверстия (98) в корпусе для входа и выхода жидкости в первую камеру (19), средство (100) для создания закручивания жидкости внутри первой камеры (19, отверстия, обеспечивающие поток жидкости между первой камерой (19) и второй камерой (40), средство для направления потока жидкости внутри второй камеры. Суммарный поток во второй камере проходит в направлении, по существу противоположном направлению закручивания потока в первой камере. Технический результат: простота монтажа, эффективная работа устройства при потоке в любом направлении. 2 н. и 22 з.п. ф-лы, 19 ил.

Изобретение относится к сепараторному устройству для отделения частиц от потока текучей среды, в частности к сепараторному устройству для использования в системе отопления. Сепараторное устройство (10) содержит корпус (12), имеющий первое и второе отверстия (96) для входа и выхода текучей среды в корпус (12) и из него; первую сепараторную камеру (38), расположенную на одном конце корпуса; вторую сепараторную камеру (40), расположенную на другом конце корпуса; центральную камеру, расположенную между первой и второй сепараторными камерами (38, 40). В центральной камере предусмотрен магнит. Первое и второе отверстия соединены с центральной камерой. Первая и вторая сепараторные камеры (38, 40) каждая имеют отверстия для входа и выхода текучей среды в/из центральной камеры. Каждая сепараторная камера содержит заграждающее средство для замедления потока текучей среды в камере. Технический результат: эффективное удаление частиц в текучей среде при любом направлении потока, возможность изменения местами входа и выхода при сохранении эффективности фильтрации, простота монтажа. 25 з.п. ф-лы, 14 ил.

Изобретение относится к гидротехнике, а именно к устройствам для очистки воды от наносов, и предназначено для предотвращения попадания донных и взвешенных наносов, фракций более 0,2 мм, в трубопроводы с машинным орошением и аванкамеры насосных станций. Пескогравиеловка включает основную приемную емкость 1, дополнительную успокоительную емкость 2, установленные в отстойной емкости 3 большего объема с приямком 4. К приямку 4 присоединен коллектор 5, имеющий задвижку 6. Дно основной 1, дополнительной 2 и отстойной 3 емкостей имеет уклон в сторону образованного в дне 7 наносопромывного приямка 4. Пескогравиеловка содержит вертикальные перегородки 8, 9 и 10. В нижней части перегородок 9 и 10 закреплены Г-образные козырьки 11 и 12, полка которых направлена вниз. Перегородки 8, 9 и 10 делят пескогравиеловку на основную 1, дополнительную успокоительную 2, переливную 13 и отстойную 3 емкости. В верхней части дополнительной успокоительной емкости 2, размещенной внутри емкости 3, под крышкой 14 размещен поплавок 15, закрепленный на одном конце рычага 16, который вторым концом закреплен в переливной емкости 13 с осью вращения 17. Тяга 18 размещена в направляющих 20 и верхним концом шарнирно соединена с рычагом 16 в средней его части, а нижним концом жестко соединена с клапаном 19. В нижней части приемной емкости 1 размещена переливная труба 22, соединяющая отстойную емкость 3 с переливной емкостью 13. Конец переливной трубы 22, лежащий в отстойной емкости 3, снабжен шлангом 23 с диффузором 24 с вертикальной трубкой 25 с обратным клапаном 26. К диффузору 24 жестко прикреплен поплавок 27. Мусорозащитное устройство 28 обеспечивает защиту от плавающего мусора входного отверстия диффузора 24. Конец переливной трубы 22, расположенный в переливной емкости 13, выполнен в виде камеры 29, на дне которой имеется отверстие 30. Для регулирования площади отверстия 30 служит клапан 19, жестко связанный с тягой 18. Вертикальные перегородки 9 и 10 закреплены так, что между их нижней кромкой с Г-образными козырьками 11 и 12, полка которых направлена вниз, и дном образовано щелевое отверстие для прохода воды из приемной емкости 1 в дополнительную успокоительную 2 и в отстойную 3 емкости. Вертикальная перегородка 8 имеет расположенное на уровне верхнего положения поплавка 15 в дополнительной успокоительной емкости 2 отверстие 31 для перелива воды из емкости 2 в переливную емкость 13. В придонной части переливная емкость 13 сообщается с трубопроводом 32 отвода чистой воды потребителю. В таком размещении емкостей, снабженных вертикальными перегородками с Г-образными козырьками, полка которых направлена вниз, и выполнении дна с уклоном в сторону приямка 4 наносы будут поступать в коллектор 5 с задвижкой 6, а чистая вода будет поступать из верхних слоев дополнительной успокоительной емкости 2 и отстойной емкости 3 в переливную емкость 13 и далее к потребителю. Конструкция сооружения направлена на обеспечение эффективности работы, упрощение и уменьшение металлоемкости. 1 з.п. ф-лы, 1 ил.

Изобретение может быть использовано для безреагентной очистки сапонитсодержащей воды и уплотнения сапонитсодержащего осадка. Для осуществления способа формируют излучение бегущих гидроакустических волн звукового и ультразвукового диапазонов частот, воздействуют излучением на загрязненную сапонитсодержащую воду, осуществляют гидроакустическую коагуляцию и осаждение сапонитсодержащих частиц, уплотнение тел водоупорных дамб и акустическую сушку осадка. При этом гидроакустические излучатели размещают на плавучих гидроакустических модулях (13), установленных в районе сброса загрязненной сапонитсодержащей воды (5), в центральной части отстойника и в районе водозабора осветленной воды (7) дополнительно используют не менее двух мобильных боновых заграждений (11), формирующих поперечные, переливные отсеки отстойника (6), не менее двух мобильных, придамбовых боновых заграждений (12), формирующих продольные, глухие отсеки отстойника (6), при этом плавучие гидроакустические модули (13) устанавливают в ряд за вторым боновым заграждением (11). Дополнительно устанавливают не менее трех плавучих шламовых насосов (14), обеспечивающих отбор предварительно уплотненного сапонитсодержащего осадка, его перемещение в глухой отсек отстойника (6), в котором осуществляют концентрирование, уплотнение и обезвоживание осадка. С двух сторон боновых заграждений (11) и (12) устанавливают плавучие насосы (15) для их монтажа или демонтажа. Дополнительно используют гидроакустическое уплотнение сапонитсодержащего осадка для его обезвоживания (16) и сушки (17). Способ обеспечивает быстрое и качественное осветление больших объемов сапонитсодержащей воды, уплотнение и сушку полученного сапонитсодержащего осадка, повышение экологической безопасности эксплуатации отстойников. 9 ил., 1 пр.

В изобретении обеспечивают способ подавления нарастания алюмосиликатной накипи в контуре циркуляции щелока оборудования процесса Байера. Способ включает добавление в поток подавляющей образование алюмосиликатной накипи композиции, содержащей одну или более молекул на основе определенного силана, в жидкостной контур циркуляции щелока. Такие ингибиторы накипи снижают образование накипи и, посредством этого, увеличивают пропускную способность по жидкости, увеличивают промежуток времени, в течение которого может работать оборудование процесса Байера, и снижают потребность в дорогих и опасных промывках кислотой оборудования процесса Байера. В результате этого изобретение обеспечивает значительное снижение общих затрат на эксплуатацию процесса Байера. 11 з.п. ф-лы, 2 пр., 2 табл., 2 ил.

Наверх