Безэховая камера

Изобретение относится к радиотехнике, а именно к конструкциям безэховых камер (БЭК), предназначенных для измерения диаграмм эффективной площади рассеяния (ЭПР) радиолокационных целей. Безэховая камера, выполненная в закрытом помещении, в котором внутренние стены, пол и потолок облицованы радиопоглощающим материалом, причем продольное сечение помещения выполнено в форме трапеции с горизонтальным основанием. При этом задняя торцевая стена помещения установлена под углом β=(90°-arc tg√ε), где ε - диэлектрическая проницаемость облицовочного радиопоглощающего материала. Технический результат заключается в устранении зеркального отражения радиоволн от задней торцевой стены БЭК. 1 ил.

 

Изобретение относится к радиотехнике, а именно к конструкциям безэховых камер (БЭК), предназначенных для измерения диаграмм эффективной площади рассеяния (ЭПР) радиолокационных целей.

Известна БЭК, которая выполнена в виде закрытого помещения, стены, пол и потолок которой имеют продольные гофры на боковых стенах и поперечные - на торцевых, которые облицованы радиопоглощающим материалом (РПМ) (М.Ю. Минцмахер, В.А. Торгованов. «Безэховые камеры СВЧ». М., «Радио и связь», 1982 г., стр. 40, рис. 2.5.). Гофры применены для уменьшения зеркальных отражений радиоволн от облученных радиоволнами стен БЭК.

Общим признаком аналога и изобретения является облицовка РПМ стен, пола и потолка БЭК.

У аналога зеркальное отражение радиоволн от торцевой стены БЭК зависит от значения коэффициента отражения РПМ, который имеет конечное значение, поэтому отражение радиоволн не может быть устранено.

Известна БЭК, принятая за прототип изобретения, которая выполнена в виде закрытого помещения, внутренние стены, пол и потолок которого плоские и облицованы РПМ (Патент РФ №2346365 на изобретение «Безэховая камера»). Поперечное сечение БЭК выполнено в форме параллелограмма, а продольное - в форме трапеции с горизонтальным основанием. БЭК вписана в прямоугольный параллелепипед.

Общими признаками прототипа и изобретения являются: облицовка РПМ стен, пола и потолка БЭК и наклон задней торцевой плоской стенки к продольной оси БЭК под углом.

У прототипа зеркальное отражение радиоволн от торцевой стены БЭК зависит от значения коэффициента отражения РПМ и параметров БЭК, поэтому не может быть устранено.

Технический результат изобретения - устранение зеркального отражения радиоволн от задней торцевой стены БЭК. Этот результат обеспечивается путем установления задней торцевой стены БЭК под углом β к ее продольной оси, равным (90°-θ), где θ угол Брюстера.

Изобретение поясняется чертежом, на котором представлен осевой продольный разрез БЭК, где введены обозначения: 1 - задняя торцевая стена БЭК, облицованная РПМ; 2 - антенна для измерения ЭПР целей, установленная в окне передней торцевой стены БЭК; β - угол, под которым установлена задняя стена БЭК к ее продольной оси.

Предпосылки изобретения

Известно (А.Ф. Харвей. «Техника сверхвысоких частот». М., Советское радио, 1965 г., стр. 41-42), что на поверхности раздела между свободным пространством и диэлектриком имеет место как полное отражение, так и преломление. Если углы θ и φ соответствуют углам падения и преломления, то закон Снелля для волны, входящей в диэлектрик, записывается:

sinθ/sinφ=√ε,

где ε - относительная диэлектрическая проницаемость диэлектрика.

Отраженная волна распространяется всегда под углом - θ. Ее амплитуда для интересующего нас случая преломления в более плотной среде определяется коэффициентом Френеля, который равен:

ρ=(√ε⋅cosθ-cosφ)/(√ε⋅cosθ+cosφ)=tg(θ-φ)/tg(θ+φ),

когда электрическое поле волны параллельно плоскости падения. При (θ+φ)=90°, знаменатель в этом выражении становится бесконечно большим числом, а коэффициент отражения - равен нулю. Величина угла θ, при которой выполняется условие нулевого отражения, называется углом Брюстера, который равен arc tg√ε. Радиоволны, прошедшие через границу раздела воздух-диэлектрик, поглощаются РПМ.

Пример реализации изобретения

Например, для РПМ типа «Болото», выполненного из поролона, пропитанного сажей, ε=1,3, угол Брюстера θ равен 51°. Следовательно, задняя торцевая стена БЭК должна быть установлена под углом β=(90°-θ)=39° к продольной оси БЭК. В этом случае не будет отражения радиоволн от задней торцевой стены БЭК.

Безэховая камера, выполненная в закрытом помещении, в котором внутренние стены, пол и потолок облицованы радиопоглощающим материалом, причем продольное сечение помещения выполнено в форме трапеции с горизонтальным основанием, отличающаяся тем, что задняя торцевая стена помещения установлена под углом β=(90°-arc tg√ε), где ε - диэлектрическая проницаемость облицовочного радиопоглощающего материала.



 

Похожие патенты:

Летательный аппарат (10) с малой радиолокационной сигнатурой включает двигательную установку (18) для приведения в движение летательного аппарата (10), имеющего воздухозаборник (16) и сопловое отверстие (14), нишу (20, 24, 26), через которую предусмотрена возможность ввода других компонентов летательного аппарата (10) вовнутрь.

Изобретение относится к радиотехнике. Особенностью заявленного антенного поста является то, что металлические валы через редукторы и электромагнитную муфту сцепления соединены с возвратными электродвигателями, крепящимися к нижним бимсам, радиопрозрачные тяги, обеспечивающие продвижение радиопоглощающих транспарантов, прикреплены к металлическим катушкам с внутренней электромагнитной муфтой, обеспечивающей сцепление металлической катушки с металлическим валом, закрепленным на стойках верхнего бимса и вращающимся через редуктор посредством электродвигателя, расположенного на стойке верхнего бимса, включение/выключение электродвигателей осуществляется посредством концевых выключателей, при этом радиопоглощающие транспаранты могут быть сплошными или с вырезами для антенн, оставленных не экранированными для работы, а поверх радиопрозрачных панелей, области которых не перекрываются радиопоглощающими транспарантами, наклеиваются радиопоглощающие наклейки.

Использование: для обеспечения электромагнитной совместимости радиоэлектронных средств, защиты от радиоизлучения и снижения радиолокационной заметности различных объектов.

Изобретение относится к области радиотехники, к материалам для поглощения электромагнитных волн, и может найти применение для повышения скрытности и уменьшения вероятности обнаружения радиолокаторами объектов морской, наземной, авиационной и космической техники, а также обеспечения электромагнитной совместимости радиоэлектронных и радиотехнических приборов и устройств.
Предложенное изобретение относится к технологии изготовления радиопоглощающих ферритов, которые находят все более широкое применение в безэховых камерах, для значительного снижения отражения радиоволн от стен.

Изобретение предназначено для авиационной, космической и ракетной техники и может быть использовано при изготовлении объемных термостойких широкодиапазонных радиопоглощающих материалов (РПМ) для защиты от электромагнитного излучения.

Изобретение относится к поглотителям электромагнитных волн. Технический результат - создание слоистого поглотителя электромагнитных волн с коэффициентом поглощения по мощности не менее 99% в диапазоне частот 42-76 Гц и в видимой области.

Изобретение относится к защитным композиционным материалам на текстильной основе, которые используются в электро- и радиотехнике, медицине, военной технике, астрономии, строительной и бытовой технике.

Изобретение относится к области радиотехники. Устройство представляет собой многослойную конструкцию, состоящую из нескольких слоев: наружного слоя, выполненного из диэлектрического материала, поглощающих внутренних слоев электропроводящей ткани, соединенных прослойками диэлектрического вещества, и тыльного слоя.

Изобретение относится к маскировке, в частности, к маскировочным покрытиям для упреждения обнаружения радиолокаторами противника воздушных и наземных объектов. Технический результат заключается в малой удельной массе поглощающего покрытия, низкой трудоемкости его изготовления в связи с простотой конструкции его исполнения, а также в улучшении аэродинамической поверхности защищаемого объекта.

Изобретение относится к антенной технике. Заявлен экран-параболоид для антенных измерений, состоящий из параболоида вращения, изготовленного из материала, хорошо отражающего электромагнитное излучение, и имеющий форму внутренней поверхности, обеспечивающую переотражение падающих электромагнитных волн вертикально вверх, с размещенными во внутренней полости, в фокусе параболоида вращения, места для установки исследуемой излучающей антенны и места для установки вспомогательной антенны, находящейся на необходимом удалении перпендикулярно оси параболоида вращения на уровне фокуса параболоида вращения, вблизи внутренней поверхности размещены два зеркала-ловушки, имеющие эллиптическую форму, обеспечивающую защиту исследуемой излучающей антенны и вспомогательной антенны от воздействия электромагнитного излучения, исходящего от исследуемой излучающей антенны, перенаправляя электромагнитное излучение в заданное направление. Техническим результатом является создание устройства, обеспечивающего исключение влияния переотражения на результаты антенных измерений. 6 ил.
Изобретение относится к антенной технике. При получении радиопоглощающего покрытия на защищаемую поверхность наносят радиопоглощающий материал в несколько слоев, при этом по крайней мере в одном из слоев создаются разрезные кольца из электропроводного материала толщиной более толщины скин-слоя. Причём создание разрезных колец осуществляют методом магнетронного напыления через металлическую маску, окна в которой имеют форму и размеры, соответствующие форме и размерам разрезных колец, а режим напыления выбирают из заданной толщины слоя электропроводного материала. Технический результат заключается в повышении технологичности способа изготовления радиопоглощающего покрытия, имеющего высокое поглощение в широком диапазоне длин волн (от долей мм до 2-3 десятков см). 2 з.п. ф-лы.

Изобретение относится к технике защиты объектов от обнаружения с помощью радиолокационного излучения. Особенностью заявленного способа снижения радиолокационной заметности объекта является то, что плазменное образование создают с помощью высоковольтного коронного лавинно-стримерного импульсного разряда и осуществляют синхронизацию зондирующих импульсов РЛС и импульсов разряда путем приема зондирующих импульсов РЛС и изменения времени начала генерирования и периода следования импульсов разряда до момента совпадения во времени импульсов РЛС и импульсов разряда. Техническим результатом является расширение области применения способа и снижение энергозатрат. 6 ил.

Изобретение относится к летательным аппаратам. В воздушном канале (1) воздухозаборника самолета установлена противорадиолокационная решетка (6) под углом γ, составляющим от 30 до 90° относительно продольной оси канала. Воздушный канал (1) ограничен стенками воздухозаборника, а также подвижными панелями (2, 3). С одной стороны воздушный канал (1) открыт для поступления воздушного потока через вход (4) воздухозаборника, а с другой стороны от входа (4) воздушный канал (1) соединен с входным направляющим аппаратом (5). Длина l решетки, в направлении, параллельном продольной оси канала, зависит от диаметра воздушного канала в месте установки решетки (6) и находится в пределах от 0,3 до 0,6 диаметра d воздушного канала (1). Расстояние по продольной оси воздушного канала (1) от решетки до входного направляющего аппарата (5) составляет от 0,7 до 1,2 диаметра d канала (1). Изобретение снижает радиолокационную заметность воздухозаборника самолета путем увеличения радиопоглощающей и радиогасящей способности воздушного канала за счет удлинения его отражающих плоскостей. 5 з.п. ф-лы, 5 ил.

Изобретение относится к области создания конструкционных радиопоглощающих материалов, которые используются для изготовления корпусных конструкций объектов техники двойного назначения. Композиционный радиопоглощающий конструкционный материал представляет собой единую монолитную композицию, состоящую из двухпакетного соединения - внешнего радиопоглощающего пакета, состоящего из многослойного композиционного синтетического тканевого наполнителя и клеевого связующего, и пакета из композиционного синтетического тканевого наполнителя и клеевого связующего, принимающего основную силовую прочностную нагрузку. Радиопоглощающий пакет получен путем внедрения в типовую композицию, состоящую из проклеенных слоев синтетического тканевого материала, пленок гидрогенизированного аморфного углерода с наночастицами 3d-металлов. Техническим результатом изобретения является создание композиционного радиопоглощающего конструкционного материала с низким коэффициентом отражения электромагнитного излучения в широком диапазоне частот с высокими прочностными, технологическими и эксплуатационными свойствами. 2 з.п. ф-лы, 1 ил., 1 табл., 2 пр.

Изобретение относится к получению нанокристаллического магнитомягкого порошкового материала для изготовления широкополосного радиопоглощающего композита. Способ включает измельчение аморфной ленты из магнитомягкого сплава на молотковой дробилке до частиц 3-5 мм и затем измельчение в высокоскоростном дезинтеграторе. Проводят термическую обработку полученных после измельчения на молотковой дробилке частиц с обеспечением снятия закалочных напряжений. Измельчение в дезинтеграторе ведут с получением порошка 100-200 мкм. Из полученного порошка отсеивают 30 мас.% порошка для изготовления первого слоя композита. Ведут термическую обработку оставшегося порошка 100-200 мкм для образования нанокристаллических предвыделений с последующим размолом в дезинтеграторе с получением порошка 50-100 мкм. Отсеивают 50 мас.% полученного порошка для изготовления второго слоя композита. Ведут термическую обработку оставшегося порошка 50-100 мм с обеспечением образования нанокристаллической структуры, после чего его размалывают в дезинтеграторе и отсеивают с получением порошка 1-50 мкм для изготовления третьего слоя композита. Обеспечивается получение трех фракций порошка за один технологический цикл и повышение эффективности измельчения. 1 з.п. ф-лы, 1 ил., 1 табл., 2 пр.

Изобретение относится к области радиотехники, в частности к радиопоглощающим покрытиям (РПП) электромагнитных волн (ЭМВ), и может быть использовано в сверхширокополосных антенных системах. Сверхширокополосное радиопоглощающее покрытие выполнено в виде семислойного покрытия на основе ферромагнитных металлополимероматричных композиционных материалов, слои которого имеют различную толщину. Первый слой - от 2,0 до 3,0 мм, второй слой - от 1,0 до 1,5 мм, третий слой - от 1,0 до 2,0 мм, четвертый слой - от 3,0 до 4,0 мм, пятый слой - от 2,0 до 3,0 мм, шестой слой - от 1,0 до 1,5 мм, седьмой слой - от 0,1 до 0,5 мм. При этом в каждом из первых пяти слоев в качестве наполнителя используется комплекс ферромагнитных частиц с различными формами и размерами: - в первом слое (частицы чешуйчатой формы) от 5 до 25 мкм, во втором слое (частицы чешуйчатой формы) от 3 до 10 мкм, в третьем слое (частицы сфероидальной формы) от 1 до 5 мкм, в четвертом слое (частицы сфероидальной формы) от 1 до 5 мкм, в пятом слое (частицы сфероидальной формы) от 1 до 5 мкм. Шестой слой покрытия является согласующим диэлектрическим слоем с пониженной диэлектрической проницаемостью, достигаемой за счет введения в полимерную матрицу стеклянных микросфер. Седьмой диэлектрический слой покрытия с малой толщиной является дополнительным согласующим слоем для высокочастотной области спектра и представляет собой полимерную матрицу с реологическими добавками. Использование РПП в составе системы сверхширокополосных спиральных антенн позволило уменьшить изрезанность диаграмм направленности сверхширокополосных спиральных антенн, размещенных на металлической платформе, до уровня 1,0-1,5 дБ, обеспечить работоспособность системы сверхширокополосных спиральных антенн в рамках технических требований. 1 ил.

Изобретение относится к поглотителям электромагнитных волн (ЭМВ) в диапазоне сверхвысоких частот. Техническим результатом является электрическое управление величиной поглощения ЭМВ независимо на различных участках защищаемой поверхности объектов; управление диаграммой направленности и поляризацией отраженных ЭМВ; модуляция и фрагментация отраженных сигналов. Устройство представляет собой совокупность находящихся в переменном электромагнитном поле электрических контуров, выполненных в виде расположенных слоями плоских электрических проводников, каждый из которых замкнут своими концами через устройства управления активным сопротивлением, электрической емкостью и волновыми размерами контуров, которые изменяют их поглощение, резонансную частоту настройки и волновые размеры, соответственно. Каждый электрический контур является элементарной антенной, предназначенной для приема ЭМВ и их дальнейшего управляемого поглощения. Управляющие сигналы устройства позволяют модулировать амплитуду, спектр, фазу и поляризацию отраженных ЭМВ. 17 з.п. ф-лы, 14 ил.

Изобретение относится к радиотехнике, а более конкретно к материалам для поглощения электромагнитных волн, и может найти применение для повышения скрытности и уменьшения вероятности обнаружения радиолокаторами объектов морской, наземной, авиационной и космической техники, а также обеспечения электромагнитной совместимости радиоэлектронных и радиотехнических приборов и устройств. Покрытие на основе дифракционной решетки выполнено из электропроводящего или диэлектрического материала, содержащее радиопоглощающие элементы. Покрытие включает группы, содержащие каждая не менее четырех прорезей, каждая прорезь в группе выполнена параллельно друг другу, каждая группа по отношению к другой группе выполнена перпендикулярно. Прорези имеют расстояние между соседними элементами от одной шестнадцатой до одной четверти длины падающей электромагнитной волны. Внутри прорези расположены не менее четырех не связанных между собой слоев арамидной ткани с нанесенной магнетронным распылением пленкой из гидрогенизированного углерода с нанокластерами атомов металлов. Покрытие снизу защищено от внешнего воздействия металлической фольгой, а сверху - при помощи радиопрозрачного слоя толщиной не менее 0,1 мм. Указанные выше слои арамидной ткани с нанесенной магнетронным распылением пленкой из гидрогенизированного углерода с нанокластерами атомов металлов представляют собой радиопоглощающие элементы. Технический результат заключается в повышении эффективности поглощения электромагнитного излучения в широком диапазоне длин волн. 1 ил.

Изобретение относится к радиотехнике, а более конкретно к материалам для поглощения электромагнитных волн, и может найти применение для повышения скрытности и уменьшения вероятности обнаружения радиолокаторами объектов морской, наземной, авиационной и космической техники, а также обеспечения электромагнитной совместимости радиоэлектронных и радиотехнических приборов и устройств. Поставленная задача достигается тем, что радиопоглощающее покрытие содержит основу с нанесенной пленкой из гидрогенизированного углерода с нанокластерами атомов металлов, защищенную с помощью тонкого стеклопластикового слоя от внешнего воздействия. Основа выполнена в виде цилиндрических элементов из диэлектрической ткани, защищенная от внешних воздействий снизу при помощи металлической фольги, а сверху при помощи тонкого стеклопластикового слоя, цилиндрические элементы расположены в одной плоскости между слоями стеклопластикового слоя и металлической фольги параллельно друг другу на расстоянии не менее одного диаметра вышеуказанных элементов. Предлагаемое радиопоглощающее покрытие является эффективным поглотителем СВЧ излучения в широком диапазоне частот, обладающим расширенным рабочим диапазоном, а также меньшим весом по сравнению с аналогом. 1 ил., 1 табл.

Изобретение относится к радиотехнике, а именно к конструкциям безэховых камер, предназначенных для измерения диаграмм эффективной площади рассеяния радиолокационных целей. Безэховая камера, выполненная в закрытом помещении, в котором внутренние стены, пол и потолок облицованы радиопоглощающим материалом, причем продольное сечение помещения выполнено в форме трапеции с горизонтальным основанием. При этом задняя торцевая стена помещения установлена под углом β, где ε - диэлектрическая проницаемость облицовочного радиопоглощающего материала. Технический результат заключается в устранении зеркального отражения радиоволн от задней торцевой стены БЭК. 1 ил.

Наверх